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Abstract: 
Some attacks on honeypots are very frequent and repetitive. In addition, such repetitive attacks 
generate a very large amount of data. In this paper, we show that it might be misleading to consider 
general statistics obtained on these data without carrying an in depth analysis of the various 
processes that have led to their creation. We show that such analysis can be done by means of a 
simple clustering approach. We present an algorithm to characterize the root causes of these attacks. 
This algorithm enables us to obtain precious and non trivial information to identify the various 
attacks targeting our environment. We use this algorithm to identify root causes of the data collected 
from our honeypot environment. We demonstrate that identifying the root causes is a prerequisite for 
a better understanding of malicious activity observed thanks to honeypots environments. Finally, we 
hope this work will open new avenues for the ongoing work related to honeynets. 
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1. Introduction 

During the last two years, many different uses of honeypots have been proposed. Some of 
them are deployed to waste hackers time [LaBrea], others to reduce spam activity [THP03, 
Kraw04] or to deceive attackers [ChGK03, Cohe99] and some more to analyze hacker 
intrusion steps [GenH03]. Honeypot applications are quite diverse and they are studied with 
many details in [PDD03]. In the context of our own experiments, we have used a home-made 
platform of virtual machines specifically designed to observe malicious traffic in a long term 
perspective.  
Our honeypot environment has been implemented in January 2003. A practical experience 
report has been presented in [DPDe04] in which we have shown data obtained by means of 
three honeypots being attacked over a period of four months. In addition, we have pointed out 
some regularity exhibited by the data which might indicate some stable processes running 
against our honeypots. This observation has then been confirmed in [DaPD04] where a ten 
month period of data was presented.  
However, a closer look at those apparent regularities reveals some hidden phenomena that can 
hardly be observed when looking at the bulk of the data. Surprisingly enough, literature on 
that field presents new interesting design approaches on possible honeypot usages, but as far 
as we know, no work reports any in-depth honeypot data analysis.  
As for illustration, some research activities are launched over the world to apply honeypots 
technologies. Most of them, including the authors, have joined the Honeynet Research 
Alliance, a common project grouping more than 15 different international teams [HonAll]. 
They have proposed interesting software architectures, such as GenI and GenII Honeynet 
[GenH03] but very few efforts have been made so far to help analyzing collected data. In 
general, the proposed architecture includes an intrusion detection system (also known as IDS), 
and the whole analysis consists in mining IDSs alarms [HoIe03, HonAll, HonNo, Nevi03, 
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Spit02]. However IDSs can only be seen as complementary analysis tools and a more specific 
attention must be paid to raw data: honeypots can bring more information than simply those 
provided by IDSs alarms. 
In [DaPD04, DPDe04], we have presented information collected from enriched observation of 
honeypots data. In the present work, we intend to show that this global observation from raw 
data must be carefully analyzed at a lower and more precise layer. The apparent regularity we 
observe may sometimes be misleading. Thus, this work consists in analyzing and identifying 
such regular processes. Guided by our previous observations, we apply a clustering approach. 
Each cluster is supposed to represent one single regular process, or attack tool. However, we 
show in a second step that this approach must be refined in order to precisely identify such 
tools. As a result, we describe and apply a complementary technique to get valid clusters of 
attack tools. 
The presented results confirm that a deeper and more specific analysis of honeypots data is 
required to have a good understanding of malicious activity. We hope this seminal work will 
help launching new research activities on honeypots data.  
The paper is organized as follows: Section 2 states the problem resulting from observations 
made in [DaPD04] and [DPDe04]. Section 3 presents a simple clustering method to extract 
regular processes. We also check in this section that we have obtained coherent clusters and 
we refine our clustering technique. Section 4 describes some analyses and applications 
obtained from the defined clusters. Section 5 concludes the paper. 

2. Problem statement 
2.1. Environment  

2.1.1. Honeypots: A short introduction 

Honeypots have been used for more than fifteen years in computer systems, even if the use of 
this word is quite recent [Stol88, Bell92, Bell93]. In [DaPD04], we have pointed out some 
terminological issues in regards of that word: there is no common agreement on the definition 
of honeypot at this time writing. Indeed, a simple glance at some honeypots mailing lists 
shows that suggested definitions describe how to use honeypots instead of defining what they 
really are [Secu04]. As a result, we have proposed to take advantage of well defined concepts 
introduced by the dependability community to derive the following definition [Pow03]: 

- Definition: “A honeypot consists in an environment where vulnerabilities have been 
deliberately introduced in order to observe attacks and intrusions.” 

