
Wesleyan University The Honors College

Analyzing the Effectiveness of Passive Correlation Attacks
on the Tor Anonymity Network

by

Sam DeFabbia-Kane
Class of 2011

A thesis submitted to the
faculty of Wesleyan University

in partial fulfillment of the requirements for the
Degree of Bachelor of Arts

with Departmental Honors in Computer Science

Middletown, Connecticut April 2011

Acknowledgements

I first want to thank Norman Danner and Danny Krizanc, who have allowed me to

work with them on Tor-related projects since my sophomore year, and who have

been my advisors for this thesis. I am exceedingly grateful for their time, advice,

and patience. I have been able to have spend quite a lot of my time at Wesleyan

working on a topic I find extremely interesting, and I count myself very lucky to

have had that opportunity.

I also would like to thank my friends, who have supported me during this

process and throughout my time at Wesleyan. I have learned just as much from

all of them than I have from the classes I’ve taken here. I would like especially to

thank my housemates. Andrew, Dan, Dave, Ryan, Jess, and Lindsey have have

remained patient with me over the past few weeks despite me being tired, stressed,

and irritable, and they have been amazing friends for the entire time I’ve known

them at Wesleyan.

Finally, I would like to thank my parents. They have always supported and

encouraged my curiousity and my interests, and it is that support that has made

me into the person I am today.

ii

Abstract

Tor is a widely used low-latency anonymity system. It allows users of web

browsers, chat clients, and other common low-latency applications to commu-

nicate anonymously online by routing their connection through a circuit of three

Tor routers. However, Tor is commonly assumed to be vulnerable to a wide variety

of attacks, which might allow Tor operators or outside observers to compromise

the anonymity of Tor’s users. One of these attacks is an end-to-end correlation

attack, whereby an attacker controlling the first and last router in a circuit can use

timing and other data to correlate streams observed at those routers and therefore

break Tor’s anonymity.

Since most prior tests of correlation algorithms have been either in simulation

or have only used certain kinds of traffic, our goal was to test how well these

algorithms work on the deployed Tor network. In this thesis we tested three

correlation algorithms. Two of these algorithms are from prior work, and the

third was designed by us. Its design was based on observations and analyses

of data we collected during the testing process. We found that while the two

previously-existing algorithms we tested both have problems that prevent them

being used in certain cases, our algorithm works reliably on all types of data.

iii

Contents

Chapter 1. Introduction 1

1.1. Circuits and Onion Encryption 2

1.2. Tor Cells 4

1.3. Directory Servers 7

1.4. Contributions of this Thesis 7

Chapter 2. Attacks on Tor 9

2.1. Stream Correlation 9

2.2. Clogging 11

2.3. Round-Trip Travel Time 12

Chapter 3. Metrics for Tor Traffic 13

3.1. Traffic Over Tor 13

3.2. Entry Router Traffic 17

Chapter 4. Testing Correlation Algorithms 20

4.1. Attacker Model 20

4.2. Correlation Algorithm Definitions 20

4.3. Test Setup 26

4.4. Results 27

Chapter 5. Conclusion 32

Bibliography 34

iv

CHAPTER 1

Introduction

Any message sent over the internet contains routing information that can be

used to identify the sender and receiver of the message. For many users of the

internet, this poses a problem. Activists, whistleblowers, and human rights work-

ers might want to be anonymous to avoid reprisals from oppressive governments

or corporations. Military and law enforcement personel might want to be anony-

mous so that they can gather intelligence or conduct sting operations without

identifying themselves online. People living in countries or working at compa-

nies with censored internet may use anonymity as a way to circumvent censorship

measures. To this end, many anonymity systems have been developed with the

goal of facilitating anonymous communication online.

These anonymity systems are typically divided into two categories: low-latency

systems and high-latency systems. High latency systems—such as Babel, Mix-

master, and Mixminion—implement defense measures such as mixing, padding,

batching, and reordering in an attempt to protect against a global passive adver-

sary who can observe all network traffic [4]. However, such systems can only be

used with high-latency communication methods like email, which limits their util-

ity and also limits their user base. Low-latency systems generally do not attempt

to protect against a global passive adversary, but are usable with a much wider

variety of applications, including web browsers, chat clients, and video streaming.

One popular low-latency anonymity network is Tor [4]. Tor works by routing a

user’s connection through three onion routers (ORs), which form a circuit and act

1

1. INTRODUCTION 2

as a chain of proxies for the connection. Messages being sent over the connection

are layered with encryption (using a technique called onion encryption that is

detailed in Section 1.1) so that each OR knows only its immediate source and

destination. Onion routers are run by volunteers around the world. The routers

are coordinated and cataloged by a small set of directory servers that provide

information about the Tor network and available routers to Tor clients (which are

often called onion proxies or OPs).

While it does not protect against a global passive adversary, Tor does try to

protect against a more limited adversary who can observe some of the traffic going

over the network, or who controls some Tor routers. This is important because

anyone can run a Tor router, and Tor users have no guarantee that router operators

are not malicious. However, despite its design goals, Tor is commonly assumed to

be vulnerable to several classes of attacks by non-global adversaries. In this paper,

we will examine one of those types of attacks: a passive end-to-end correlation

attack whereby an attacker controlling the first and last routers in a circuit can

compromise the anonymity of streams going through that circuit. While Tor is

assumed to be vulnerable to these kinds of attacks, much prior work in this area

has been done in simulation or only in theory. We seek to test the effectiveness

of these attacks on the deployed Tor network, and to determine whether we can

create a better attack by examining metrics of Tor traffic. This chapter describes

how Tor works and what the goals of this thesis are.

1.1. Circuits and Onion Encryption

Users wishing to use Tor proxy their traffic through an onion proxy (OP),

which transparently handles circuit creation and encryption. Tor’s goal is anonymity.

1. INTRODUCTION 3

It does not provide end-to-end encryption because it cannot encrypt the step be-

tween the exit router and the server the client is connecting to. To do so would

require the cooperation of the server, meaning that Tor would not be a transpar-

ent proxy. Tor, therefore, is not a replacement for other encryption technologies.

However, Tor does use layered encryption interally, which accomplishes two pur-

poses. First, it ensures that each OR knows only about the adjacent nodes in

the circuit. Second, it prevents attackers from directly comparing the traffic at

any two points in the circuit, because the traffic is differently encrypted (and so

looks different) at every point. The OP does this encryption by negotiating a

symmetric key with each router in the circuit and encrypting each message with

every symmetric key, as described below.

