
8
Password Cracking /

Brute-Force Tools
Password Cracking /

Brute-Force Tools

195

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:07 PM

Color profile: Disabled
Composite Default screen

Presented by:

Reproduced from the book “Anti-Hacker Tool Kit, Third Edition." Copyright © 2006, The McGraw-Hill
Companies, Inc. Reproduced by permission of The McGraw-Hill Companies, Two Penn Plaza, NY, NY
10121-2298. Written permission of The McGraw-Hill Companies, Inc. is required for all other uses.

http://techrepublic.com.com
detwilerb
Placed Image

http://books.mcgraw-hill.com/getbook.php?isbn=0072262877

196 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

Asmile, a house key, a password. Whether you’re trying to get into a nightclub, your
house, or your computer, you will need something that only you possess. On a
computer network, users’ passwords have to be strong enough so that Dwayne

can’t guess Norm’s password and Norm can’t steal Dwayne’s password (since Dwayne
might have written it on the bottom of his keyboard). Bottom line—one weak password
can circumvent secure host configurations, up-to-date patches, and stringent firewall rules.

In general an attacker has two choices when trying to ascertain a password. He can ob-
tain a copy of the password or hash if encrypted and then use brute-force tools to crack the
encrypted hash. Or he can try to guess a password. Password cracking is an old technique
that is most successful because humans are not very good random sequence generators.

It’s important that you understand how (and where) most passwords are stored so
you know what these tools are doing and the method behind their madness. Passwords
on Unix and Windows systems are stored with “one-way” hashes, and these passwords
cannot be decrypted. Instead, a user login goes through a simple process. For example,
Neil’s password abc123 is stored on a Unix system as the hash kUge2g0BqUb7k (remem-
ber, we can’t decrypt this hash). When Neil tries to log into the system, imagine he mis-
types the password as abc124. The Unix system calls its crypt() function on the
password abc124 to generate a temporary hash. The hash for abc124 will not match the
stored hash for abc123, so the system tells Neil he has entered an incorrect password. No-
tice what has happened here. The candidate password (abc124) is hashed and matched to
the stored hash (kUge2g0BqUb7k). The stored hash is not decrypted. Taking the hash of a
known word and comparing it to the target hash of the password is the basis for pass-
word cracking attacks.

Other brute-force techniques take advantage of rising hardware performance com-
bined with falling hardware cost. This time-memory tradeoff means that it is actually eas-
ier to pregenerate an entire password dictionary and execute lookups of password
hashes. These pregenerated dictionaries, often referred to as Rainbow Tables, consist of
the entire key space for a combination of length and content. For example, one dictionary
might consist of all seven character combinations of lower- and uppercase alphanumer-
ics, while another dictionary might consist of nine character combinations of only lower-
and uppercase letters. These dictionaries are encrypted with DES, MD5, or whatever tar-
get algorithm the user desires. Of course, these dictionaries can quickly reach the size of
hundreds of gigabytes of data; however, desktop systems with a terabyte of storage can
be reasonably constructed in 2005.

With these great dictionaries in hand, an attacker need only wait for a single search
through the dictionary. The benefits of this technique become readily apparent when you
consider searches for hundreds of passwords no longer require hundreds of redundant
iterations through the key space. The real time to crack a password comes only once at the
beginning when the attacker must first construct the dictionary—a process that can take
weeks or months (or longer!) to complete.

Note that precomputed dictionaries can be trivially defeated by the use of password
salts. These dictionaries rely on the expectation that the word “ouroboros” will always be
hashed to 0639bbc687a6a1be21576dc562a08fc4 in the MD5 scheme. Yet if any text is
prepended or appended to the password, then the nine-character lowercase source of

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:07 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 197

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

the hash can become much longer. For example, it is less likely that an attacker will
have a 13-character MD5 dictionary to crack 6b149393cf909a49576032be9d73de85
(wormouroboros). Salts, if properly implemented, greatly reduce the threat of
precomputed dictionary attacks.

PAM AND UNIX PASSWORD POLICIES
Some popular Unix systems such as FreeBSD, Linux, and Solaris contain a Pluggable Au-
thentication Module (PAM)—differing from ISS’s PAM feature. The PAM controls any
user interaction that requires a password from the user. This may be telnet access, logging
into the console, or changing a password. PAM implementations are also available for
stronger authentication schemes such as Kerberos, S/Key, and RADIUS. The configuration
of PAM remains the same regardless of the method or application that is performing the
authentication. So, let’s focus on how to enforce a password policy using the PAM.

Linux Implementation
This cracklib (or libcrack) library is a password-checking library developed by Alec
Muffet and is part of the default install for Debian, Mandrake, RedHat, and SuSE distri-
butions. It enables system administrators to establish password composition rules that
a user’s password must meet before the system accepts a password change. This is a
proactive step to prevent a user from ever choosing an insecure password, rather than
continuously auditing password files to see if someone has used a poor password. To im-
plement password checking, we need only modify a text file containing the PAM config-
uration. This will be one of two possible files:

/etc/pam.conf

or

/etc/pam.d/passwd

The entry in the /etc/pam.conf file that relates to password changes looks similar to this:

passwd password required /lib/security/pam_cracklib.so retry=3

passwd password required /lib/security/pam_unix.so nullok use_authtok

This file is logically divided into five columns. The first column contains the service
name—the name of the program affected by the instructions defined in the remaining
columns. The /etc/pam.d/passwd file has only four columns because its name deter-
mines the passwd service. This configuration style merely separates each service name
into files, rather than using a monolithic file for multiple services. Regardless of the con-
figuration style, a service may have multiple entries. This is referred to as stacking modules
for a service. Here’s an example of /etc/pam.d/passwd with stacked modules:

password required /lib/security/pam_cracklib.so retry=3

password required /lib/security/pam_unix.so nullok use_authtok

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:08 PM

Color profile: Disabled
Composite Default screen

The first column indicates the module type to which the entry corresponds. It can con-
tain one of four types (we are interested in modifying the module type that controls pass-
word changes):

■ account Controls actions based on a user’s (that is, an account’s) attributes,
such as checking user read-access permissions against a file. For example, you
could use an account entry to allow access to a resource such as a file share.
However, without an auth entry, the user would not be able to log into the
system.

■ auth Performs a challenge/response with the user, such as prompting for a
password. This is used whenever the system or resource is going to permit the
user to log in.

■ password Updates authentication information, such as changing a user’s
password. This is not used for validating a user to the system. All it does is
permit access to the security system that controls the user’s credentials.

■ session Handles actions that occur before or after a service, such as auditing
failed logins. For example, this could be used to immediately display the time
of day after a user logs into the system. The first entry would be for an auth to
validate the user’s password, then the next entry would be a session that calls
a PAM module to display the current time. Another use of the session could be
to perform a specific function when the user logs out of the system, such as
writing a log entry or expiring a temporary identifier.

The next column determines the control for a service, or how its execution should be
handled. Successful execution implies that the service performs a function, such as
changing a user’s password. Failed execution implies that the service did not receive the
correct data, such as the user’s password. The following are the control handles:

■ requisite If the service fails, all subsequent actions (stacked services)
automatically fail. This means that nothing else in the stack will succeed.

■ required If the service fails, process subsequent actions, but ultimately fail. If
there are other actions in the stack, they might succeed but that will not change
the outcome.

■ optional If the service succeeds or fails, process subsequent actions. This will
not have a bearing on the overall success of the action or anything in its stack.

■ sufficient If the service succeeds and no requisite or required steps have failed,
stop processing actions and succeed.

The next column contains the module path of the authentication library to use. The
module path should contain the full path name to the authentication library. We will be
using cracklib, so make sure that pam_cracklib.so is in this column.

198 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:08 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 199

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

The final column contains arguments to be passed to the authentication library. Re-
turning to the first example of /etc/pam.conf, we see that the pam_cracklib.so mod-
ule must succeed with the retry=3 argument in order for users to change their
passwords with the passwd program:

passwd password required /lib/security/pam_cracklib.so retry=3

Cracklib Arguments
Cracklib actually provides more arguments than the simple retry=N. The retry argu-
ment merely instructs passwd how many times to prompt the user for the new pass-
word. The success or failure of a service that requires pam_cracklib.so relies on the
number of “credits” earned by the user. A user can earn credits based on password con-
tent. Module arguments determine the amount of credit earned for the particular compo-
sition of a new password.

■ minlen=N Default = 9. The minimum length, synonymous with amount of
credit, that must be earned. One credit per unit of length. The actual length
of the new password can never be less than 6, even with credit earned for
complexity.

■ dcredit=N Default = 1. The maximum credit for including digits (0–9). One
credit per digit.

■ lcredit=N Default = 1. The maximum credit for including lowercase letters.
One credit per letter.