Put in other words, honeypots are a great environment to observe malicious traffic. 
Our platform is described in details in [DaPD04]. It consists in a VMWare virtual 
environment with three virtual machines running various Operating systems (Linux RedHat, 
Windows 98, Windows NT) and services (ftp server, web server, etc). The environment is 
totally passive, and all incoming packets are most likely from malicious origins. Furthermore, 
virtual machines are built on non-persistent disks [VMware]. Thus, changes are lost when 
machines are powered off or reset. In other words, rebooting a compromised machine consists 
in a simple backward recovery mechanism. It is especially convenient in our situation as we 
are expecting long term data collection.  

2.1.2. Data Collection: Enriched database 

Data is sent every day through a secure connection from the honeypot environment to a data 
server and then, is used to feed a specific database. This data server was carefully designed in 
a preliminary step. Its entity-relationship scheme is quite complex, and we give in figure 1 a 
simplified overview of its structure. 
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Figure 1: Simple database structure scheme 

 
Information is grouped into five main categories, and collected data is enriched by additional 
information such as: 

- The IP geographical localization of packets’ source addresses, obtained with tools 
such as Netgeo [Netgeo] 

- Passive OS fingerprinting on tcpdump logs, thanks to tools such as p0f [Pof] and 
Disco [Disco] 

- Well-known blacklists of IP addresses  
- An enriched precision on attack date (correlation with working days, working hours, 

holidays, etc) 
- A honeypot environment description 
- An analysis of observed sources’ ports 
- Other attack features: For instance, are honeypot machines attacked in parallel or in 

sequence? 

2.2. Preliminary results 
2.2.1. Terminology 

Let us first introduce two definitions: 
- Attack Source:  it defines an IP address that targets our honeypot environment within 

one day. This time constraint is arbitrary and based only on our observation 
[DaPD04]: so far, observed attacks have always been limited to short time periods 
(no more than 1 minute). Thus, if the same IP address is sending packets to one of 
our honeypots on the 12th of January and then on the 4th of February, we consider 
that they come from two distinct attack sources. In addition, this definition is 
motivated by the fact that some IP addresses are dynamically allocated and they 
change frequently, in terms of days (the ISP even often forces users to change IP 
addresses if their connection remains open for a long period). As explained in 
[DaPD04], only a very few IP addresses have been observed in two different 
calendar days during the whole year of the experiment. 

- Ports Sequences: attack sources send packets to specific ports of one honeypot 
machine. A Ports Sequence defines the specific order according to which ports have 
been targeted on a given honeypot machine. For instance, if source A sends requests 
on port 80 (HTTP), and then on ports 8080 (HTTP Alternate) and 1080 (Socks), the 
associated ports sequence will be {80; 8080; 1080}. 

Within our environment, an attack source cannot be associated with more than three ports 
sequences since we have three target machines. The latter case is observed when a source 
attacks our three virtual machines with different ports sequences. For instance, the famous 
worm Blaster has many variants but always behaves the same way: it first scans port 135, and 
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never goes further if the port is closed [Grah03, Sym03]. Otherwise, it scans port 4444. If only 
one machine has port 135 open, then the corresponding ports sequence from the attack source 
is {135, 4444}. If the same attack source targets other virtual machines, the associated ports 
sequences become {135}.  

2.2.2. Former results 

The database we have developed offers a large panel of information types. We report the 
interested reader to [DaPD04] for some results we have obtained by means of simple queries 
against the database. One major observation we have made was the following: very few ports 
were targeted over the experiment period. From February 2003 to February 2004, only 195 
different ports have been probed. Each attacking machine probes one or more targeted ports 
following a given Ports Sequence. The number of different observed sequences is limited to 
485 distinct sequences. Furthermore, we have observed two important points: 

- Each sequence is often limited to one port. 
- A given set of ports almost always uniquely identifies a ports sequence, as we have 

very rarely observed two sequences differing only by the order of ports being probed. 
Table 1 taken from [DaPD04] represents, per month, the top 8 ports sequences performed by 
the attack sources observed during one month. For instance, one can see that in March, 45.5% 
of the attack sources have sent packets to the sole port 445, while 2.7% have scanned 
sequentially ports 80, 57 and 21. These 8 sequences characterize the activity of about 75% of 
the attacks every month. 
 
March 2003 April 2003 May 2003 June 2003 
445 (45.5%) 
80 (15.9%) 
1433 (8.8%) 
139 (5.8%) 
21 (3.5%) 
135 (2.9%) 
80, 57, 21 (2.7%) 
443 (2.1%) 
Others (12.8%) 

445 (43.5%) 
80 (15.4%) 
1433 (7.6%) 
139 (7.5%) 
21 (3.3%) 
135 (2.2%) 
80, 57, 21 (1.4%) 
443 (1.4%) 
Others (17.7%) 

445 (40.1%) 
80 (15%) 
1433 (8.8%) 
139 (7.1%) 
21 (3.3%) 
135 (3.2%) 
80, 57, 21 (2.2%) 
139, 445 (2%) 
Others (18.3%) 