Let R1, ..., Rn be routers in an n-length circuit and let Ki be a symmetric

key negotiated between Alice’s OP and Ri. Keys for Ri are negotiated through

the previous routers in the circuit, R1, ..., Ri−1. When sending a message M , the

client first encrypts that message with the key Kn, then Kn−1, etc., all the way

down to K1. Consider the case where Alice is sending a message to Bob over a

length-3 circuit R1 → R2 → R3. Let [M]Ki
denote the message M encrypted

with symmetric key Ki, and let [M]Ki,j,k
denote the message M encrypted first

with Ki, then Kj, then Kk. Alice’s OP will first encrypt with key K3, then K2,

and then K1, and so the message Alice’s OP sends will be [M]K3,2,1 .

As the message passes through the circuit, each router Ri decrypts the message

it receives with its key Ki. It can then pass the message along to the next router in

the circuit (or to Bob, if it’s the last router in the circuit). So as M goes through

the circuit, it looks like this:

Alice
[M]K3,2,1−−−−−−→ R1

[M]K3,2−−−−−→ R2

[M]K3−−−−→ R3
M−−→ Bob

1. INTRODUCTION 4

When Bob wants to send a message M ′ back, he sends M ′ to R3, which

encrypts it with K3, and then passes it back along the circuit. Each router Ri

in the circuit encrypts it with Ki, and so passage of M ′ back through the circuit

looks very similar to the forward passage of M . Since only Alice knows all three

keys K1, K2, and K3, only Alice can decrypt the message and read M ′.

Alice
[M ′]K3,2,1←−−−−−−− R1

[M ′]K3,2←−−−−−− R2

[M ′]K3←−−−−− R3
M ′
←−− Bob

1.2. Tor Cells

Tor communicates over TCP to ensure in-order delivery. All communication

between Tor proxies and routers takes place in an application-level protocol using

messages called Tor Cells. The protocol is specified in the main Tor specification

document, tor-spec.txt [3]. There are two versions of the protocol. Up-to-date

Tor processes will always use version 2 of the specification, and so that is what

will be discussed here.

CircId Command Payload (0-padded)

2 bytes 1 byte PAYLOAD LEN bytes

Figure 1.1. Tor Cell Format

Tor cells are 512 bytes long. The format is presented in Figure 1.1. The Com-

mand field defines the type and purpose of the cell. Common values for Command

include CREATE, CREATED, RELAY, RELAY EARLY, and DESTROY. CRE-

ATE cells are used to initiate a connection between two Tor processes. They are

sent by onion proxies to create the first hop in a circuit and also by onion routers

to extend a circuit by one hop. CREATED cells are the response to a success-

ful CREATE. RELAY and RELAY EARLY cells are wrappers which contain any

1. INTRODUCTION 5

message sent over an established circuit and will be discussed in more detail below.

DESTROY cells are sent to adjacent nodes to tear down a circuit. The Payload

field is the part of the cell that gets onion encrypted.

Relay command ‘Recognized’ StreamID Digest Length Data

1 byte 2 bytes 2 bytes 4 bytes 2 bytes 498 bytes

Figure 1.2. Relay Cell Payload Format

RELAY cells have an additional relay header included in their payload. The

format of a RELAY cell payload is shown in Figure 1.2. Relay commands de-

fine the purpose of the RELAY cell. BEGIN, END, and CONNECTED relay

commands are used for setting up and tearing down TCP streams on a circuit.

DATA relay cells are used for sending data across a TCP stream. EXTEND and

EXTENDED relay cells are used when constructing a new circuit, and TRUN-

CATE and TRUNCATED cells are used when tearing a circuit down. Other relay

cell types deal with directory server communication, DNS lookup, and congestion

control.

The ‘Recognized’ and Digest fields of the header allow a router to determine

whether or not the cell is fully decrypted. A cell is considered fully decrypted if

Recognized is set to zero and Digest is the first four bytes of the running digest

of all of the bytes destined for or originated from this hop in the circuit. If a cell

is not considered fully decrypted, it gets passed on to the next hop in the circuit.

The StreamID field is set by the OP and allows the OP and the exit router to

distinguish between the multiple streams on a circuit. The Length field is the

number of bytes of the Data field which contain actual data. (The remainder of

Data is NUL-padded.)

1. INTRODUCTION 6

RELAY EARLY cells are a special type of RELAY cell used for circuit cre-

ation. Clients speaking V2 of the link protocol send any EXTEND relay cells as

RELAY EARLY cells instead. An OR receiving more than 8 RELAY EARLY

cells closes the circuit. This limits the maximum length of any circuit, which

helps to protect against certain classes of attacks, such as Pappas et al.’s packet

spinning attack [9].

1.2.1. Example Workflow: Circuit Creation. In Figure 1.3, we present

an outline of the workflow for circuit creation. In this diagram, Alice is running

an OP and creating the circuit R1 → R2 → R3. (With K1, K2, and K3 being

the symmetric keys negotiated during the circuit’s creation.)

Figure 1.3. Circuit Creation Workflow

1. INTRODUCTION 7

1.3. Directory Servers

Tor is not a fully-distributed system. A small number of directory servers

keep a listing—called a consensus document—of all of the routers currently on

the network. Every hour the directory servers pool their information and vote

to create an updated consensus document. Clients and routers running on the

network fetch an updated consensus from a directory server once every hour. The

consensus document—along with router descriptors published by each router—

provide enough information for clients to connect to and verify the identity of the

routers on the network.

1.4. Contributions of this Thesis

Tor is commonly assumed to be vulnerable to end-to-end correlation attacks.

While the onion encryption performed by Tor prevents direct comparison of packet

contents, an attacker controlling the first and last router has access to other in-

formation, such as packet timing, and that information is commonly assumed to

be enough to break Tor’s anonymity. However, prior work on this topic has two

problems. First, most of the work has been done only in theory or in simulation,

and the simulations do not necessarily take into account all of the factors intro-

duced by Tor that may affect a given correlation algorithm. Second, the existing

work that has been done using real data focuses on streams with large numbers of

packets sent, which means that a user of Tor might be able to evade an attacker

by only sending small amounts of data at once.