■ ucredit=N Default = 1. The maximum credit for including uppercase letters.
One credit per letter.

■ ocredit=N Default = 1. The maximum credit for including characters that are
not letters or numbers. One credit per letter.

Five other arguments do not directly affect credit:

■ debug Record debugging information based on the system’s syslog setting.

■ difok=N Default = 10. The number of new characters that must not be present
in the previous password. If at least 50 percent of the characters do not match,
this is ignored.

■ retry=N Default = 1. The number of times to prompt the user for a new
password if the previous password did not meet the minlen.

■ type=text Text with which to replace the word UNIX in the prompts “New
UNIX password” and “Retype UNIX password.”

■ use_authtok Used for stacking modules in a service. If this is present,
the current module will use the input given to the module above it in the
configuration file rather than prompting for the input again. This may
be necessary if the cracklib module is not placed at the top of a stack.

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:09 PM

Color profile: Disabled
Composite Default screen

200 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

Arguments are placed in the last column of the row and are separated by spaces. For
example, our administrator wants her users to create 15-character passwords, but the
passwords receive up to two extra credits for using digits and up to two extra credits for
“other” characters. The /etc/pam.d/passwd file would contain the following (the \
character represents a line continuation in this code):

password required /lib/security/pam_cracklib.so \

minlen=15 dcredit=2 ocredit=2

password required /lib/security/pam_unix.so nullok use_authtok md5

Notice that the administrator added the md5 argument to the pam_unix.so library.
This enables passwords to be encrypted with the MD5 algorithm. Passwords encrypted
with the Data Encryption Standard (DES) algorithm, used by default, cannot be longer
than eight characters. Even with generous credit limits, it would be difficult to create a
15-credit password using eight characters! Passwords encrypted with the MD5 algorithm
are effectively unlimited in length.

Now let’s take a look at some valid and invalid passwords checked by the new
/etc/pam.d/passwd file and their corresponding credits. Remember, lcredit and
ucredit have default values of 1:

password 9 credits (8 length + 1 lowercase letter)

passw0rd! 12 credits (9 length + 1 lowercase letter + 1 digit +
1 other character)

Passw0rd! 13 credits (9 length + 1 uppercase letter + 1 lowercase
letter + 1 digit + 1 other character)

Pa$$w00rd 15 credits (9 length + 1 uppercase letter + 1 lowercase
letter + 2 digits + 2 other characters)

As you can see, high minlen values can require some pretty complex passwords.
Twelve credits is probably the lowest number you will want to allow on your system,
with fifteen being the upper threshold. Otherwise, you’ll have to write down the pass-
word next to your computer in order to remember it! (Hopefully not.)

OPENBSD LOGIN.CONF
OpenBSD, in a well-placed paranoiac departure from the limitations of DES-based encryp-
tion, includes the algorithm used only for compatibility with other Unix systems. System
administrators have the choice of multi-round DES, MD5 encryption, and Blowfish. We’ve
already mentioned that one benefit of MD5 encryption is the ability to use passwords of ar-
bitrary length. Blowfish, developed by Bruce Schneier and peers, also accepts passwords of
arbitrary length. It also boasts the advantage of being relatively slow. This might sound
counterintuitive, but we’ll explain why in the “John the Ripper” section.

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:09 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 201

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

Implementation
OpenBSD does not use a PAM architecture, but it still maintains robust password man-
agement. The /etc/login.conf file contains directives for the encryption algorithms and
controls that users on the system must follow. The entries in the login.conf file contain
more instructions about user requirements than just password policies. The options ex-
plained here should be appended to existing options. The first value of each entry corre-
sponds to a type of login class specified for users. It has a special entry of “default” for
users without a class.

To determine the login class of a user, or to specify a user’s class, open the /etc/ mas-
ter.passwd file with the vipw utility. The login class is the fifth field in a user’s password
entry. Here’s an example, showing the login classes in boldface:

root:$2a$06$T22wQ2dH...:0:0:daemon:0:0:Fede:/root:/bin/csh

bisk:$2a$06$T22wQ2dH...:0:0:staff:0:0::/home/bisk:/bin/csh

Partial entries in the login.conf file might contain the following (the \ character repre-
sents a line continuation in this code):

default:\

:path=/usr/bin:\

:umask=027:\

:localcipher=blowfish,6

staff:\

:path=/usr/sbin:\

:umask=077:\

:localcipher=blowfish,8

daemon:\

:path=/usr/sbin:\

:umask=077:\

:localcipher=blowfish,8

This instructs the system to use the Blowfish algorithm for every user. The ,6 and ,8
indicate the number of rounds through which the algorithm passes. This slows the algo-
rithm because it must take more time to encrypt the password. If a password takes longer
to encrypt, then it will also take more time to brute force. For example, it will take much
longer to go through a dictionary of 100,000 words if you use 32 rounds (localcipher=
blowfish,32) of the algorithm as opposed to six rounds.

The most important entries of the login.conf file are default, because it applies to all
users, and daemon, because it applies to the root user.

Each entry can have multiple options:

■ localcipher=algorithm Default = old. This defines the encryption algorithm
to use. The best options are md5 and blowfish,N where N is the number of
rounds to use (N < 32). The “old” value represents DES and should be avoided
because passwords cannot be longer than eight characters, and current password
crackers work very efficiently against this algorithm.

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:10 PM

Color profile: Disabled
Composite Default screen

202 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

■ ypcipher=algorithm Same values as localcipher. This is used for
compatibility with a Network Information System (NIS) distributed login.

■ minpasswordlen=N Default = 6. The minimum acceptable password length.

■ passwordcheck=program Specifies an external password-checking program.
This should be used with care because the external program could be subject to
Trojans, errors, or buffer overflows.

■ passwordtries=N Default = 3. The number of times to prompt the user for a
new password if the previous password did not meet OpenBSD standards. A
user can still bypass the standards unless this value is set to 0.

An updated login.conf file would contain the following (the ftpaccess class is pur-
posefully weak for this example):

default:\

:path=/usr/bin:\

:umask=027:\

:localcipher=blowfish,8:\

:minpasswordlen=8:\

:passwordretries=0

ftpaccess:\

:path=/ftp/bin:\

:umask=777:\

:localcipher=old:\

:minpasswordlen=6:\

:passwordretries=3

staff:\

:path=/usr/sbin:\

:umask=077:\

:localcipher=blowfish,12:\

:minpasswordlen=8:\

:passwordretries=0

daemon:\

:path=/usr/sbin:\

:umask=077:\

:localcipher=blowfish,31

The policy specified by this file requires the Blowfish algorithm for all users, except
those in the ftpaccess class. The password policy for the ftpaccess class represents
the requirements of old-school Unix systems as noted by the reference to “old:.” The
passwords for users in the staff class, a class commonly associated with administrative
privileges, are encrypted with 12 rounds. The root password, by default a member of
daemon, must be encrypted with the maximum number of Blowfish rounds. Although
the Blowfish and MD5 algorithms support an arbitrary password length, OpenBSD cur-
rently limits this to 128 characters. That’s enough for a short poem!

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:10 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 203

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

One of the best places to search for passwords is in the history files for users’ shells. Take a look at
.history and .bash_history files for strange commands. Sometimes an administrator will accidentally
type the password on the command line. This usually occurs when the administrator logs into a remote
system or uses thesu command and mistypes the command or anticipates the password prompt. We
once found a root user’s 13-character password this way!

JOHN THE RIPPER
John the Ripper (www.openwall.com/John/) is probably the fastest, most versatile, and defi-
nitely one of the most popular password crackers available. It supports six different pass-
word hashing schemes that cover various flavors of Unix and the Windows LANMan
hashes also known as NTLM (used by NT, 2000, and XP). It can use specialized wordlists
or password rules based on character type and placement. It runs on at least 13 different
operating systems and supports several processors, including special speed improve-
ments for Pentium and RISC chips.

Implementation
First, we need to obtain and compile John. The latest version is John-1.6.38, but you will
need to download both John-1.6.38.tar.gz and John-1.6.tar.gz (or the .zip equivalent for
Windows). The 1.6.38 version does not contain all of the documentation and support files
from the original 1.6 version. After untarring John-1.6.38 in your directory of choice, you
will need to go to the /src subdirectory.

[Paris:~] mike% tar zxvf john-1.6.38.tar.gz

[Paris:~] mike% tar zxvf john-1.6.tar.gz

[Paris:~] mike% cd john-1.6.38

[Paris:~] mike% john-1.6.38]# cd src

The next command is simple: make OS name. For example, to build John in a Cygwin
environment, you would type make win32-cygwin-x86-mmx. For you BSD folks, make
freebsd-x86-mmx-elf should do nicely. Simply typing make with no arguments will dis-
play a list of all supported operating system and processor combinations.