445 (30.6%) 
80 (15%) 
139 (9.9%) 
1433 (8.2%) 
445,139 (4.4%) 
139, 445 (3.7%) 
21 (3.3%) 
135 (3.2%) 
Others (21.7%) 

July 2003 August 2003 September 2003 October 2003 
445 (29.5%) 
80 (20.5%) 
1433 (9.6%) 
139 (8.1%) 
21 (3.1%) 
139, 445 (2.9%) 
135 (2.5%) 
443 (1.6%) 
Others (22.2%) 

445 (23.6%) 
80 (17%) 
139 (11%) 
1433 (9.5%) 
135 (5.8%) 
139, 445 (4.1%) 
17300 (3.4%) 
21 (3.2%) 
Others (22.4%) 

80 (15.8%) 
1433 (12.6%) 
445 (12.6%) 
139 (11.6%) 
135 (7.8%) 
554 (5.1%) 
139,445 (4.2%) 
21 (4.2%) 
135, 4444 (3.8%) 
Others (22.3%) 

80 (15.6%) 
1433 (11.9%) 
139 (10.6%) 
135 (9.8%) 
445 (8.4%) 
27374 (6%) 
139,445 (5.2%) 
135, 4444 (5.2%) 
21 (4.4%) 
Others (22.9%) 

November 2003 December 2003 January 2004  
135 (28.9%) 
135, 4444 (13.6%) 
80 (9.2%) 
1433 (8.7%) 
139 (8%) 
445 (6.4%) 
21 (3.5%) 
554 (2.9%) 
Others (20.8%) 

135 (28.4%) 
135, 4444 (17.3%) 
80 (9.4%) 
1433 (8.5%) 
139 (8.4%) 
445 (5.4%) 
139, 445 (2.6%) 
21 (2.1%) 
Others (17.9%) 

135 (23.5%) 
6129 (14.6%) 
135, 4444 (14.5%) 
1433 (8.4%) 
139 (6.3%) 
445 (5.7%) 
80 (4.3%) 
139, 445 (2.5%) 
Others (20.2%) 

Others ≈ 
185 distinct sequences each 
month 

Table 1: Percentage of ports sequences per month 
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2.2.3. Open issues 

These results show that only a few ports sequences are observed each month and that they 
represent a large volume of traffic. However, it is important to determine if they have the 
same root causes [Para88]. Indeed, they may cover up more subtle and rare attacks because of 
the volume of data they represent in the honeypots logs. 
We call a root cause the most basic cause that can be reasonably identified as the origin of the 
attack on a given ports sequence. A root cause can be reasonably associated to one attack 
tool, or at least to one of its configuration. 
Thus, we propose in Section 3 to identify the most basic factors that characterize these root 
causes. Julisch et al. have called such an approach a Root Cause Analysis (RCA) in [Juli03]. 
The idea here is the same but the context is different: their goal was to eliminate semi 
automatically clusters of false alarms while we are interested in identifying attack tools. 
Furthermore, they were looking at intrusion detection alarms while we consider raw network 
packets sent against honeypots. Last but not least, the clustering algorithms used differ: they 
used hierarchical tree classifications while we choose association rules [Juli03, Agra93].  
The root causes we get are grouped into clusters: one cluster is supposed to characterize one 
root cause. Section 3.3 shows that this statement is not totally exact. As a consequence, we 
propose a refinement of the algorithm to get a better root cause identification.  
Finally, if such root causes are efficiently identified, we can imagine new techniques to enrich 
their identification and to ease correlation of alerts issued by intrusion detection systems in 
production networks. Indeed, if frequent attacks are correctly identified, we can eliminate the 
ambient noise they produce in log files to put all efforts in rarer phenomena which require 
special attention.  
This paper aims at showing that ports sequences do not describe one and only one attack tool 
in a univocal way. In addition, we propose a simple technique that efficiently identifies such 
attack tools (or root causes). 

3. Root Causes Identification 
3.1. Accurate parameters 

We have observed many repetitive attacks in our honeypot logs. As explained in 2.2.3, we 
propose to identify them by means of simple features. Our database offers many kinds of 
information as presented in 2.1.2. We have made several tests to find the most relevant ones. 
For the sake of concision, we only present in the following three of them. They give 
condensed and interesting results, in regards of the experiments we made with other 
parameters. They are listed below: 

- T: the number of machines in our environment targeted by one source  
- ni: the number of packets sent by one source to machine i. i∈ {1,2,3}.  
- N: the total number of packets sent by one source to the whole environment. In other 

words, N = ∑ ni, with i ∈ {1,2,3}. 
As said in Section 2.2.3, we want to determine the root causes of frequent processes observed 
in our honeypot environment. Many techniques exist to do Root Cause Analysis [Lati02, 
Liv01, Para88]. At this stage, the algorithm choice is not as important as the results we expect 
to get from it. Therefore, we first propose to apply a simple one. If results are encouraging, 
more complex techniques will be applied to refine them, if needed.  
The method we apply is described in the following subsection and results are given in 
subsection 3.2.3. 
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3.2. Association Rules 
3.2.1. AR Motivations 