This work seeks to answer two questions. First, we seek to determine whether

additional factors (such at latency) introduced by Tor, prevent a passive end-to-

end correlation attack from working. And second, if correlation is feasible, we

1. INTRODUCTION 8

seek to determine whether such attacks can work even when clients transfer only

a small amount of data.

Chapter 2 provides an overview of prior work related to timing correlation and

other related attacks against Tor. Chapter 3 contains metrics on data collected

from Tor. This information will allow us to determine why certain algorithms

succeed or fail. Chapter 4 describes our experiment and results for performing

correlation over Tor. It includes detailed descriptions of two existing correlation

algorithms and a new simple correlation algorithm, the design of which is based

on the data we examined in Chapter 3. Finally, Chapter 5 summarizes our work

and suggests potential areas for further research.

CHAPTER 2

Attacks on Tor

Many different types of attacks have been proposed to work against low-latency

networks in general and Tor in particular. This chapter is a brief survey of some

of those attacks. Two of these attacks will be examined in more detail and tested

in Chapter 4.

2.1. Stream Correlation

In stream correlation attacks, an attacker who can observe two packet streams

attempts to verify that they are the same stream at different points in the anonymity

network. Since streams in Tor are onion encrypted, they cannot be compared

directly, and the attacker must try to correlate them using other available infor-

mation.

2.1.1. Packet Counting. Packet counting is one simple form of stream cor-

relation. As proposed by Back et al. [1], an attacker who can observe onion

routers counts the number of packets entering and leaving the first router to de-

termine what the next step in the circuit is. The procedure is then repeated for

later routers in the circuit until the destination is determined. While this form

of packet counting is relatively simple to implement, it requires an attacker to be

able to observe a very large amount of the network, and assumes that there is

never any variation in the number of packets entering and leaving a router on a

given stream. As such, packet counting has been largely overshadowed by more

sophisticated stream correlation techniques based on packet timing.

9

2. ATTACKS ON TOR 10

2.1.2. Timing Analysis. Packet timing is another piece of data that can

be used to correlate network streams. One simple way to use packet timing data

is to use some sort of correlation function to attempt to correlate streams based

on their inter-packet delay—the time between the arrival of packets adjacent on

the stream. However, this approach may have problems with dropped packets.

Levine et al. [6] proposed a correlation algorithm using time series constructed

from packing timing information instead. A time series is one way of looking at

packet timing data. To create the time series, we set a constant time W , divide the

packet streams into windows of size W and count how many packets fall into each

window. The correlation function is a normalized dot product. They simulated

their correlation algorithm with four types of user traffic (traffic generated from

the 1996 Berkeley HomeIP survey, random traffic, constant traffic, and constant

traffic with random packets dropped) and showed that they could successfully

perform correlations in a majority of situations with minimal false positives.

The weakness of most timing attacks is that they rely on the attackers con-

trolling Tor routers, and require the attackers to control a large portion of the Tor

network to be widely effective [6]. While there have been improvements proposed

(such as Borisov et al.’s denial of service attack whereby attacking routers kill

circuits they can’t control [2]), there are also timing attacks that don’t rely on

controlling individual Tor routers. Murdoch and Zieliński [8] proposed one such

attack, where the adversaries control Internet Exchanges and so can observe traffic

entering or leaving countries. They showed that they could perform correlation

(using an algorithm derived from Bayes’ formula) even when they tracked only

one packet per two-thousand in a given stream.

2.1.3. Active Timing Correlation. Active correlation attacks are an effort

to make time-based correlation easier and more effective. They work by having

2. ATTACKS ON TOR 11

an attacking router alter the packet delay signature of a connection by dropping

or delaying packets in the stream. They were proposed, but not tested, by Levine

et al [6].

Wang et al. [10] demonstrated that active timing attacks are feasible and

effective against highly-interactive protocols like VoIP, even when protected by the

findnot.com anonymity service. They performed active timing attacks on peer-to-

peer Skype calls by creating and injecting a unique watermark into the stream.

They found that, if the right parameters were chosen, they could correctly identify

99% of the watermarked streams with a false positive rate of 0%. Increasing the

identification rate to 100% came at the cost of only an 0.1% false positive rate.

2.2. Clogging

Murdoch and Danezis [7] presented a clogging attack, where they take ad-

vantage of the fact that one connection through a router has an effect on other

connections through the same router. The attacker must control a Tor router

and be able to observe a connection at some point between the Tor exit router

and its final destination. Using the compromised Tor router, the attacker can

create length-one circuits to all other Tor routers one-by-one to see whether or

not this increases the latency of the connection the observer is watching. If it

does, then that router is on the circuit. Murdoch and Danezis tested their attack

on the nascent Tor network and found that the attack worked against 11 of the

13 routers on the network at the time. However, since there are now almost 2,500

routers running, this attack is not necessarily still viable.

2. ATTACKS ON TOR 12

2.3. Round-Trip Travel Time

Hopper et al. [5] presented two attacks that revolve around determining the

round-trip travel time (RTT) from clients to servers. In the first attack, the at-

tacker is in control of two servers that are receiving connections from the same exit

router. The attacker’s goal is to determine whether the connections are coming

from the same circuit. Through one of several methods (forcing the user’s web

browser to download thousands of tiny image files sequentially, forcing the user’s

web browser through a series of HTTP redirects, or the use of an interactive pro-

tocol like IRC), both servers obtain a large number of round-trip travel times from

the client they’re curious about. They then compare the frequency distributions

of the RTTs. If the frequency distributions are similar, then the connections are

likely to be from the same circuit.

CHAPTER 3

Metrics for Tor Traffic

Our end objective is to evaluate the effectiveness of end-to-end timing cor-

relation attacks on the deployed Tor network. However, most of the correlation

algorithms we will discuss rely on multiple distinct factors to perform correlation,

and so before testing the correlation algorithms we will first isolate and examine

some of those factors individually. This will allow us to understand why certain

succeed or fail and will also provide the justification for a new correlation algo-

rithm that we present in Chapter 4. Since we are testing the effectiveness of these

algorithms against an attacker who controls Tor routers, the attacker has access

to any information the routers have access to, meaning that the attacker can use

Tor cell data rather than the raw TCP packet data.

3.1. Traffic Over Tor

First we will examine the effect that Tor has on network traffic. We will

look at two factors used by correlation algorithms: latency between Tor cells,

and overall stream length. On an ideal network, we would expect that latency

would remain constant, and that the stream would take exactly as long to receive

as to send. However, Tor routers have varying connection speeds and qualities,

and so assuming that Tor is close to an ideal network in these regards may be

problematic.