[Paris:~] mike% make macosx-ppc32-altivec-cc

John will then configure and build itself on your platform. When it has finished, the
binaries and configuration files will be placed in the John-1.6.38/run directory. The de-
velopment download does not include some necessary support files. You will need to ex-
tract these from the John-1.6.tar.gz file and place them in the /run subdirectory:

[Paris:~] mike% cd john-1.6.38/run

[Paris:~] mike% cp ../../john-1.6/run/all.chr .

[Paris:~] mike% cp ../../john-1.6/run/alpha.chr .

[Paris:~] mike% cp ../../john-1.6/run/digits.chr .

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:10 PM

Color profile: Disabled
Composite Default screen

204 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

[Paris:~] mike% cp ../../john-1.6/run/LANMan.chr .

[Paris:~] mike% cp ../../john-1.6/run/password.lst .

If all has gone well, you should be able to test John. For the rest of the commands, we
will assume that you are in the John-1.6.38/run directory. First, verify that John works by
generating a baseline cracking speed for your system:

[Paris:~] mike% ./john –test

Benchmarking: Traditional DES [128/128 BS AltiVec]... DONE

Many salts: 621260 c/s real, 635235 c/s virtual

Only one salt: 543974 c/s real, 567822 c/s virtual

Benchmarking: BSDI DES (x725) [128/128 BS AltiVec]... DONE

Many salts: 21324 c/s real, 21583 c/s virtual

Only one salt: 20249 c/s real, 20747 c/s virtual

Benchmarking: FreeBSD MD5 [32/32 X2]... DONE

Raw: 2904 c/s real, 2988 c/s virtual

Benchmarking: OpenBSD Blowfish (x32) [32/32]... DONE

Raw: 240 c/s real, 246 c/s virtual

Benchmarking: Kerberos AFS DES [24/32 4K]... DONE

Short: 86610 c/s real, 88918 c/s virtual

Long: 231782 c/s real, 235073 c/s virtual

Benchmarking: NT LM DES [128/128 BS AltiVec]... DONE

Raw: 4193K c/s real, 4395K c/s virtual

Two benchmarks deserve attention:FreeBSDMD5 andNTLMDES. The cracks per sec-
ond (c/s) difference between these two is a factor over 1400 (executed on a Mac OSX sys-
tem). This means that a complete brute-force attack will take more than 1400 times longer
against password hashes on a FreeBSD system than against a Windows NT system!
OpenBSD Blowfish takes even longer to brute force. This is how an encryption algorithm
can be more resistant to brute-force attacks than another type of algorithm. Instead of
saying that one algorithm is more secure than the other, it would be fairer to say that
Blowfish is more resistant to a brute attack.

Cracking Passwords
Now let’s crack a password. John will accept three different password file formats. In re-
ality, John can crack any password encrypted in one of the formats listed by the -test
option. All you have to do is place it into one of the formats the application will accept. If
you are using a Unix passwd file or output from the pwdump tool, which is mentioned
later in this chapter, then you should not have to modify the file format. Here are five dif-
ferent examples of password file formats that John knows how to interpret (the password
hashes are in boldface):

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:11 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 205

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

1. root:rf5V5.Ce31sOE:0:0::

2. root:KbmTXiy.OxC.s:11668:0:99999:7:-1:-1:1075919134

3. root:1M9/GbWfv$sktn.4pPetd8zAwvhiB6.1:11668:0:99999:7:-1:-1:1075919134

4. root:$2a$06$v3LIuqqw0pX2M4iUnCVZcuyCTLX14lyGNngtGSH4/
dCqPHK8RyAie:0:0::::::

5. Administrator:500:66bf9d4b5a703a9baad3b435b51404ee:17545362d694f996c371
29225df11f4c:::

Following are the systems from which the previous five password hashes were ob-
tained. Notice that even though there is a significant difference in the operating system,
the file formats are similar. Also, realize that you can crack Solaris passwords using the
Windows version of John—all you need is the actual password hash; the operating sys-
tem is irrelevant.

1. Solaris DES from /etc/passwd

2. Mandrake Linux DES from /etc/shadow

3. FreeBSD MD5 from /etc/shadow

4. OpenBSD Blowfish from /etc/master.password

5. Windows 2000 LAN Manager from \WINNT\repair\SAM or
\WINNT\system32\config

Passwords can be cracked from applications other than Unix and Windows systems.
To crack one of these passwords, simply copy the hash (in bold in each example) into the
second field of a Unix password file format:

■ Cisco devices
Original entry: enable secret 5 1M9/GbWfv$sktn.4pPetd8zAwvhiB6.1
John entry: cisco:1M9/GbWfv$sktn.4pPetd8zAwvhiB6.1::::

■ Apache .htaccess files that use DES-formatted password hashes. Apache also
supports passwords hashed with the SHA-1 and MD5 algorithms, but these are
not compatible with John.
Original .htaccess entry: dragon:yJMVYngEA6t9c
John entry: dragon:yJMVYngEA6t9c::::

■ Other DES-based passwords from applications such as WWWBoard.
Original passwd.txt file: WebAdmin:aepTOqxOi4i8U
John entry: WebAdmin:aepTOqxOi4i8U:0:3:www.victim.com::

To crack a password file using John’s default options, you supply the filename as an
argument. We’ll use three different password files for the examples in this chapter:
passwd.unix contains passwords hashed by the DES algorithm, passwd.md5 contains
passwords hashed by the MD5 algorithm, and passwd.LANMan contains Windows
NT–style passwords:

[Paris:~] mike% ./john passwd.unix

Loaded 189 passwords with 182 different salts (Traditional DES [64/64 BS MMX])

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:11 PM

Color profile: Disabled
Composite Default screen

206 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

John automatically selects the correct encryption algorithm for the hashes and begins
cracking. Press any key to display the current cracking statistics—CTRL-C will stop John. If
a password is cracked, John will print it on the screen and save the cracked hash for future
use. To view all the cracked passwords for a specific file use the –show option:

[Paris:~] mike% ./john -show passwd.unix

2buddha:smooth1:0:3:wwwboard:/:/sbin/sh

ecs:asdfg1:11262:0:40:5::11853:

informix:abc123:10864:0:40:5::12689:

kr:grant5:11569:0:35:5::11853:

mjs:rocky22:11569:0:35:5::11853:

np:ny0b0y:11572:0:35:5::11853:

All the cracked passwords are saved in the John.pot file, which is a text file that will
grow as the number of passwords you collect grows.

Poor passwords, regardless of their encryption scheme, can be cracked in a few min-
utes to a day. Stronger passwords may take weeks or months to break; however, we can
use some tricks to try and guess these stronger passwords more quickly. We can use com-
plicated dictionary files (files with foreign words, first names, sports teams, science-fic-
tion characters), use specific password combinations (always at least two numbers and a
punctuation mark), or distribute the processing across multiple computers.

John’s default dictionary is the password.lst file. This file contains common passwords
that should show up most often among users. You can find several alternative dictionary
files on the Internet using a simple Google search. One of the best (at 15MB) is bigdict.zip.
Supply the –wordfile option to instruct John to use an alternative dictionary:

[Paris:~] mike% ./john -wordfile:password.lst passwd.unix

Loaded 188 passwords with 182 different salts (Traditional DES [64/64 BS MMX])

guesses: 0 time: 0:00:00:01 100% c/s: 333074 trying: tacobell – zhongguo

We can even perform some permutations on the words in the dictionary using the
–rules option:

[Paris:~] mike% ./john -wordfile:password.lst -rules passwd.unix

Loaded 188 passwords with 182 different salts (Traditional DES [64/64 BS MMX])

guesses: 0 time: 0:00:00:58 100% c/s: 327702 trying: Wonderin – Zenithin

To understand what the –rules option did, let’s take a look at the John.conf file (or
the John.ini file for the 1.6 nondevelopment version). Here is a portion of the John.conf
file that applies permutations to our wordlist (comments begin with the # symbol):

[List.Rules:Wordlist]

Try words as they are

:

Lowercase every pure alphanumeric word

-c >3!?XlQ

Capitalize every pure alphanumeric word

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:12 PM

Color profile: Disabled
Composite Default screen

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

Chapter 8: Password Cracking / Brute-Force Tools 207

-c >2(?a!?XcQ

Lowercase and pluralize pure alphabetic words

<*>2!?Alp

Lowercase pure alphabetic words and append '1'

<*>2!?Al$1

Although it looks like we’d need a Rosetta Stone to decipher these rules, they are not
really that difficult to understand. The basic syntax for many of these rules is derived
from the crack utility written by Alec Muffet (remember libcrack?). Imagine that the sys-
tem’s password policy requires every password to begin with a number. Obviously, we
don’t need to bother trying to guess “letmein” since it doesn’t match the policy, but
“7letmein” might be valid. Here’s a rule to prepend digits to a word:

Prepend digits (adds 10 more passes through the wordlist)

^[0123456789]

We can break this rule down into three parts. The ^ symbol indicates that the opera-
tion should occur at the beginning of the word. In other words, it should prepend the sub-
sequent character. The square brackets [and] contain a set of characters, rather than
using just the next character after the ^. The digits 0123456789 are the specific charac-
ters to prepend. So, if our rule operates on “letmein,” it will make a total of 10 guesses
from “0letmein” through “9letmein.”