We determine T, ni and N for each attack source associated to a given ports sequence. They 
are then inserted in a new database table. To make a long story short, there is one table per 
ports sequence, with each column being one parameter {T, ni, N} and each line being 
information on one attack source. The idea consists in searching for interesting relationships 
between the items contained in each table. One simple but widespread solution consists in 
applying association rule (AR) mining.  

3.2.2. AR Applications 

Association rules are powerful exploratory techniques which have a wide range of 
applications in many areas of business practice and research - from the analysis of consumer 
preferences or human resource management, to the history of language [Agra93]. For 
instance, these techniques enable analysts and researchers to uncover hidden patterns in large 
data sets for so-called market basket analysis, which aims at finding regularities in the 
shopping behavior of customers of supermarkets. With the induction of association rules one 
tries to find sets of products that are frequently bought together, so that from the presence of 
certain products in a shopping cart one can infer (with a high probability) that certain other 
products are present.  
The usefulness of this technique to address unique data mining problems is best illustrated in 
a simple example: “If a French customer buys wine and bread, he often buys cheese, too”. It 
expresses an association between (set of) items. This association rule states that if we pick a 
customer at random and find out that he selected certain items, we can be confident, 
quantified by a percentage, that he also selected certain other items. The standard measures to 
assess association rules are the support and the confidence of a rule, both of which are 
computed from the support of certain item sets. Some additional rule evaluation measures are 
sometimes considered, but they are out of the scope of this work. Moreover Han et al. have 
classified association rules in various ways, based on some criteria (type of values handled in 
the rule, dimensions of data involved in the rule, levels of abstractions involved in the rule set, 
etc) [Han01]. We report the interested reader to the seminal paper [Agra93] for more 
information on AR evaluation methods. The support and confidence indices are presented 
below. Many algorithms currently exist to restrict the search space and check only a subset of 
rules, but if possible, without missing important rules. Generally speaking, association rules 
mining is a two-step process: 

- Find all frequent itemsets: by definition, each of these itemsets will occur at least as 
frequently as a pre-determined minimum support count. 

- Generate strong association rules from the frequent itemsets: By definition, these 
rules must satisfy minimum support and minimum confidence. 

We use the algorithm presented by Agrawal et al. in [Agra94], which is called the Apriori 
algorithm.  
Thus, for a given rule R: A and B -> C, we consider two parameters: 

- Support(R) = the support is simply the number of transactions that include all items 
in the antecedent and consequent parts of the rule. (The support is sometimes 
expressed as a percentage of the total number of records in the database.) 

nstransactio
CBAcontainingnstransactioRSupport

#
),,(#)( =  
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- Confidence(R) = is the ratio of the number of transactions that include all items in 
the consequent as well as the antecedent (namely, the support) to the number of 
transactions that include all items in the antecedent. 

),(#
),,(#)(

BAcontainingnstransactio
CBAcontainingnstransactioRConfidence =  

 

3.2.3. AR Interesting Outputs 

Association rule mining consists in finding frequent itemsets (set of items, satisfying the 
minimum support threshold), from which strong association rules are generated. These rules 
also satisfy a minimum confidence threshold.  
The Apriori algorithm is applied to each ports sequence table in our database. Table 1 gives 
some resulting frequent itemsets with their respective support. We only give some of them for 
conciseness concerns. We provide for 11 sequences some frequent itemsets as well as their 
corresponding support. These ports sequences are the most frequent ones, as observed in 
[DaPD04]. The ‘Total Number of clusters’ columns provides the number of obtained clusters, 
with support higher than 1%.  
For instance, we find 5 important clusters for ports sequence {445}. Three of them represent 
attacks on the sole port 445, having the following common features: 

- Cluster Nb 1: Three virtual machines are targeted. One packet is sent to the first 
machine and three to the two others. 

- Cluster Nb 2: One machine only is targeted and it receives strictly one packet. 
- Cluster Nb 3: Three machines are targeted and the attack source sends a total of eight 

packets 
These three clusters stem for almost 90% of attacks with ports sequence equal to {445}. 
Furthermore they are mutually exclusive (an attack cannot belong to two different clusters).  
 