3.1.1. Test Setup. Our goal is to test whether correlation works when the

attacker controls both the entry and exit routers, and so we will use private entry

13

3. METRICS FOR TOR TRAFFIC 14

and exit routers running on the same computer for these tests: only the middle

routers will change.

For our control group, we will use another private router for the middle router.

It will run on the same computer as the entry and exit. Traffic going through this

router will not be subject to latency, since the connection will not be over a

network. And since there’s no other traffic going through the middle router, it

won’t be under any significant load, so conditions will be as close to ideal as

possible.

For our first experimental group, the middle router will be a public router that

we control. This router is running on a separate computer, but is on the same

local area network as the computer running the private entry and exit routers,

and so latency is low and fairly constant. At the time of testing, our router was

routing approximately 1Mbit/s of Tor traffic, and so is under load. This test will

allow us to determine whether Tor router load affects the metrics.

Our second experimental group will use many different middle routers. For

each trial, we will choose a router at random from among the routers present on

the network to be the middle router. This group will have varying latencies and

varying router loads, and will allow us to see their combined effect on the metrics.

For each group, we will run tests with two types of traffic. The first type is a

ping client that sends a ping and receives a response every 200ms for 30 seconds.

This traffic type will be used to test the effect of Tor on inter-cell latency. The

second type of traffic is a 1MiB file download, which will be used to test whether

overall stream length varies.

Our data collection consists of collecting the timestamp of each RELAY cell

sent or received by the entry and exit routers. We collect this data by modifying

3. METRICS FOR TOR TRAFFIC 15

Tor’s source code to use Tor’s existing logging framework to log Tor cell data to

a file.

3.1.2. Results. Since the two types of traffic we’re looking at are very differ-

ent, we’ll use different metrics to evaluate the effect that passing through Tor had.

For the constant-rate intermittent (“ping”) traffic, we’ll look at the distributions

of delays between consecutive packets. Since the client is sending the pings, we

expect the delay between cells at the first router to be almost constant at 200 mil-

liseconds (or very close to it). We hypothesize that the delay will remain constant

(or close to it) in our control group, and will vary in both of our experimental

groups. We performed rounds of data collection with the control and both of the

experimental groups. The inter-cell delay distributions of all three are presented

in Figure 3.1.

0 50 100 150 200 250 300 350 400
Inter-Cell Delay (ms)

0

20

40

60

80

100

Pe
rc
e
n
t
o
f
C
ir
cu
it
s

ICD
min: 0
max: 311
avg: 194.95
std dev: 27.99

ICD at Exit
0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Pe
rc
e
n
t
o
f
C
ir
cu
it
s

ICD
min: 0
max: 239
avg: 194.95
std dev: 27.87

ICD at Entry
Inter-Cell Delay, Control Group

(a) Control Group

0 50 100 150 200 250 300 350 400
Inter-Cell Delay (ms)

0

20

40

60

80

100

Pe
rc
e
n
t
o
f
C
ir
cu
it
s

ICD
min: 0
max: 4476
avg: 195.06
std dev: 62.70

ICD at Exit
0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Pe
rc
e
n
t
o
f
C
ir
cu
it
s

ICD
min: 0
max: 388
avg: 195.05
std dev: 28.37

ICD at Entry
Inter-Cell Delay, Experimental Group 1

(b) Experimental Group 1

0 50 100 150 200 250 300 350 400
Inter-Cell Delay (ms)

0

20

40

60

80

100

Pe
rc
e
n
t
o
f
C
ir
cu
it
s

ICD
min: 0
max: 4049
avg: 197.46
std dev: 85.19

ICD at Exit
0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Pe
rc
e
n
t
o
f
C
ir
cu
it
s

ICD
min: 0
max: 758
avg: 196.76
std dev: 35.02

ICD at Entry
Inter-Cell Delay, Experimental Group 2

(c) Experimental Group 2

Figure 3.1. Ping Traffic Inter-Cell Delay Distributions

For the file download, we look at a different metric: the amount of time taken

to send the file from the exit back to the middle router, and the amount of time

taken to receive the file at the entry router from the middle router. The results

for this are displayed in Figure 3.2.

3. METRICS FOR TOR TRAFFIC 16

0 10 20 30 40 50
0

10

20

30

40

50

60

Pe
rc
e
n
t
o
f
C
ir
cu

it
s

Control

0 10 20 30 40 50
Percent Increase in Time

0

10

20

30

40

50

60
Experimental 1

0 10 20 30 40 50
0

10

20

30

40

50

60
Experimental 2

Figure 3.2. Increase in Time Taken to Receive a File over Tor

3.1.3. Conclusions. As we can see in Figure 3.1(a), the inter-packet delay

of ping traffic going through local, unloaded Tor routers in our control group re-

mains almost exactly the same between the entry and exit routers. The results

for the first experimental group—presented in Figure 3.1(b)—vary much more

than in the control, with the standard deviation more than doubling. However,

the delay still remains within 5ms of the expected 200ms over 80% of the time.

The same does not hold true in the results for our experimental group—presented

in Figure 3.1(c)—where the standard deviation is even higher, and the variation

is within 5ms less than 50% of the time. This means that even small amounts

of traffic may be susceptible to varying latencies when traveling over a Tor cir-

cuit, which could pose problems for correlation methods that rely on the delay

remaining relatively constant.

Figure 3.2 shows us that the time taken to receive data over Tor is significantly

higher than the time taken to send it, that the time increase varies and so can not

be predicted, and also that at least some of this increase occurs even under ideal

network conditions, as was the case in our first experimental group. This suggests

3. METRICS FOR TOR TRAFFIC 17

that correlation methods that compare vectors of timing information directly—

such as the method presented in Levine et al. [6]—may not work as well in practice

as they do in theory, as the two streams will have very different lengths.

3.2. Entry Router Traffic

We now have some idea of what happens to traffic when it goes over Tor.

Aggregate information about Tor traffic is also useful, as it may allow us to de-

termine factors that are likely to be unique. Since we’ve already established that

traffic over Tor has non-constant latency and overall length (and, therefore, that

those may be problematic factors to base a correlation metric on), we will look

at two other factors: circuit creation time, and the total number of Tor RELAY

cells in each observed stream.