The placeholder rules that signify where to place a new character are as follows:

Symbol Description Example

^ Prepends the character ^[01]
0letmein
1letmein

$ Appends the character $[!.]
letmein!
letmein.

i[n] Inserts a character at the
n position

i[4][XZ]
letXmein
letZmein

We can specify any range of characters to insert. The entire wordlist will be rerun for
each additional character. For example, a wordlist of 1000 words will actually become an
effective wordlist of 10,000 words if the 10 digits 0–9 are prepended to each word.

Here are some other useful characters to add to basic words:

■ [0123456789] Digits

■ [!@#$%^&*()] SHIFT-digits

■ [,.?!] Punctuation

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:12 PM

Color profile: Disabled
Composite Default screen

We can use conversion rules to change the case or type (lower, upper, e to 3) of charac-
ters or remove certain types of characters:

■ ?v Vowel class (a, e, i, o, u)

■ s?v. Substitute vowels with dot (.)

■ @@?v Remove all vowels

■ @@a Remove all a's

■ sa4 Substitute all a's with 4

■ se3 Substitute all e's with 3

■ l* Where * is a letter to be lowercase

■ u* Where * is a letter to be uppercase

Rules are an excellent method of improving the hit rate of password guesses, espe-
cially rules that append characters or l33t rules that swap characters and digits. Rules
were more useful when computer processor speeds were not much faster than a monkey
with an abacus. Nowadays, when a few hundred dollars buys chips in the 3+ GHz range,
you don’t lose much by skipping a complex rule phase and going straight to brute force.

Nor will complex rules and extensive dictionaries crack every password. This brings
us to the brute-force attack. In other words, we’ll try every combination of characters for a
specific word length. John will switch to brute-force mode by default if no options are
passed on the command line. To force John to use a specific brute-force method, use the
–incremental option:

[Paris:~] mike% ./john -incremental:LANMan passwd.LANMan

Loaded 1152 passwords with no different salts (NT LM DES [64/64 BS MMX])

The default John.conf file has four different incremental options:

■ All Lowercase, uppercase, digits, punctuation, SHIFT+

■ Alpha Lowercase

■ Digits 0 through 9

■ LANMan Similar to All with lowercase removed

Each incremental option has five fields in the John.conf file. For example, the
LANMan entry contains the following fields:

■ [Incremental:LANMan] Description of the option

■ File = ./LANMan.chr File to use as a character list

■ MinLen = 0 Minimum length guess to generate

■ MaxLen = 7 Maximum length guess to generate

■ CharCount = 69 Number of characters in list

208 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:12 PM

Color profile: Disabled
Composite Default screen

Whereas the All entry contains these fields:

■ [Incremental:All] Description of the option

■ File = ./all.chr File to use as a character list

■ MinLen = 0 Minimum length guess to generate

■ MaxLen = 8 Maximum length guess to generate

■ CharCount = 95 Number of characters in list

The MinLen and MaxLen fields are the most important fields because we will modify
them to target our attack.MaxLen for LANMan hashes will never be more than seven char-
acters. Raise the CharCount to the MaxLen power to get an idea of how many combina-
tions make up a complete brute-force attack. For example, the total number of LANMan
combinations is about 7.6 trillion. The total number of combinations for All is about 6700
trillion! Note that it is counterproductive to use incremental:All mode against
LANMan hashes as it will unnecessarily check lowercase and uppercase characters.

If we have a password list from a Unix system in which we know that all the pass-
words are exactly eight characters, we should modify the incremental option. In this case,
it would be a waste of time to have John bother to guess words that contain seven or less
characters:

[Incremental:All]

File = ./all.chr

MinLen = 8

MaxLen = 8

CharCount = 95

Then run John:

[Paris:~] mike% ./john –incremental:All passwd.unix

Only guesses with exactly eight characters will be generated. We can use the
–stdout option to verify this. This will print each guess to the screen:

[Paris:~] mike% ./john –incremental:All –stdout

This can be useful if we want to redirect the output to a file to create a massive
wordlist for later use with John or another tool that could use a wordlist file, such as
Nessus or THC-Hydra.

[Paris:~] mike% ./john -makechars:guessed

Loaded 3820 plaintexts?Generating charsets... 1 2 3 4 5 6 7 8 DONE

Generating cracking order... DONE

Successfully written charset file: guessed (82 characters)

Chapter 8: Password Cracking / Brute-Force Tools 209

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:13 PM

Color profile: Disabled
Composite Default screen

210 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

Restore Files and Distributed Cracking
You should understand a few final points about John to be able to manage large sets of
passwords at various stages of completion. John periodically saves its state by writing to
a restore file. The period is set in the John.conf file:

Crash recovery file saving delay in seconds

Save = 600

The default name for the restore file is restore, but this can be changed with the –ses-
sion option.

[Paris:~] mike% ./John -incremental:LANMan -session:pdc \

> passwd.LANMan

Loaded 1152 passwords with no different salts (NT LM DES

[64/64 BS MMX])

The contents of the restore file will be similar to this:

REC2

5

-incremental:LANMan

-session:pdc

passwd.LANMan

-format:lm

6

0

47508000

00000000

0

-1

488

0

8

3

2

6

5

2

0

0

0

Lines nine and ten in this file (shown in bold) contain the hexadecimal value of the to-
tal number of guesses completed. The number of possible combinations is well over any
number that a 32-bit value can represent, so John uses two 32-bit fields to create a 64-bit
number. Knowledge of these values and how to manipulate them is useful for perform-
ing distributed cracking. Let’s take our restore file and use it to launch two concurrent

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:13 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 211

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

brute-force cracks on two separate computers. The restore file for the first computer
would contain this:

REC2

4

-incremental:LANMan

passwd.LANMan

-format:lm

4

0

00000000

00000000

0

-1

333

0

8

15

16

0

0

0

0

0

0

The restore file for the second computer would contain this:

REC2

4

-incremental:LANMan

passwd.LANMan

-format:lm

4

0

00000000

0000036f

0

-1

333

0

8

15

16

0

0

0

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:13 PM

Color profile: Disabled
Composite Default screen

212 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

0

0

0

Thus, the first system will start the brute-force combination at count zero. The second
computer will start further along the LANMan pool at a “crypt” value of 0000036f
00000000. Now the work has been split between both computers and you don’t have to
worry about redundant combinations. A good technique for finding the right “crypt”
values is to let a system run for a specific period.

For example, imagine you have a modest collection of 10 computers. On each of these
systems, John runs about 400,000 c/s. It would take one of these systems about 30 weeks
to go through all seven character combinations of a common LANMan hash (69^7 combi-
nations). Run John on one of the systems for one week. At the end of the week, record the
“crypt” value. Take this value and use it as the starting value in the restore file on the sec-
ond system, and then multiply the value by two and use that as the starting value for the
next system. Now, 10 systems will complete a brute-force attack in only three weeks.
Here is the napkin arithmetic that determines the “crypt” multiplier, X, that would be
necessary to write 10 session files—one for each system. The first system would start
guessing from the zero mark, the next system would start guessing at the zero plus X
mark, and so on:

Total time in weeks:

Tw = (69^7 / cracks per second) / (seconds per week)
Tw = (69^7 / 400,000) / (604800) = 30.8 weeks

“crypt” multiplier:

X = Tw / (10 systems)
X = 30.8 / 10 = 3
“crypt” value after one week (hexadecimal, extracted from restore file):
00030000 00000000

Here are the distributed “crypt” values (in hexadecimal notation). These are the val-
ues that are necessary to place in the session file on each system:

System 1 = 0
System 2 = “crypt” * X = 00090000 00000000
System 3 = “crypt” * X * 2 = 00120000 00000000
System N = “crypt” * X * (N - 1) = restore value
System 10 = “crypt” * X * 9 = 00510000 00000000

This method is far from elegant, but it’s effective when used with several homoge-
nous computers. Another method for distributing the work uses the –external option.
Basically, this option allows you to write custom password-guessing routines and meth-
ods. The external routines are stored in the John.conf file under the List.External direc-
tives. Simply supply the –external option with the desired directive:

[Paris:~] mike% ./john –external:Parallel passwd.LANMan

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:13 PM

Color profile: Disabled
Composite Default screen

If you’re going to use this method, be sure to change thenode=1 line tonode=2 on the second com-
puter’s John.conf file. Also, the implementation of this node method is not effective for more than two
nodes because theif(number++%total)will create redundant words across some systems.