Ports 
Sequences 

Some frequent itemsets Support 
(%) 

Total 
number of 

clusters 
(support> 

1%) 
{445} Cluster 1: T = 3 & N = 9 (n1=3 & n2=3 & n3 = 3) 

Cluster 2: T= 1 & N = 1 
Cluster 3: T = 3 & N = 8  
 

65.5% 
18.4% 
6.1% 
 

5 

{135,4444} Cluster 4: T = 3 & N = 13 (n1 = 3 & n2 = 8 & n3 = 2) 
Cluster 5: T = 3 & N = 26 (n1 = 6 & n2 = 16 & n3 = 4) 
 

66.3% 
33.6% 
 

3 

{80} Cluster 6: T = 1 & N = 3 
Cluster 7: T = 3 & N = 11 (n1 = 3,  n2 = 5, n3 = 3) 
Cluster 8: T =1 & N = 1 
 

55.8% 
18.7% 
5.6% 
 

6 

{1433} Cluster 9: T = 3 & N = 9 (n1=3 & n2=3 & n3 = 3) 
Cluster 10: T = 3 & N = 3 (n1=1 & n2=1 & n3 = 1) 
Cluster 11: T = 3 & N = 12 (n1=4 & n2=4 & n3 = 4) 
 

53.9% 
18.7% 
18.1% 
 

5 

{139, 445} Cluster 12: T = 3 & N = 38 (n1 = 18 & n2 = 18 & n3 = 2) 
Cluster 13: T =3 & N = 145 
Cluster 14: T = 1 & N = 74 
 

41.1% 
7.6% 
6.8% 
 

18 
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{135} Cluster 15: T = 3 & N = 13 (n1 = 3 & n2 = 7 & n3 = 3) 
Cluster 16: T = 3 & N = 21 (n1 = 3 & n2 = 15 & n3 = 3) 
 

50.1% 
15.3% 
 

4 

{17300} Cluster 17: T = 3 & N = 3 (n1 = 1 & n2 = 1 & n3 = 1) 
Cluster 18: T = 3 & N = 6  (n1 = 2 & n2 = 2 & n3 = 2) 
Cluster 19: T = 3 & N = 9  (n1 = 3 & n2 = 3 & n3 = 3) 
 

39.8% 
34.6% 
25.5% 
 

9 

{21} Cluster 20: T = 3 & N = 16 (n1 = 1 & n2 = 1 & n3 = 1) 
Cluster 21: T = 3 & N = 11 (n1 = 1 & n2 = 1 & n3 = 1) 
Cluster 22: T = 3 & N = 7 (n1 = 1 & n2 = 1 & n3 = 1) 
Cluster 23: T = 1 & N = 11 (n1 = 1 & n2 = 1 & n3 = 1) 
 

23.4% 
13.7% 
10.6% 
9.1% 
 

25 

{80, 57, 21} Cluster 24: T = 3 & N = 40 
 

65.1% 
 

5 
 

{554} Cluster 25: T = 3 & N = 8 
Cluster 26: T = 1 & N = 1 
Cluster 27: T = 3 & N = 9 
 

50.8% 
29.8% 
7.4% 
 

6 

{139} Cluster 28: T = 3 & N = 9 (n1=3 & n2=3 & n3 = 3) 
Cluster 29: T = 2 & N = 8 
Cluster 30: T = 1 & N = 4 
 

49.2% 
9.5% 
6.3% 
 

6 

Table 2: Some frequent itemsets for 11 ports sequences 

By choosing a support higher than 1%, we have built 92 clusters for the presented ports 
sequences. They represent 87 % of the attacks we have observed during the one year 
experiment. We have applied this method for all ports sequences, and we have selected 
relevant rules to create exclusive clusters.  
A first major observation is that there can be several clusters associated to a single ports 
sequence. Thus, ports sequences cannot be directly used to identify root causes. 
Furthermore, this result clearly validates that most of the collected data is redundant and 
predictable insofar as a few clusters can be associated with a large number of observed 
attacks. 
There are some other phenomena that must be clarified. First, for one given attack, we 
sometimes observe that virtual machines receive the same number of packets from the attack 
source. This is due to blind and simple scans on IP ranges. Secondly, there is a clear 
correlation between packets numbers and OSs/services running on our honeypot machines. 
Obviously enough, attacks on open ports correspond to more important packets traffic (see 
ports sequence {135} for instance). Finally, some ports sequences such as {139, 445} have a 
larger number of associated clusters. The reason is that such attacks often correspond to high 
packets traffic: they target Windows machines and try to obtain a lot of information from 
these talkative netbios services. There might be some tcp retransmissions that make 
parameters value somehow different in terms of packets numbers. A clustering refinement 
would be possible in this case.  
The previous clusters are obtained based on very simple parameters. They first show that 
basic ports sequences do not identify root causes in a unique way. Secondly, each cluster is 
now supposed to represent one root cause, or attack tool. We show in the following section 
this is partially correct by checking clusters’ coherency. We then introduce another 
membership property to refine clusters. 
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3.3. Levenshtein distances 
3.3.1. Introduction 