3.2.1. Test Setup. For this test, we will collect data from our public Tor

router. We will look at the information about the circuits using our router as

an entry or middle router. We guess which we are by checking whether or not

the Tor process earlier in the circuit than us is in consensus or not. If it is, we

say that we’re the middle router. If it’s not, we say that we’re the entry router.

We exclude circuits where fewer than 3 cells are recorded. 2 cells are required for

circuit creation when using Tor’s standard length-3 circuits. Circuits with fewer

than 3 cells were set up but never used to send or receive information, and so

trying to correlate them wouldn’t give the attacker useful information.

3.2.2. Results. Results are based upon approximately 800 entry circuit cre-

ations and 20,000 other circuit creations collected across multiple trials. Results

for the time distribution of new circuit creation are presented in Figure 3.3. Re-

sults for the distribution of counts of inward-bound cells on circuits at our Tor

router are presented in Figure 3.4.

3. METRICS FOR TOR TRAFFIC 18

0 50 100 150 200
0
5

10
15
20
25
30
35
40

%
 o
f
C
ir
cu
it
s

Time Distribution of Entry Circuit Creations

0 2 4 6 8 10
Seconds After Previous Circuit Formation

0

2

4

6

8

10

%
 o
f
C
ir
cu
it
s

(a) Entry Circuit Creations

0 1 2 3 4 5 6 7 8
0
5

10
15
20
25
30
35
40

%
 o

f
C
ir
cu

it
s

Time Distribution of Non-Entry Circuit Creations

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Seconds After Previous Circuit Formation

0

2

4

6

8

10

%
 o

f
C
ir
cu

it
s

(b) Non-Entry Circuit Creations

Figure 3.3. Distribution of time between consecutive circuit cre-

ations at our Tor router.

0 500 1000 1500 2000
Cell Count

0

20

40

60

80

100

%
 o
f
C
ir
cu

it
s

Entry Circuits

0 500 1000 1500 2000
Cell Count

0

20

40

60

80

100
Non-Entry Circuits

Figure 3.4. Distribution of counts of inward-bound cells.

3.2.3. Conclusions. As we can see in Figure 3.3, the shape of the time

distributions is very similar for both entry and non-entry circuit creations, but

the values are very different. However, our data contained many more non-entry

3. METRICS FOR TOR TRAFFIC 19

circuit creations than entry circuit creations, and so this variation in values makes

sense. Figure 3(b) has its x-axis scaled so that the values are 4% of the values

in Figure 3(a), the ratio of entry to non-entry circuit creations was 4 : 100 as

well, and the distributions look very similar. This means that the reason that

the values are significantly different is the rate of circuit creation, not anything

fundamentally different about the different types of circuits. This makes sense,

since a non-entry circuit creation at our router corresponds to an entry circuit

creation on a different Tor router.

The time distribution data also tells us that circuit creation time may be a

good metric for differentiating between circuits: even when considering the much

greater number of non-entry circuits, under 30% of the circuits had start times

within a third of a second of anther circuit.

The count distribution data—presented in Figure 3.4—shows us that most

circuits are short: 50−60% of circuits have 100 or fewer cells sent back to the OP.

This means that an effective correlation algorithm needs to be able to correlate

short circuits as well as longer ones. As with the circuit start time data, the shape

of the distributions for the entry and non-entry counts are very similar.

CHAPTER 4

Testing Correlation Algorithms

Having established the effects that network traffic has on Tor, we return to

our original goal: testing timing correlation methods on real Tor traffic.

4.1. Attacker Model

For all of the following definitions, let R1 and R3 be the first and last routers

in a circuit, which are controlled by an attacker whose goal is to break Tor’s

anonymity for a certain subset of users. Let x1 . . . xn be streams of Tor cells

observed at R3, the exit router, and let y1 . . . ym be streams of Tor cells observed at

R1, the entry router. For each xi, the attacker’s goal is to determine whether there

exists a yj such that xi and yj are the same stream. Since all of the correlation

algorithms work on only two recorded streams at once, we will refer to the streams

currently being considered as x and y for notational simplicity.

4.2. Correlation Algorithm Definitions

We consider two existing correlation methods—chosen because they are well-

defined and work very differently—and one correlation method that we have de-

fined ourselves. First we consider the correlation method of Levine et al. [6],

which is a normalized dot product that takes into account timing data from all

observed Tor cells, and which was originally tested in simulation. Second we con-

sider the correlation method proposed by Murdoch and Zieliński [8], which works

without considering individual cell timing data, and which was originally tested

on real data. Finally, we propose a new simplified correlation algorithm that

20

4. TESTING CORRELATION ALGORITHMS 21

also works without considering individual cell data, and which is significantly less

computationally intensive than either of the other two methods.

4.2.1. Levine et al. Correlation. The method proposed by Levine et al.

uses timing data from all observed Tor cells. While some previously published at-

tacks attempted to use the times between adjacent cells as vectors for correlation,

Levine et al. observe that that method is fragile because it is sensitive to dropped

packets. Their method is a normalized dot product that operates on a time series

generated from the observed timing data, rather than directly on the timing data

itself.

To construct a time series {zi}w, we pick a window size w, divide the packet

stream z into non-overlapping windows of size w (zero-padded so that the time

series start and end at the same time), and count the number of packets in each

window. The vector of packet counts is the time series.

They define the cross-correlation with delay d of the time series of streams x

and y to be

r(d) =

∑
i (yi − ȳ)(xi+d − x̄)√∑

i (yi − ȳ)2
√∑

i (xi+d − x̄)2

with zi being the ith element of the time series {zi}w, and z̄ being the average of

all of the zi in {zi}w. For their analyses, Levine et al. used a delay of 0 and a

window size of 10 seconds.