Is It Running on My System?
The biggest indicator of John the Ripper running on your system will be constant CPU ac-
tivity. You can watch process lists (ps command on Unix or through the process viewer
for Windows) as well, but you will not likely see John listed. If you’re trying to rename the
executable binary to something else, like “inetd “ (note the extra space after the d), it will not
work without changing a few lines of the source code.

Chapter 8: Password Cracking / Brute-Force Tools 213

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

The rules that you can specify in the John.conf file go a long way toward customiz-
ing a dictionary. We’ve already mentioned a simple rule to add a number in front of
each guess:

Prepend digits (adds 10 more passes through the wordlist)

^[0123456789]

But what about other scenarios? What if we notice a trend in the root password
scheme for a particular network’s Unix systems? For example, what if we wanted to
create a wordlist that used every combination of upper- and lowercase letters for
the word bank? A corresponding rule in John.conf would look like this:

Permutation of "ban" (total of 8 passes)

i[0][bB]i[1][aA]i[2][nN]

You’ll notice that we’ve only put the first three letters in the rule. This is because
John needs a wordlist to operate on. The wordlist, called password.lst, contains the
final two letters:

k

K

Now, if you run John with the new rule against the shortened password.lst file,
you will see the following:

$./John.exe -wordfile:password.lst -rules –stdout

bank

bank

bank

bank

Case Study: Attacking Password Policies

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:16 PM

Color profile: Disabled
Composite Default screen

214 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

bAnk

bAnK

bANk

bANK

Bank

BanK

BaNk

BaNK

Bank

BAnK

BANk

BANK

words: 16 time: 0:00:00:00 100% w/s: 47.05 current: BANK

Here’s another rule that would attack a password policy that requires a special
character in the third position and a number in the final position:

Strict policy (adds 160 more passes through the word list)

i[2][`~!@#$%^&*()-_=+]$[0123456789]

Here’s an abbreviated example of the output when operating on the word pass-
word:

$./John.exe -wordfile:password.lst -rules –stdout

pa`ssword0

pa`ssword1

pa`ssword2

...

pa~ssword7

pa~ssword8

pa~ssword9

pa!ssword0

pa!ssword1

pa!ssword2

...

As you can see, it is possible to create rules that quickly bear down on a net-
work’s password construction rules.

Attacking Password Policies (continued)

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:16 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 215

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

L0PHTCRACK
At first, Windows systems seemed to offer improvements in password security over their
Unix peers. Most Unix-heads could never create passwords longer than eight characters.

Windows NT boasted a maximum length of 14 characters, almost doubling the
length! Then, Mudge and Weld Pond from L0pht Heavy Industries peeked under the
hood of the LANMan hash. The company subsequently released a tool that took advan-
tage of some inadequacies of the password encryption scheme.

We’ve already mentioned the LANMan hash quite a bit in this chapter. We know that
it is the hashed representation of a user’s password, much like a Unix /etc/passwd or
/etc/shadow file. What we’ll do now is take a closer look at how the LANMan hash is ac-
tually generated and stored. A Windows system stores two versions of a user’s pass-
word. The first version is called the LANMan, or LM, hash. The second version is the NT
hash, which is encrypted with MD4, a one-way function—that is, the password can be en-
crypted, but it can never be decrypted. The LANMan hash is also created by a one-way
function, but in this case, the password is split into halves before being encrypted with
the DES algorithm.

Let’s take a quick look at the content of three LANMan hashes for three different pass-
words. They are represented in hexadecimal notation and consist of 16 bytes of data:

898f30164a203ca0 14cc8d7feb12c1db

898f30164a203ca0 aad3b435b51404ee

14cc8d7feb12c1db aad3b435b51404ee

It doesn’t take a box of cereal and a secret decoder ring to notice some coincidences
between these three examples. The last 8 bytes of the second and third examples are ex-
actly the same: aad3b435b51404ee. This value will appear in the second half of any
hash generated from a password that is less than eight characters long. This is a cryptog-
raphy gaffe for two reasons: It implies that the content of the password is less than eight
characters, and it reveals that the generation of the second half of the hash does not use
any information from the first half. Notice that the second half of the first example
(14cc8d7feb12c1db) matches the first half of the third example. This implies that the
password is encrypted in independent sets of two (seven characters) rather than the sec-
ond half depending on the content of the first half.

In effect, this turns everyone’s potentially 14-character password into two smaller
seven-character passwords. To top it off, the LANMan hashes ignored the case of letters,
which reduces the amount of time to complete a brute-force attack by a factor of 10.

Implementation
L0phtCrack brought password cracking to the GUI-rich environment of Windows NT
and its descendants, Windows 2000 and XP. Trying to pilfer passwords from Unix sys-
tems usually requires nabbing the /etc/passwd or /etc/shadow file—both easily read-
able text files. Windows stores passwords in the Security Accounts Manager (SAM)—a

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:16 PM

Color profile: Disabled
Composite Default screen

binary file that is difficult to read without special tools. Not only will L0phtCrack guess
passwords, it will extract LANMan hashes from any SAM file, the local system, or a re-
mote system, and it will even sniff hashes as they cross a network.

The SAM file resides in the \WINNT\system32\config\ directory. If you try to copy
or open this file you will receive an error:

C:\WINNT\system32\config copy SAM c:\temp

The process cannot access the file because it is being used by

another process.

0 file(s) copied.

Don’t give up! Windows helpfully backs up a copy of the SAM file to the \WINNT\ re-
pair\ or sometimes the \WINNT\repair\RegBack\ directory.

L0phtCrack will extract passwords from the local or remote computers with the
Dump Passwords From Registry option.

Remote extraction requires a valid session to the ADMIN$ share. This requires access
to the NetBIOS TCP port 139. L0phtCrack can establish the session for you, or you can do
so manually:

C:\>net use \\victim\admin$ * /u:Administrator

Type the password for \\localhost\admin$:

The command completed successfully.

It can also sniff LANMan hashes from the network. Each time a net use command
passes the sniffing computer, the authentication hash will be extracted. You must be on
the local network and be able to see the traffic, so its use tends to be limited.

The password cracking speed of L0phtCrack is respectable, but not on par with the
latest versions of JJohn. Nor does it offer the versatility of modifying rules. It does allow
for customizing the character list from the Options menu.

216 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:17 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 217

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

However, it’s usually best to use L0phtCrack to extract the passwords, and then save
the password file for JJohn to use—choose File | Save As.

You will need to massage the file for JJohn to accept it. This involves placing the pass-
word hashes in the appropriate fields.

Here’s the L0phtCrack save file:

LastBruteIteration=0

CharacterSet=1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ

ElapsedTime=0 0

Administrator:"":"": A34E6990556D7BA3BA1F6705936BF461:

2B1437DBB1DC57DA3DA1B88BADAB13B2:::

And here’s the file for John the Ripper. Note that the first three lines have been re-
moved and there is only one field between the username (Administrator) and the pass-
word hash. The content of this field is unimportant to John, but we’ll put the user’s SID
there as a reminder:

Administrator:500:A34E6990556D7BA3BA1F6705936BF461:

2B1437DBB1DC57DA3DA1B88BADAB13B2:::

Version 3.0 of L0phtCrack introduced improvements in the auditing ability of the ap-
plication. Although it is easier for administrators to use and it’s geared toward their
needs (such as the option of reporting only that a password was cracked rather than dis-
playing the result), we prefer to use L0phtCrack 2.52 to grab passwords and use John the
Ripper to crack them.

Using L0phtCrack version 3.0 has its advantages. Pure Windows 2000 domains can
have accounts with 15-character passwords. This effectively disables the LANMan stor-
age. Consequently, version 2.5 will report “No Password” for both the LANMan and
NTLM hashes for any account with a 15-character password. Version 3.0 will correctly
load and identify accounts with 15 characters. If you ever find a hash such as this,

AAD3B435B51404EEAAD3B435B51404EE:FA95F45CC70B670BD865F3748CA3E9FC:::

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:17 PM

Color profile: Disabled
Composite Default screen

218 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

then you have discovered one of these “super passwords.” Note that the LANMan hash
contains our friendly AAD3B435B51404EE null value repeated twice in the LANMan
portion of the password (in bold).

The other advantage of L0phtCrack version 3.0 is its ability to perform distributed
cracking. Its method breaks up the brute-force guesses into blocks. This is a significant
advantage for running it on heterogeneous systems and tracking the current status.

Protecting Your Passwords
Strong network and host security is the best method for protecting passwords and the
password file. If a malicious user can grab the password file or the password hash for a
Windows system, statistically speaking, it is only a short matter of time before the major-
ity of the passwords are cracked. However, tools like John the Ripper and L0phtCrack
cannot handle certain characters that Windows accepts as valid.