We have obtained interesting clusters in Section 3.2. They cover a large percentage of attacks, 
but we cannot be sure if they are good clusters or not. One can argue that there might be two 
different attacks generating the same amount of packets against the same ports sequences. 
Clusters are built on very simple parameters, and their consistencies must be validated. 
In order to validate clusters consistency, we consider packet data contents. The payloads of all 
packets sent from the same source are concatenated to form a simple text phrase, thanks to the 
tethereal utility [Tethe04]). Tethereal is the command line version of the popular network 
traffic analyzer tool ethereal. It allows examining data from a capture file and browsing 
detailed information for each packet in a text format. Thus, we consider each phrase as a 
tethereal line, with ‘||’ separators. Figure 2 gives a short phrase of an ftp attack for illustration. 
 

EXTRACTED FROM ETHEREAL LOG: Source X attack (2 packets received):

Packet 1-> File Transfer Protocol (FTP) ||    Request: USER ||    Request Arg: anonymous
Packet 2-> File Transfer Protocol (FTP) ||    Request: PASS ||    Request Arg: Agpuser@home.com

EXTRACTED FROM ETHEREAL LOG: Source Y attack (2 packets received):

Packet 1-> File Transfer Protocol (FTP) ||    Request: USER ||    Request Arg: anonymous 
Packet 2-> File Transfer Protocol (FTP) ||    Request: PASS ||    Request Arg: Mgpuser@home.com

Phrase distance:  1
One substitution  Agpuser@home.com Mgpuser@home.com

EXTRACTED FROM ETHEREAL LOG: Source X attack (2 packets received):

Packet 1-> File Transfer Protocol (FTP) ||    Request: USER ||    Request Arg: anonymous
Packet 2-> File Transfer Protocol (FTP) ||    Request: PASS ||    Request Arg: Agpuser@home.com

EXTRACTED FROM ETHEREAL LOG: Source Y attack (2 packets received):

Packet 1-> File Transfer Protocol (FTP) ||    Request: USER ||    Request Arg: anonymous 
Packet 2-> File Transfer Protocol (FTP) ||    Request: PASS ||    Request Arg: Mgpuser@home.com

Phrase distance:  1
One substitution  Agpuser@home.com Mgpuser@home.com

 
Figure 2: examples of phrases from an ftp attack 

Each cluster gathers all attack sources that are assumed to be due to a single root cause, i.e. to 
the use of the same attack tool against our honeypots. We define for each attack source its 
associated ‘attack phrase’. Then, we compare for each attack of one given cluster the phrase 
distances to all others phrases of the same cluster. This technique is based on the Levenshtein 
edit distance which is explained below. 

3.3.2. Phrase distance approach 

The Levenshtein distance (LD) algorithm has been used in many domains, such as spell 
checking, speech recognition, DNA analysis or plagiarism detection. It is a measure of the 
similarity between two strings, which we will refer to as the source string (s) and the target 
string (t) [Borg03]. The distance (sometimes called edit distance) is the number of deletions, 
insertions, or substitutions required to transform s into t. For example,  

- If s is "Agpuser@home.com" and t is "Agpuser@home.com", then LD(s,t) = 0, 
because no transformations are needed. The strings are already identical.  

- If s is "Agpuser@home.com" and t is "Mgpuser@home.com", then LD(s,t) = 1, 
because one substitution (change "A" to "M") is sufficient to transform s into t.  

In general the two components of the phrase distance (i.e. the string distance and the positional 
distance) can have a different cost from the default (that is 1 for both) to give another type of 
phrase distance. There is a third component: a cost that weights on the phrases that have less 
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exact matches. It is described in details by Roger et al. in [Borg03]. This third component is 
disabled by default (i.e. it has a 0 cost), but it can be enabled with custom cost.  
The method we apply sums the phrase distance from the words from the set (i.e. formed by 
the defined set of characters) and the phrase distance calculated from the "words" belonging 
to the complementary set. Moreover, the algorithm used to find the distance is the "Stable 
marriage problem" one [Gus89, Ksm01, Mathw] This is a matching algorithm, used to 
harmonize the elements of two sets on the ground of the preference relationships (in this case 
the string distance of single "words" plus the positional distance plus eventually the exact 
match weight). 

3.3.3. Results 

The algorithm has been applied to clusters built in Section 2.2.3. For a given cluster, we 
compare all attack phrases and calculate the average distance. More concretely, let C be the 
set of attack phrases, with |C| = n. Let D(a,b) be the phrase distance of a and b and i any 
attack phrase. Then, the average distance from i to other elements of C is: 

∑
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Thus, the average distance is defined as: 
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Some results are presented in Table 2. The ‘phrase distance’ column gives the average 
distance Dc after having computed all intermediate values.  
The standard deviation (square root of the variance) is a frequent measure to describe 
variability in data distributions. It is a measure of the average amount by which observations 
deviate on either side of the mean. Unlike the variance, the standard deviation describes 
variability in the original units of measurement. Its value is given in the ‘Standard deviation’ 
column. 