Here, we consider two vectors a = y− ȳ and b = x− x̄. The correlation formula

is the normalized dot product of those two vectors. The dot product of two vectors

is larger the closer the vectors are to being parallel, so a larger result indicates

that the two vectors (and, therefore, the two packet streams) are more highly

correlated. However, the value of a standard dot product will vary depending

on the length of the vectors being compared, and so it is useful to normalize the

4. TESTING CORRELATION ALGORITHMS 22

values. This can be done by taking advantage of the relation between the value

of the dot product and the angle between the two vectors.

a · b = |a||b| cos θ

Here, a and b are vectors, a · b is the dot product of a and b, and |a| is the length

of the vector a. To isolate θ and get the angle, we can rewrite the above formula

as follows:

θ = arccos

(
a · b
|a||b|

)
Since the domain of arccos is [−1, 1] (and since we know the argument is valid

by the Cauchy–Schwarz inequality), we know that the argument also ranges over

[−1, 1]. Since arccos ranges and decreases monotonically from [π, 0] over that

interval, the two vectors are parallel when the argument is 1, and antiparallel

when the value is -1. The argument to arccos in the above formula is equivalent

to the correlation function, since the top of the fraction in the correlation function

is the definition of the dot product, and the bottom is the product of the lengths,

calculated using the n-dimensional case of the Pythagorean theorem.

One issue with Levine et al.’s correlation method is that is that the result is

undefined in certain cases. Because the algorithm subtracts the average value of

a time series from each index before doing correlation1, a time series with the

same number in each index will end up having all zeroes, resulting in a divide-

by-zero error. When that happens, we return a correlation of −1, meaning that

we effectively do not consider that result. Also, we will only consider correlations

with a delay d of 0, since that was what Levine et al. found to be effective.

4.2.2. Murdoch and Zieliński Correlation. The correlation method pro-

posed by Murdoch and Zieliński is derived from Bayes’ formula. They model each

1The reason for this is not explained in their paper.

4. TESTING CORRELATION ALGORITHMS 23

flow p as a Poisson process with a start time s, duration l, and rate r (average

packets per second). Since the actual flow p is not observable, they consider the

two streams x and y instead. Both can be directly observed by the attacker, and

are modeled as independent Poisson processes from the parameters of p. They

then can derive the probability P (Tk) that x and yk are from the same flow using

Bayes’ formula:

P (Tk|y1..n, x) =
P (y1..n|Tk, x)P (Tk|x)∑
i P (y1..n|Ti, x)P (Ti|x)

Since they only want relative (rather than absolute) probabilities, they ignore all

factors independent of k, which allows them to derive the final probability:

P (Tk|x, y1..n) =
P (x, yk|Tk)

P (yk)
∼ Γ(nxyk)

2nxyk Γ(nyk)
· nyk(nyk − 1)

nxyk(nxyk − 1)
· l

nyk
−1

yk

l
nxyk

−1
xyk

Γ(n) = (n−1)!, ny is the total number of packets in y, nxyk = nx+nyk , lx = xmax−

xmin is the observed length of x, and lxyk = max(xmax, ymax) −min(xmin, ymin),

is the total observed length of x and y.

The formula has three parts, which are multiplied together to find the prob-

ability. The first part is based on the rate of packets observed at x and y, the

second is a correction factor for the rate, and the third part is length-dependent,

which helps to ensure that only streams that occurred at roughly the same time

and for roughly the same amount of time are considered.

This correlation method was originally intended to be used by an adversary

that controls Internet exchanges, outside the Tor network, and who could observe

only small samples (about 1 of every 2000 packets from each stream) of traffic for

a given stream. However, this correlation method is also usable within the Tor

network by an attacker who controls Tor routers, which is our attacker model. One

problem with using this correlation method in our model is that its probabilities

are strictly relative and are not normalized, so we can’t set a benchmark that

4. TESTING CORRELATION ALGORITHMS 24

we consider “good enough” for two streams to be considered correlated. This is

problematic in cases where we might not necessarily be viewing all of the streams

in the network, and so may not be able to correctly correlate a given x with any

observable y.

The final result of this correlation calculation often has an extremely small

exponent (often in the negative thousands or tens of thousands). Since this for-

mula calculates only relative probabilities, we can take its logarithm and lose no

information. We take advantage of this fact and use Stirling’s approximation for

large factorials to significantly speed up the correlation calculation.

4.2.3. Simplified Correlation. In chapter 3, we quantified the affects of

Tor on network traffic, and discovered two things about Tor’s affect on network

traffic. First, we learned that the latency of individual cells going over Tor is

variable, even within a given circuit. Second, we learned that the total time it

takes a packet stream to enter Tor at one end is often shorter than the total time

it takes for that packet stream to completely exit Tor at the other end. The first

of these factors may affect correlation algorithms that rely on individual packet

timings (such as the algorithm presented by Levine et al), and the second of these

factors may affect correlation algorithms that rely on overall circuit timing, such

as the algorithm presented by Murdoch and Zieliński.

In an attempt to counteract both of these issues, we present and test our

own correlation algorithm. This algorithm takes into account two factors: the

circuit start time, and the total number of Tor cells sent over the circuit. For our

algorithm, we define the correlation c to be

c =
T − abs(xstart − ystart)

T
· |x|+ |y| − abs(|x| − |y|)

|x|+ |y|

4. TESTING CORRELATION ALGORITHMS 25

We saw in chapter 3 that circuit start time is relatively unique, and so we use it as

the first part of our correlation. Our correlation looks at the difference in the start

times between x and y, and takes into account that difference as a percentage of a

fixed time. Since our time measurements are in milliseconds, and since, as we saw

in chapter 3, 20 seconds is far longer than any delay likely to occur over a circuit,

we use 20 seconds (or 20000 milliseconds) as our fixed time T .2 When the time

difference is small, this first factor will be very close to 1. As the time difference

increases, it becomes negative, and so ranges on [− inf, 1].

We also know that Tor guarantees delivery of Tor cells, and so the number of

Tor cells in x and y should be the same after accounting for any cells used to com-

municate with the middle router. (The process by which that is done is explained

in the following section.) Therefore, we use the Tor cell count (the number of cells

on stream x is denoted |x|). Since this factor is an inverse percentage of the total

number of cells sent in both streams, its range is [0, 1].

When multiplied together, the result ranges on [− inf, 1]. However, since neg-

ative results mean that the circuits had very different start times, we only really

need to take into account results that range on [0, 1]. This means that positive

correlation values are absolute rather than relative, and can be compared directly

across multiple runs of the algorithm, rather than only relatively within a given

run.

In addition to being simpler and using less information than either of the two

previous methods, our simplified correlation method is also significantly faster to

compute, since it relies only on basic arithmetic operations, and deals only with

numbers that fit inside a standard int class, making it an O(1) operation to per-

form a single correlation of two streams. In contrast, the Levine et al. correlation

2In initial testing, results were relatively constant despite changes to the fixed time.