Several ALT-number pad combinations produce characters that will not be tested by
current password crackers. To enter one of these combinations, remember to use num-
bers from the number pad. For example, the letters p-a-s-s-w-ALT-242-r-d (passw“rd) will
remain safe until someone updates the password cracking tools. Plus, the additional
characters made available by the ALT-nnn technique vastly expand the brute-force key
space.

The ALT combinations for special characters start at 160 (ALT-160) and end at 255.

Removing the LANMan Hash
A benefit that Windows XP and Windows 2000 Service Pack 2 provided for security-con-
scious administrators is a registry key that removes the LANMan hash storage of a user’s
password. Remember, the LM hash is the weak version of the user’s password that ig-
nores the difference between upper- and lowercase characters. You could create a
15-character or longer password, as noted in the discussion of the L0phtCrack implemen-
tation. Or you could set the following registry key to instruct Windows not to store the
LANMan hash for any later password change:

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\NoLMHash

The NoLMHash value is a REG_DWORD that should be equal to 1. This will break
compatibility with any Windows system in the 9x or Me series, but 2000 and XP will fare
quite nicely. Once you’ve set this value, make sure to have all users change their pass-
words so the new setting will take effect. If setting this registry value doesn’t sound like it
adds much more security for your passwords, consider this: the difference in key space
for an eight-character password (and the amount of time it would take to brute force a
password) between the LANMan hash and the MD4 hash is well over a factor of 1000! In
other words, there are roughly 69^7 combinations for the LANMan hash (remember, an
eight-character password is really a seven-character password plus a one-character pass-
word) and 96^8 combinations for the MD4 hash.

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:18 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 219

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

Anti-virus softwares may flag L0phtCrack as dangerous. This is because it is both a
useful auditing tool for system administrators, but it’s arguably an equally useful
tool for malicious users who install it without permission. You may find files with
.lc extensions, which is a good indicator that L0phtCrack has been there. If the tool
has actually been installed on a system, as opposed to being run off of a floppy, you
can perform registry searches for l0pht. Let’s run through a few checks that a system
administrator would make after discovering that the workstation of a temporary
employee has been accessing the ADMIN$ share on the network’s PDC.

We’ll gloss over several steps, such as seizing data and finding out what com-
mands have been run. Instead, we’re worried about our network’s passwords. There
are over 600 employees. Already, we might want to consider every password as com-
promised, but if we’re looking for direct evidence that the inside user has been crack-
ing passwords, then we need to look for some key data. The most obvious entry that
shows that L0phtCrack has been installed on the system is its own registry key:

HKLM\SYSTEM\Software\L0pht Heavy Industries\L0phtcrack 2.5

Unfortunately, this key is not present on the system. Now, there are other indi-
cators that L0phtCrack was installed. One key is related to the packet capture driver
it uses for sniffing LANMan hashes:

HKLM\SYSTEM\CurrentControlSet\Service\NDIS3Pkt

Other programs may set this key, but the correct value that these programs set
will be the following (note the case):

HKLM\SYSTEM\CurrentControlSet\Service\Ndis3pkt

The NDIS3Pkt key exists, so we can start to suspect that L0phtCrack has been in-
stalled. The wily insider may have tried to erase most of the tool’s presence, even go-
ing so far as to defragment the hard drive and write over the original space on the
disk in order to prevent forensic tools from finding the deleted data on the hard drive.
However, there is also another entry that Windows stores for the uninstall informa-
tion for L0phtCrack. Even if L0phtCrack has been uninstalled, the following registry
key remains:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\L0phtcrack 2.5

If the system administrator finds this in the registry, she can be 100 percent sure
that L0phtCrack had been installed on the system at some point in time. Next, the
administrator could search the “most recently used” (MRU) values in the registry
for files with a .lc extension. Even if the user deleted “sam_pdc.lc” from the file sys-
tem, references to it could still exist in the registry! A diligent investigator will also
search the MD5 fingerprints of all binaries on the system and look for anything that
matches the fingerprint of the L0phtCrack binary.

Case Study: Finding L0phtCrack on Your System

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:20 PM

Color profile: Disabled
Composite Default screen

220 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

GRABBING WINDOWS PASSWORD HASHES
After reviewing the L0phtCrack section of this chapter, it’s apparent that Windows pass-
word hashes can be viewed by the administrator just as easily as a Unix administrator can
view the /etc/shadow file. On the other hand, the Unix /etc/shadow file is a text view
that can be viewed in any text editor or simply output to the screen. The Windows SAM
database is a binary format that does not lend itself to easy inspection. This is why we
need tools such as pwdump or lsadump to grab a text version of the SAM database.

Pwdump
Pwdump2, http://www.openwall.com/passwords/nt.shtml, by Todd Sabin, can be used to ex-
tract the hashed passwords from a Windows system. It is a command-line tool that must
be run locally on the target system; however, we’ll take a look at pwdump3, which can
operate remotely, later in this section.

Implementation
The program must be run locally on the system. This is version 2 of a tool first developed
by Jeremy Allison of the Samba project. Unlike the first version, pwdump2 is not inhib-
ited by SysKey encryption of the SAM database. SysKey was introduced in Windows NT
in an attempt to add additional security to the SAM database, but its effectiveness is ques-
tionable, as we will see with pwdump2. The usage for pwdump2 is shown here:

C:\>pwdump2.exe /?

Pwdump2 - dump the SAM database.

Usage: pwdump2.exe <pid of lsass.exe>

It must be run with Administrator privileges in order to obtain the password hashes:

C:\>pwdump2.exe

Administrator:500:f1e5c5efbc8cfb7f18136fb05f77a0bf:55c77b761ffa46...

Orc:501:cbc501a4d2227783cbc501a4d2227783:f523558e22c95c62a6d6d00c...

skycladgirl:1013:aa5536a42ebe131baad3b235b51404ee:db31a1ee00bfbee...

You do not usually have to provide the process ID (PID) for the lsass.exe program.
However, you can use some simple ways to find it with the tlist or pulist and the
find command (the/i option instructsfind to ignore case); or you could simply look in
Task Manager if the pid column is selected for display.

C:\>tlist | find /i "lsass"

244 LSASS.EXE

C:\>pulist | find /i "lsass"

LSASS.EXE 244 NT AUTHORITY\SYSTEM

C:\>pwdump2.exe 244

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:20 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 221

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

Administrator:500:f1e5c5efbc8cfb7f18136fb05f77a0bf:55c77b761ffa46...

Orc:501:cbc501a4d2227783cbc501a4d2227783:f523558e22c95c62a6d6d00c...

skycladgirl:1013:aa5536a42ebe131baad3b235b51404ee:db31a1ee00bfbee...

The only drawback with the output from pwdump2 is that L0phtCrack cannot read it.
The sole reason for this is that the alphabet characters in the hashes are lowercase;
L0phtCrack expects them to be uppercase. John the Ripper has no issue detecting case
sensitivities, but we must massage the data into an acceptable format.

Fortunately, the tr utility (translate characters) will set this right for those of you who
wish to use the GUI cracker. Tr is common on Unix systems and Cygwin, and it has been
ported for Windows as part of the Resource Kit.

[user@hediwg]$ cat pwdump.out | tr a-z A-Z

ADMINISTRATOR:500:F1E5C5EFBC8CFB7F18136FB05F77A0BF:55C77B761FFA46...

ORC:501:CBC501A4D2227783CBC501A4D2227783:F523558E22C95C62A6D6D00C...

SKYCLADGIRL:1013:AA5536A42EBE131BAAD3B235B51404EE:DB31A1EE00BFBEE...

Pwdump3
Pwdump3, http://www.openwall.com/passwords/nt.shtml, by Phil Staubs, expanded the
pwdump tool once more by adding remote access to a victim machine. There is even a
version, pwdump3e, that encrypts remote connections to prevent malicious users from
sniffing sensitive passwords. The usage for pwdump3e differs slightly:

Usage: PWDUMP3 machineName [outputFile] [userName]

C:\>PwDump3.exe victim pwdump.out root

C:\>type pwdump.out

guest:1001:NO PASSWORD*********************:2DEAC3223C70B24E90F02...

wwwadmin:500:NO PASSWORD*********************:9CBD10B05F8E69B62F2...

IUSR_WWW01:1003:6E72211CDC51C9F8EB9293C3135F3985:0E2A2DCE3B6ABFBA...

For pwdump3 to work correctly, you need to be able to establish a session to the
ADMIN$ share. Pwdump3 will do this for you and prompt you for the administrator
password. Otherwise, you could set up a manual session to the ADMIN$ share with the
net command:

C:\>net use \\victim\admin$ * /u:Administrator

Type the password for \\localhost\admin$:

The command completed successfully.