Cluster Ports sequence Phrase distance Standard deviation 
Cluster 1 {445} 0 0 
Cluster 2 {445} 0 0 
Cluster 3 {445} 0 0 
Cluster 4 {135, 4444} 0 0 
Cluster 5 {135, 4444} 22 84 
Cluster 9 {1433} 39 311 
Cluster 10 {1433} 0 0 
Cluster 11 {1433} 641 1213 
Cluster 20 {21} 88 258 
Cluster 21 {21} 0 0 
Cluster 22 {21} 0 0 

Table 3: Cluster coherency with Levenshtein distance 

We observe from Table 3 that seven out of eleven clusters have a null phrase distance. They 
contain very similar attack phrases. We say that they are coherent and correspond to one root 
cause, i.e. to a single attack tool. The null value can be explained by the fact that these attacks 
are limited to simple and repetitive scans.  
A deeper analysis of other clusters is required to understand the phrase distance value. It 
suffices to extract different patterns to obtain some information. There are two options: Either 
we observe very strong similarities and non zero phrase distances are simply due to packets 
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random fields. In this case, we consider the cluster corresponds to one root cause, and the 
random fields are attack tools features. Or we find different patterns that have nothing in 
common. In this situation, we build new sub-clusters and reevaluate the new distance phrase. 
In our examples, we have: 

- Cluster 20 of ports sequence {21}: there are two anomalous attacks which bias the 
average phrase distance value. They are totally different from all the others. Once 
eliminated, we get a new average phrase distance of two. This is due to the random 
login name used by the attack tool on port 21 (see figure 2). 

- Cluster 5 of ports sequence {135, 4444} is not null because of data payload 
differences. This ports sequence is associated to MBlaster attacks and some variants 
contain data payload in the first packets [Sym03].  

- Cluster 9 and 11 of ports sequence {1433}: both can be split into two sub-clusters: 
those which contains data payload of 8 bytes (all zeros) and of 24 bytes (all zeros). 
These sub-clusters have a null phrase distance. The initial cluster was not totally 
correct. 

We get similar results with other clusters. Very few of them have required a small refinement 
(sub-clustering). This validates that with simple parameters, we have built interesting clusters 
that characterize main attack types our honeypot environment is facing.  

3.3.4. Conclusion 

We have presented a method to find root causes of frequent traffic met in the honeypots logs. 
The root cause analysis (RCA) steps are: 

- Find frequent ports sequences (table 1 in our example) 
- Build clusters on simple parameters (such as those used in our example on Section 

3.1) 
- compute the average distance phrase and its standard deviation to validate the 

clustering phase 
- Split the cluster in sub-clusters, if necessary, by recursively applying the phrase 

distance approach (see Cluster 9 and 11 of ports sequence {1433}) 
- Get one cluster per root cause. The root cause corresponds to a specific 

configuration of an attack tool. 
This method validates that an in-depth analysis is a prerequisite to a better understanding of 
malicious activity collected by our honeypots. The apparent regularity we observed in 
[DAPD04, DPDE04] is de facto due to various root causes which are precisely identified by 
our method.  
Moreover, the obtained results can be exploited in different ways. First, they can permit to 
filter honeypot logs and detect newly observed root causes. Secondly, they allow us to track 
root causes evolution. Finally, they may characterize some specific attack tools and help 
finding some new signatures of them. Three applications are presented in the following 
Section 4.  

4. Clusters applications 
4.1. Approximate number of attacks 

We have obtained data reduction with simple clusters. Each of them groups attacks which can 
be associated to one attack tool. If we now create all possible clusters (same operation than in 
3.2.3 but with min(Support)=0%) for the observed ports sequences, we obtain the –
pessimistic- number of attack tools (tools fingerprints) we have observed during the 
experiment year. 
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# attack tools = ∑ #clusters(i), for each ports sequence i  = 753. 
This number is very conservative. Indeed, we consider all observed attacks. However, many 
ports sequences are not exactly due to attack tools on our machines. They can come from 
other phenomena such as backscatters [MoVS01].  
Table 3 presents the quantitative number of obtained clusters. The first column takes into 
account the Association Rules (AR) clustering only, while the second column presents the 
two steps of our algorithm (Association Rules –AR- and phrase distances –LD-). 
 
Support value AR AR + LD 
> 0% 491 clusters 753 clusters 
> 1% 92 clusters 152 clusters 

Table 4: Quantitative number of clusters 
Finally, this result is conservative insofar as we did not consider cases of packet losses and 
retransmissions. Clusters are built on received packet numbers, so attacks can be placed in 
two distinct clusters if losses occur despite their very strong similarity. 