4. TESTING CORRELATION ALGORITHMS 26

is O(n) on the number of observed packets to perform a single correlation because

it needs to compute a dot product. The Murdoch and Zieliński correlation is O(1)

as well when using Stirling’s approximation, but it still ends up being significantly

slower than our simplified correlation method in practice.

4.3. Test Setup

We control a single public-facing Tor router, which we will use to collect test

data. Our router is stable and a guard, meaning that some clients will use it as an

entry router. We will use it to collect data when our router is the entry or middle

router on a circuit. We will also collect data at a private exit router used only by

us. The data collected consists of the timestamps of sent and received RELAY

cells, along with the addresses and circuit ids associated with each cell. Since we

do not wish to compromise the anonymity of people using our Tor router, we will

replace each IP address (which is the only identifying information we log) with a

unique random string.

We will create streams with our public router as the entry, a random middle

router, and our private exit. We will do many-to-one correlation, correlating all

observed data (called y1 . . . yn previously) at our public entry router against each

single stream (a given xi) at our private exit router.

Correlation for a given stream recorded at the private exit router (and a given

correlation algorithm) will be considered partially successful when the correlation

algorithm is able to correctly and uniquely identify the corresponding stream at

the entry router. However, this information is only useful to an attacker when

they know that there exists a given yj such that xi and yj came from the same

stream, and so correlation will only be considered fully successful when the highest

incorrect correlation value is less than all of the other correct correlation values

4. TESTING CORRELATION ALGORITHMS 27

(for all xi) in a given run. If a correlation algorithm is consistently fully successful,

then the attacker can set a minimum benchmark for correlation, which allows them

to determine whether or not there exists a yj that came from the same stream as

xi, in addition to determining which stream it is.

We will perform tests with three types of traffic. The first two are the 1MiB

file download and ping client discussed in chapter 3, and the third is a 10KiB file

download, which will allow us to test whether correlation can be done successfully

on very short-lived streams.

4.4. Results

0.1s 1s
Levine

10s Bayesian Simple
0

20

40

60

80

100

S
u
cc

e
ss

 %

10MiB Download, Entry Circuits Only

Partial Success
Full Success

(a) 10MiB Download

0.1s 1s
Levine

10s Bayesian Simple
0

20

40

60

80

100

S
u
cc
e
ss
 %

10KiB Download, Entry Circuits Only

(b) 10KiB Download

0.1s 1s
Levine

10s Bayesian Simple
0

20

40

60

80

100

S
u
cc
e
ss
 %

Ping Traffic, Entry Circuits Only

(c) Ping Traffic

Figure 4.1. Correlation results with entry circuits only

Results for tests of the correlation algorithms on 3 traffic types are presented in

Figure 4.1 and Figure 4.2. While an attacker would realistically only be correlating

against the streams where they were the first router in the circuit, we showed in

Chapter 3 that the non-entry streams are not characteristically different, and so

we present the combined results as well so that we may see how the algorithms

perform when correlating against a much larger number of circuits in the same

amount of time.

4. TESTING CORRELATION ALGORITHMS 28

0.1s 1s
Levine

10s Bayesian Simple
0

20

40

60

80

100
S
u
cc
e
ss
 %

10MiB Download, All Circuits

(a) 10MiB Download

0.1s 1s
Levine

10s Bayesian Simple
0

20

40

60

80

100

S
u
cc
e
ss
 %

10KiB Download, All Circuits

(b) 10KiB Download

0.1s 1s
Levine

10s Bayesian Simple
0

20

40

60

80

100

S
u
cc
e
ss
 %

Ping Traffic, All Circuits

(c) Ping Traffic

Figure 4.2. Correlation results with all circuits

4.4.1. Levine et al. Correlation Results. As we can see, Levine et al.

correlation is effective only for ping traffic, and variations in window size are not

enough to make it competitive with either of the other two correlation algorithms

for the other traffic types. This is likely because the Levine et al. correlation

algorithm relies on individual packet timing data, and, as we showed in chapter

3, the latency of traffic over Tor is highly variable, even within a given packet

stream.

4.4.2. Murdoch and Zieliński Correlation Results. The Bayesian algo-

rithm has a high partial success rate, but a low full success rate. This means that

an attacker utilizing the Bayesian algorithm would have been able to correlate

streams correctly almost all of the time so long as the attacker has information

about all (or almost all) possible packet streams. However, since attackers directly

control Tor routers in our attacker model, an attacker would need to control most

of the Tor network for this to be feasible, and so the Bayesian algorithm is un-

likely to be effective for an attacker controlling a smaller number of routers if

the attacker cares about preventing false positives. Since the Bayesian algorithm

4. TESTING CORRELATION ALGORITHMS 29

gives only relative correlations, this result is unsurprising: the algorithm is not

designed to deal with potential false positives, because they are much less likely

to occur in the original use case. This is because the Bayesian algorithm was

originally intended for use by an attacker who controls Internet exchanges which

serve as the points of connection between countries. Such an attacker would be

able to observe much larger amounts of traffic at once than an attacker controlling

a small number of Tor routers.

4.4.3. Simple Correlation Results. Our simple algorithm performs the

best overall. It has an almost perfect partial success rate for all traffic types,

meaning that if an attacker is able to observe both the input and output stream,

they will almost certainly be able to do correlation. It also has a high full suc-

cess rate, meaning that an attacker using the simplified algorithm will be able to

identify most of the cases in which they’re attempting to correlate a stream which

they did not observe the other end of. This makes sense, since our simplified algo-

rithm produces an absolute correlation value that can be meaningfully compared

across streams. This fact makes our simplified algorithm the best choice for the

specified attacker model, since it allows attackers that control smaller numbers of

routers some degree of protection against false positives. In addition, our simple

algorithm’s results are consistent across all three of the traffic types we tested,

meaning that timing correlation can be done on Tor even in the cases when there

is very little information being sent on a circuit. Users cannot evade attackers

using the simplified correlation algorithm by sending less traffic.

4.4.4. Applicability of Results. One issue with our results is that they are

based upon experiments done with a single public router. Our results do not neces-

sarily generalize to attackers running many routers, because they will be observing

4. TESTING CORRELATION ALGORITHMS 30

significantly more traffic. Our simplified algorithm relies on two factors—stream

start time and the number of cells in the stream—that are relatively unique for

the amount of data that we were able to test. Those two factors will necessarily

be less unique the more data we have, and so our simplified correlation method

will presumably not perform as well.