Pwdump4
Pwdump4 was written to address some shortcomings of pwdump3. You can grab a bi-
nary and source version from the OpenWall (John the Ripper) web site, http://
www.openwall.com/passwords/nt.shtml. It uses the same technique as its nominal predeces-
sor, pwdump3, but improves the usability when dealing with other character sets and
when the ADMIN$ share is not available.

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:21 PM

Color profile: Disabled
Composite Default screen

222 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

Implementation
The pwdump4 command line closely resembles its peers.

C:\tools>PWDump4.exe

PWDUMP4.02 dump winnt/2000 user/password hash remote or local for crack.

by bingle@email.com.cn

This program is free software based on pwpump3 by Phil Staubs

under the GNU General Public License Version 2.

Usage: PWDUMP4 [Target | /l] [/s:share] [/o:outputFile] [/u:userName]

Each option is described in Table 8-1.
Probably the most useful feature is the /s option. This enables you to target remote

systems for which ADMIN$ is inaccessible, but some other share is accessible. Another
by-product of this additional feature is that remote registry access is no longer a require-
ment. pwdump4 will try to communicate over named pipes (such as via the IPC$ share).

Here is a final tip for users trying to run pwdump4 inside a remote desktop connec-
tion. If you execute the command against localhost with the /l option, then you’ll likely
receive an error along the lines of SRV>Status: CreateRemoteThread failed: 8. In this case,
simply try specifying localhost as the target and have pwdump4 access the ADMIN$ share
(or whichever share you find available).

C:\tools>PWDump4.exe localhost /o:err.txt

PWDUMP4.02 dump winnt/2000 user/password hash remote or local for crack.

by bingle@email.com.cn

This program is free software based on pwpump3 by Phil Staubs

under the GNU General Public License Version 2.

local path of \\localhost\ADMIN$ is: C:\WINDOWS

connect to localhost for result, plz wait...

SRV>Version: OS Ver 5.2, Service Pack 1, ServerTerminal

LSA>Samr Enumerate 6 Users In Domain WIN2K3-WEB.

All Completed.

Lsadump2
Lsadump2, http://www.bindview.com/Services/RAZOR/Utilities/Windows/lsadump2_readme.cfm,
makes the password-harvesting process trivial. Another useful tool by Todd Sabin, it’s an
update to an original tool created by Paul Ashton. The difference between lsadump2 and
the pwdump tool suite is that lsadump2 actually dumps the plaintext password instead
of the encrypted hash. Obviously, this is preferable since you won’t have to run any pass-
word-cracking utilities. Unfortunately, lsadump2 only retrieves a password if it is cur-
rently being stored in memory by the Local Security Authority (LSA). This could happen

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:21 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 223

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

when web applications connect to SQL databases or when a backup utility connects to the
system remotely in order to archive files.

Implementation
Lsadump2 requires Administrator access to run. The usage for lsadump2 is shown here:

C:\>lsadump2.exe

Lsadump2 - dump an LSA secret.

Usage: lsadump2.exe <pid of lsass.exe> <secret>

You will have to determine the PID of the lsass (just as with pwdump2):

C:\>tlist | find /i "lsass"

244 LSASS.EXE

The PID for the LSA process is also stored in the registry under this key: HKLM\SYSTEM\
CurrentControlSet\Control\Lsa\LsaPid.

Option Description

Target Targets computer’s IP address or hostname.
For localhost use /l.

/l Targets the local computer. This uses the
pwdump2 method of dumping hashes, rather
than pwdump3.

/s:share By default pwdump4 will attempt to access the
ADMIN$ (as does pwdump3). Specify an alternate
share over which to attempt remote access.

/o:outputFile Saves results to outputFile.

/u:userName Connects to share as userName. You will be
prompted for the password.

/r:newname Rename the pwdump service and files copied to
the remote computer to newname. This provides
very basic stealth.

Table 8-1. Pwdump4 Command-line Options

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:21 PM

Color profile: Disabled
Composite Default screen

This tool actually outputs the plaintext “secret” for security-related processes cur-
rently in memory. This secret might be the password used by a service account, phone
number information for RAS services, or remote backup utility passwords. The output is
formatted in two columns:

aspnet_WP_PASSWORD

61 00 77 00 41 00 39 00 65 00 68 00 68 00 61 00 a.w.A.9.e.h.h.a.

4B 00 38 00 K.8.

The left column represents the raw hexadecimal values related to the service. The
right column contains the printable ASCII representation of the data. If you have recently
installed the .NET services on your Windows 2000 system, then you most likely have an
ASPNET user. Lsadump2 has kindly revealed the password for that user, shown in bold.
Note that Windows stores passwords in Unicode format, which is why there is a null
character (00) after each letter. Luckily, the default settings for this user do not permit it to
log in remotely or execute commands.

ACTIVE BRUTE-FORCE TOOLS
Active tools tend to be the last resort for password guessing. They generate a lot of noise
on the network and against the victim (although they can go unnoticed for long periods
of time). The toughest part of starting an active attack is obtaining a valid username on
the victim system. Chapter 6 provides more information for techniques to gather
usernames.

Another useful step is to try to discover the lockout threshold before launching an at-
tack. If the lockout period on an account lasts for 30 minutes after it receives five invalid
passwords, you don’t want to waste 29 minutes and 30 seconds of guesses that can never
succeed.

THC-Hydra
Hydra easily surpasses the majority of brute-force tools available on the Internet for two
reasons: It is fast and it can target authentication mechanisms for over a dozen protocols.
The fact that it is open source (under the GPL) and part of the Nessus assessment tool also
adds to Hydra’s merits.

Implementation
Hydra compiles on BSD and Linux systems without problem; the Cygwin and Mac OSX
environments have been brought to equal par in the most current version. Follow the
usual ./configure; make; make install method for compiling source code. Once you have
successfully compiled it, check out the command-line arguments detailed in Table 8-2.

The target is defined by the server and service arguments. The type of service can be
any one of the following applications. Note that for several of the services, a port for SSL

224 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

P:\010Comp\Hacking\286-9\ch08.vp
Tuesday, January 24, 2006 1:08:30 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 225

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

Option Description

-R Restores a previous aborted/crashed session from the
hydra.restore file (by default this file is created in the
directory from which hydra was executed).

-S Connects via SSL.

-s n Connects to port n instead of the service’s default port.

-l name
-L file

Uses name from the command line or from each line of file
as the username portion of the credential.

-p password
-P file

Uses password from the command line or from each line of
file as the password portion of the credential.

-C file Loads user:password combinations from file. Each line
contains one combination separated by a colon.

-e [ns] Also tests the login prompt for null passwords (n) or
passwords equal to the username (s).

-M file Targets the hosts listed in each line of file instead of a
single host.

-o file Writes a successful username and password combination
to file instead of stdout.

-f Exits after the first successful username and password
combination is discovered for the host. If multiple hosts
are targeted (-M), then Hydra will continue to run against
other hosts until the first successful credentials are found.

-t n Executes n parallel connects to the target service. The
default is 16.

-w n Waits no more than n seconds for a response from the
service before assuming no response will come.

-v
-V

Reports verbose status information.

server The target’s IP address or hostname. For multiple targets
use the –M option.

service The target’s service to brute force.

Table 8-2. Hydra Command-line Options

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:22 PM

Color profile: Disabled
Composite Default screen

access has already been defined. The first number in the parentheses is the service’s de-
fault port; the second number is the service’s port over SSL. Make sure to use the –s op-
tion if the target service is listening on a different port. These are the current services that
Hydra recognizes:

■ cisco (23) Telnet prompt specific to Cisco devices when only a password is
requested.

■ cisco-enable (23) Entering the enable, or super-user, mode on a Cisco device.
You must already know the initial login password and supply it with the –m
option and without the –l or –L options (there is no prompt for the username).
hydra –m letmein –P password.lst 10.0.10.254 cisco-enable

■ cvs (2401) Source code versioning system.

■ ftp (21, 990) File transfer.

■ http, http-head, http-get (80) Brute-force HTTP Basic Authentication schemes
on the web service. Note that this technique expects the server to send particular
HTTP response codes; otherwise, the accuracy of this module may suffer.

■ https, https-head, https-get (n/a, 443) Web services over SSL (see previous
bullet).

■ http-proxy (3128) Web proxies such as Squid.

■ icq (4000, n/a) Chat software. ICQ is carried over UDP, which means it cannot
be used over SSL.

■ imap (143, 993) E-mail access.

■ ldap2, ldap3 (389, 636) Lightweight Directory Access Protocol, often used for
single-sign-on.

■ mssql (1433) Microsoft SQL Server—remember that more recent installs of
SQL Server may use integrated authentication. Try the default SQL accounts,
such as ‘sa’, and Windows accounts.