4.2. Tools fingerprinting 

By construction, each cluster can be potentially associated to one attack tool. This requires 
either a good knowledge of blackhat tools, or a short lookup in security advisories pages or 
incidents mailing lists [ISC03, Secu04]. Moreover, clusters must be analyzed in depth thanks 
to parameters described in Section 1.2.3. From the clusters presented above, we get the 
following information: 

- Three clusters of ports sequence {135, 4444}: three variants of MBlaster worm. 
Others seem to exist (see [Sym03]), but we did not observe them in our environment. 

- Two clusters of ports sequence {554}: They correspond to two different 
configurations of an RTSP scanner [Rtsp] 

- Cluster 1 of ports sequence {21}: it corresponds to a famous ftp scanner, named 
Grim’s Ping [GrimP] . 

- Cluster 2 of ports sequence {21}: it can be associated to another ftp scanner running 
on Windows machines, named Roadkil’s FTP Probe [Road04] 

- Cluster 2 of ports sequence {139, 445}: it corresponds to an enumeration and 
penetration-testing scanner called the Leviathan Auditor [Lev04]. 

- Cluster 1 of ports sequence {1433}: this is due to another worm named SQLSnake –
or any of its variants. It scans for open SQL Server 2000 [Snake].  

- Cluster 2 of ports sequence {1433}: this corresponds to another scanner, named 
Sfind.exe [Sfind].  

It suffices to test these tools in our environment to find their ‘signatures’. If one attack has 
been observed from this tool, a cluster with similar ‘signature’ exists. 
This method is all the more efficient that main attackers do not even take time to modify such 
tool ‘signatures’ (for instance, the default logins & passwords of ftp scanners).  
Finding that attacks have characteristic signatures is not a breakpoint by itself. Rule-based 
intrusion detection systems are built on such observations. However, a honeypot environment 
permits to identify frequent observed signatures. Such attacks trigger lots of ‘true positive 
alerts’ and, when identified, are not of real interest for the busy administrator. It would be 
interesting to extract such alerts, so that more specific alerts remain. This is even more 
interesting that administrators are often overwhelmed with alerts from many security systems. 
In addition, a similar work must be performed on the honeypots data. After having extracted 
well-known observed attacks, a deeper look at rare and strange ones is compulsory to 
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understand what happened. Are they due to a new tool? Are they specific to the honeypot 
environment? Analysis of data collected by honeypots is then reduced to the observation of a 
few phenomena. In practice, this makes honeypots more interesting to administrators that 
already have a large amount of data to deal with. 

4.3. Root causes evolution 

In this section, we consider the root cause evolution over time. Indeed, identified root causes 
are tightly associated to attack tools. These tools are often used by script kiddies for a while 
and then abandoned for newer ones.  
Figure 3 represents the evolution of some root causes over that year 2003, for attacks coming 
from Australia. The choice of Australia is justified by the fact most of the observed attacks on 
our honeypot platform in the year 2003 were coming from this country [DPDe04, DaPD04].  
We have shown in [DaPD04] that the number of Australian attacks is quite constant at the 
beginning of year 2003. A closer look shows that some curves cross between March and June. 
Thus, this phenomenon validates that apparent constant phenomena are misleading and do not 
take into account microscopic, yet important, (attack tools) variations. 
Furthermore, this analysis enables us to clearly identify new phenomena, such as Mblaster, 
represented by cluster 4. Finally our root cause analysis presents some limitations that we 
intend to correct: generally speaking, one cluster clearly represents one unique root cause, but 
we cannot guarantee that one root cause is represented by only one cluster. We have 
presented some discriminatory parameters to build root causes clusters. Other parameters 
must be specified to refine these clusters and merge a unique root cause into one single 
cluster. 
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Figure 3: Root causes evolution over months for Australian attacks 

5. Conclusion 

Honeypots are very interesting observation environments that enable us to easily collect 
malicious data. However, very few efforts are currently made to take advantage of these rich 
information sources. Much of the effort is devoted to honeypots design. 
We show in this paper that simple clustering techniques can be applied to obtain more in-
depth information on observed attacks. We have proposed one solution based on association 
rules and phrases distance. Results are very promising and confirm that such an analysis is 
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meaningful. Indeed, we obtain clusters representing root causes of attacks. We have shown 
with this approach that a large amount of malicious traffic corresponds to a few number of 
root causes. Such root causes are important information on the attack tools in use. Other 
applications such as tool fingerprinting or analysis of tools evolution were also presented. 
Future work will consist in refining the clustering method and reusing such clusters to help 
correlating alerts in the Intrusion Detection process. 
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