Consider our test setup with a single Tor router. Based on the number of

circuits nt created through our router in a given time period t, the bandwidth of

our router b, and the total bandwidth of the network B, we can roughly estimate

the number of circuits created on the whole of Tor in that time period: nt

b
· B

3
.

(We divide by 3 because standard Tor circuits are 3 routers long, meaning that

circuit creation had to occur at 3 routers for a single circuit to be created.) In our

case, during testing our router had a bandwidth approximately 1MB/s, and the

total bandwidth of the network was approximately 900MB/s. This means that an

attacker might potentially have to correlate against 300 times as many streams as

we did in the same time window.

However, our modeled attackers directly control Tor routers, and so they may

collect additional information to take this into account. Most importantly, both

the entry and exit routers know the identity of the middle router for any traffic

they’re sending or receiving. This means that the attacker only needs to try

to correlate traffic streams that have the same middle router, which drastically

reduces the number of streams that need to be correlated. Even if we exclude exit

routers entirely (and Tor’s path selection mechanism does not), there are well over

1000 routers that may be used as a middle router. If we could assume that each

of the 1000 were chosen equally, that would mean that we’d be able to reduce

the number of streams we need to correlate against by a factor of 1000, which

more than negates the fact that there’s 300 times as many streams overall as are

4. TESTING CORRELATION ALGORITHMS 31

seen by our router. While some will be used more often than others since Tor’s

path selection is based on bandwidth (among other factors), there will still be a

significant reduction in the number of streams we need to correlate against.

In addition, an attacker may take advantage of the fact that controlling a Tor

router allows them to associate streams going in opposite directions on the same

circuit. The correlation algorithms above only take into account a stream that

moves in a single direction, and the pair (inward cell count, outward cell count)

will be more unique than just the cell count going in one direction, which will also

help to counteract the increased amount of information.

Therefore, an attacker controlling hundreds or even thousands of routers is not

likely to need to correlate a significantly higher number of streams than we have

done ourselves with just our one router, meaning that the factors that are unique

enough to perform correlation for our data will remain unique enough to perform

correlation when an attacker controls more routers.

CHAPTER 5

Conclusion

In this work, our goal was to determine whether it was feasible to perform

passive correlation attacks over Tor, and also whether it was possible for users to

evade attackers using such attacks by sending only very small amounts of data.

To that end, we tested two existing correlation algorithms and discovered that

both have weaknesses. The dot product correlation proposed by Levine et al. is

consistently successful only on one of the three traffic types we tested, and the

Bayesian correlation proposed by Murdoch and Zieliński has no reliable way of

avoiding false positives unless the attacker controls all or almost all of the network.

We also designed and tested a new simple correlation algorithm, which can reliably

correlate all three traffic types, and which is much more computationally efficient

than either of the other two methods. While our results are based only on data

collected from a single router, we also explained how our algorithm might scale

for attackers controlling many more routers.

With our new simple correlation algorithm, we are able to answer both of our

original questions in the affirmative. It is possible and feasible to perform passive

correlation attacks on Tor using our algorithm, and our algorithm is capable of

performing correlation even when very small amounts of data are being sent over

Tor.

Currently, however, our work does require the attacker to directly control Tor

routers, because this gives them access to much more precise information and

allows them to work with Tor cells rather than TCP packets. This is problematic

32

5. CONCLUSION 33

because an attacker would need to control a lot of routers in order to compromise

a significant amount of the traffic going over Tor. One area for future work

would be to see whether this limitation can be lifted: is observing all TCP traffic

into and out of a router as powerful as controlling the router directly? If so,

this might allow an ISP to effectively compromise any Tor routers they provide

internet service to, which, in turn, would possibly allow a government the ability

to effectively compromise all routers within its country’s borders.

Bibliography

[1] Adam Back, Ulf Möller, and Anton Stiglic. Traffic analysis attacks and trade-offs in

anonymity providing systems. In Ira S. Moskowitz, editor, Proceedings of Information Hid-

ing Workshop (IH 2001), pages 245–257. Springer-Verlag, LNCS 2137, April 2001.

[2] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial of service or

denial of security? How attacks on reliability can compromise anonymity. In Proceedings of

CCS 2007, October 2007.

[3] Roger Dingledine and Nick Mathewson. tor-spec.txt. https://gitweb.torproject.

org/torspec.git/blob_plain/3b5b8804f64a4db7ec7fc0185ea1afb7a2713797:

/tor-spec.txt, March 2011.

[4] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion

router. In Proceedings of the 13th USENIX Security Symposium, pages 303–320, August

2004.

[5] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. How much anonymity does

network latency leak? ACM Transactions on Information and System Security, 13(2),

February 2010.

[6] Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright. Timing attacks

in low-latency mix-based systems. In Ari Juels, editor, Proceedings of Financial Cryptogra-

phy (FC ’04), pages 251–265. Springer-Verlag, LNCS 3110, February 2004.

[7] Steven J. Murdoch and George Danezis. Low-cost traffic analysis of Tor. In Proceedings of

the 2005 IEEE Symposium on Security and Privacy, pages 183–195. IEEE CS, May 2005.

[8] Steven J. Murdoch and Piotr Zieliński. Sampled traffic analysis by internet-exchange-level

adversaries. In Nikita Borisov and Philippe Golle, editors, Proceedings of the Seventh Work-

shop on Privacy Enhancing Technologies (PET 2007), pages 92–102, Ottawa, Canada, June

2007. Springer.

34

BIBLIOGRAPHY 35

[9] Vasilis Pappas, Elias Athanasopoulos, Sotiris Ioannidis, and Evangelos P. Markatos. Com-

promising anonymity using packet spinning. In T.-C. Wu, C.-L. Lei, V. Rijmen, and D.-T.

Lee, editors, Information Security: Proceedings of the 11th International Conference, ISC

2008 (Taipei, Taiwan), volume 5222 of Lecture Notes in Computer Science, pages 161–174.

Springer-Verlag, 2008.

[10] Xinyuan Wang, Shiping Chen, and Sushil Jajodia. Tracking anonymous peer-to-peer voip

calls on the internet. In Proceedings of the ACM Conference on Computer and Communi-

cations Security, pages 81–91, November 2005.