■ mysql (3306, 3306) MySQL database server.

■ nntp (119, 563) USENET news access.

■ oracle-listener (1521) Oracle database server.

■ pcnfs (0, n/a) Used for printing files across a network. The default port varies
among distributions and individual servers, so it must always be explicitly set
with the –s option. This service also uses UDP, which means that SSL cannot
be applied.

■ pop3 (110, 995) E-mail access.

■ postgres (5432) PostgreSQL database server.

■ rexec, rlogin, rsh (512) Generic Unix service for remote execution; access to
this service is not logged by default on some systems.

226 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:23 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 227

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

■ sapr3 (n/a) SAP database.

■ sip (5060) Voice-over IP protocol.

■ smb (139) Windows SMB services such as file shares and IPC$ access.

■ smbnt (445) As smb, but is also able to test LanMan hashes (such as those
gathered by PwDump tools) for validity. This enables credential replay rather
than actually brute forcing the content of the hash. Note that you must define
a method (-m) when using this option. Valid methods are well-documented
in the hydra-smbnt.c file. You’ll most likely try ‘LH’ or ‘DH’ methods, which
test LanMan password hashes against local or domain accounts. Use this for
Windows XP and Windows 2003 servers.

■ smtp-auth (25, 465) Login for mail servers.

■ snmp (161, 1993) UDP-based network management protocol.

■ socks5 (1080) Proxy.

■ svn (3690) Source code versioning system.

■ teamspeak (8767) Distributed voice chat system, often used by gamers.

■ telnet (23, 992) Remote command shell.

■ vnc (5900, 5901) Remote administration for GUI environments.

Running Hydra is simple. The biggest problem you may encounter is the choice of
username/password combinations. Here is one example of targeting a Windows SMB
service. If port 139 or 445 is open on the target server and an error occurs, then the Win-
dows Server service might not be started—the brute-force attack will not work.

[Paris:~] mike% ./hydra -L user.lst -P password.lst 10.0.1.11 smbnt

[INFO] Reduced number of tasks to 1 (smb does not like parallel

connections)

Hydra v5.0 [http://www.thc.org] (c) 2005 by van Hauser / THC <vh@thc.org>

[INFO] Reduced number of tasks to 1 (smb does not like parallel connections)

[DATA] 1 tasks, 1 servers, 4 login tries (l:2/p:2), ~4 tries per

task

[DATA] attacking service smbnt on port 445

[STATUS] 1.00 tries/min, 1 tries in 00:01h, 3 todo in 00:04h

Hydra reports the total number of combinations that it will try (usually the number of
unique usernames multiplied by the number of unique passwords) and how many paral-
lel tasks are running.

You will never be able to try more than one parallel task against an SMB service, even if you use the –t
option to increase the number. For whatever reason, parallel logins against SMB produce too many false
negatives. The default value for–t is 4, which is also recommended for Cisco devices and VNC servers.
The maximum is 255, but that is not necessarily the optimum or most accurate setting to use.

If you really do wish to have an optimum test, as opposed to an exhaustive test, then
you may wish to consider the –C option instead of supplying a file each for –L (users) and

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:23 PM

Color profile: Disabled
Composite Default screen

–P (passwords). The –C option takes a single file as its argument. This file contains
username and password combinations separated by a colon (:). This is often a more effi-
cient method for testing accounts because you can populate the file with known
username/password combinations, which reduces the number of unnecessary attempts
when a username does not exist. This is more useful for situations where you only wish to
test for default and the most common passwords.

Do not forget to use the –e option when auditing your network’s services. The –e op-
tion turns on testing for the special case of no password (-e n) or a password equal to the
username (-e s). Note that Hydra writes a state file (hydra.restore) to the current direc-
tory from which it is executed. You can use the –R option to restart an interrupted scan.
This also means that if you wish to run concurrent scans against different servers or dif-
ferent services, then you should do so in different directories. From a forensic perspec-
tive, the hydra.restore file might be a good addition to the list of common “hacker” files to
search for on suspect systems—just remember that a one-line change to the source code
can change this filename.

Hydra now also includes a GUI based on the open-source GTK library. This version,
called xhydra, provides all of the functionality of the command line. The following illus-
tration shows the basic interface.

228 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:24 PM

Color profile: Disabled
Composite Default screen

Chapter 8: Password Cracking / Brute-Force Tools 229

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

There are two major reasons for using a tool like Hydra, either during a network
penetration test or during a system audit. The two activities sound similar in execu-
tion but differ in their goals. Consider Iain, a system administrator in the Internal
Audit department. The IA folks do not administer systems; they verify that systems
have been built to corporate security policy. In other words, Iain’s responsibilities
include testing network accounts for passwords that do not meet the company’s es-
tablished policy.

The policy requires that all accounts be password protected (no NULL passwords
allowed) and that the password must be nontrivial (open to interpretation, but at the
very least that means the password should not equal the username), must contain at
least one digit and one punctuation character (letters only are not permitted), and
must be at least eight characters long. For some Windows and Unix systems, it is pos-
sible to enforce these rules when users go through the password-change process. On
other systems, such as Cisco devices, it is not possible.

Iain faces the challenge of finding weak passwords in one of the following sce-
narios:

■ A system does not have a method for enforcing good password choices.
Users must be trusted to choose a strong password.

■ A system has a method for enforcing good password choices but has been
misconfigured. Users are still required by policy to choose a strong
password, but it is not enforced.

■ A system has a method for enforcing good password choices, but users
can easily satisfy the requirements with a trivial password (password99!,
pa$$w0rd, or adm1n1str@t0r).

Now, Iain has already identified some network services that could prove to be
fruitful targets. However, it would not be a good idea to just obtain the list of users,
grab a 200,000-word dictionary, and start Hydra (or several Hydras since there’s a
lot of work to do!). Instead, he crafts a dictionary with words that do not meet pol-
icy, plus some words that do meet policy but are passwords on number/vowel sub-
stitution or similar tricks. In fact, John the Ripper (mentioned previously in this
chapter) provides the perfect method for creating password lists based on length
and content. Then, just as a test, he creates an oldwords.txt file that contains the root
and administrator passwords used before the last required password change. The
oldwords.txt file follows the username:password syntax. For example,

root:web34addmin!

Administrator:thiS1&thaT1

oracle:2bdb|!2bdb

Case Study: Checking Password Policy

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:26 PM

Color profile: Disabled
Composite Default screen

230 Anti-Hacker Tool Kit

Hacking / Anti-Hacker Tool Kit, 3rd Ed / Shema, Davis, Cowen & Philipp / 226286-9 / Chapter 8

Let’s recap for a moment. Iain has created three files (and will have a fourth and
fifth option):

■ Users.txt A list of every (known) username across systems.

■ Passwords.txt A list of common 1–7 letter combinations, plus some
selected 8+ combinations with number/vowel substitution. The majority of
this file can be pulled from dictionaries available on the Internet, derived
from the default password.lst that comes with John the Ripper, or created
by John the Ripper. The list contains no more than 1000 combinations in
order to limit the number of failed logins that will be logged by the servers.

■ Oldwords.txt A list of account and password combinations that should
have been changed in the last 90 days. Of course, this file must be kept
secure.

■ NULL passwords Use the -e n option for Hydra to check all accounts
for a blank password.

■ “Same” passwords Use the -e s option for Hydra to check all accounts
for passwords that equal the username.

So far it sounds like quite a bit of work has been done without even worrying
about whether or not Hydra will compile. Well, there’s a good reason for this. Iain
has set up a method for testing his company’s password policy. At this point he is
ready to launch Hydra against the selected services. (After he has once again veri-
fied that accounts will not be locked by failed login attempts.) Then, any positive
matches can be brought to the attention of network and system administrators be-
cause the account has failed to meet policy requirements.

Just for a second, imagine that Iain had driven into the password audit without
forethought; he grabs a random 10,000-word dictionary and launches Hydra over a
three-day weekend against 200 accounts. If he’s lucky it might even finish. If he’s re-
ally lucky, no servers will have crashed because they ran out of disk space logging
all of the failed attempts. Finally, what if a relatively strong password like
“ou@te1tw2” or “-#*crAft0” shows up in the results simply because it was present
in the dictionary? He would have a hard time convincing the user that they failed an
audit when in reality they had chosen a strong password.

On the other hand, blind luck and a big dictionary are just the right ingredients
for a successful penetration test. Thus, we come to the point where password audit-
ing with Hydra ends and its use as a penetration-testing tool begins. In all cases, re-
member that locking accounts due to bad passwords is always a possible
by-product of this type of testing.

Checking Password Policy (continued)

P:\010Comp\Hacking\286-9\ch08.vp
Monday, January 23, 2006 12:28:26 PM

Color profile: Disabled
Composite Default screen

