

Research Report

Password cracking in the field

operating systems and
database management systems

Research project 1, 2006
System and Network Engineering
University of Amsterdam
Weesperzijde 190
Amsterdam

Authors

Gert Bon
Steffen van Loon

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 2 of 55

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 3 of 55

Table of contents

Table of contents___ 3
Preface___ 5

Introduction __ 6
Project goals __ 7

Gaining access to systems__ 8
Wire sniffing__ 8
Man-in-the-middle and replay attacks___ 8
Password guessing ___ 8
Unsecured access to systems ___ 9

Cracking methods ___ 10
Brute force attacks__ 10
Dictionary attacks __ 11
Hybrid attack __ 11
Pre-computation attacks ___ 12
Rainbow tables ___ 12
Other attacks __ 12

Implementation in operating systems______________________________________ 13
Windows Networking ___ 13
AIX __ 22
Solaris 10__ 25
Cisco Internetworking Operating System _____________________________________ 28

Implementation in database systems ______________________________________ 32
Oracle __ 32
Microsoft SQL Server 2000___ 37
Microsoft SQL Server 2005___ 40

Conclusion __ 42
Real life ___ 42
Combination of policy and technology__ 42
Pass Phrases vs. passwords ___ 43

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 4 of 55

The final conclusion ___ 43
Future research___ 44

Appendix A: General information __ 45
Widely used terms in cryptography __ 45
Ciphers in cryptography ___ 49

References ___ 55

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 5 of 55

Preface
Password cracking in the field is about the implementations of encryption
algorithms. The information on these implementations on several platforms is
fragmented. This document tries to provide some grip on the implementation and
weaknesses in widely used software like operating systems and database
management systems.

Password cracking in the field is written for the Master of Science course System
and Network Engineering in co-operation with Jeroen van Beek and Eric Nieuwland
from KPMG.

The authors want to thank Jeroen van Beek and Eric Nieuwland for their
contribution, support and feedback during this research project.

Gert Bon
Steffen van Loon

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 6 of 55

Introduction

This document is written for Research Project 1 for the course System and Network
Engineering at the University of Amsterdam.

In this document the project goals for this project are described in “Project goals”.

In “Gaining access to systems” a few methods are briefly described to gain access
to systems. Close to gaining access, methods for cracking passwords are discussed
in “Cracking methods”.

Strengths and weaknesses of implementations of encryption algorithms in
operating systems and database management systems are described. These are
found the chapters “Implementation in operating systems” and “Implementation in
database systems”.

After discussing the implementations of password security in operating systems and
database management systems conclusions are drawn in chapter Conclusion.

Some elements of our research remained unsolved which remain a matter of future
research. These elements can be found in chapter “Future research”.

For those who are not common in the world of cryptography, there is an “Appendix
A: General information” which explains most common terms used in cryptography.

The legal notes are attached in Appendix B - Creative Commons Licence.

The original research report Password cracking in the field can be downloaded from
http://www.os3.nl/~steffen/rp1/report.pdf. The original project initiation document for this
research project can be downloaded from http://www.os3.nl/~steffen/rp1/pid.pdf.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 7 of 55

Project goals
This document is written to describe the basic information of algorithms and the
implementations of these algorithms in widely used software solutions like
operating systems and database management systems.

The primary goal is to provide information about strength and weaknesses of
different implementations of encryption algorithms in popular software. We will
describe implicit weaknesses of some of these implementations, including the
impact and risk of brute force and dictionary attacks and the possible use of
rainbow tables.

The secondary goal is to provide a source of information containing advice and
references for securing systems and networking containing the implementations as
covered in this report. We think this document will give some grip in acquiring more
information about particular in-depth information.

This document does not describe the possibilities of cracking different software
implementations. This document will also not describe ways of penetrating system
and network security, although we will give some references and links concerning
this information if appropriate.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 8 of 55

Gaining access to systems
To gain access to systems that require authentication, the first thing to do is search
for a method to get in. The easiest way is acquiring user credentials that can be
found in authentication information. This information could contain user credentials,
in a plaintext value or hash value, depending on the used protocol.
The methods of obtaining user credentials or passwords are not relevant for this
document. We will focus on cracking earlier acquired hash values, and are at this
point not interested in how we acquired them. However, we will name a few
methods in the following sections.

Wire sniffing
A passive attack method of gathering authentication information is wire sniffing.
Attacks performed using wire sniffing requires physical access to the network. This
is needed to sniff the cable and record raw network traffic.
The attacker has to wait until there are some authentication frames passing by,
encrypted or not, before he can attack these credentials. Depending on how these
credentials are encrypted it is possible to attack these credentials. Some protocols,
like FTP and POP, even sends the user credentials unencrypted. In this case, when
someone is wire sniffing, the credentials are given away in plaintext. Even if this
method is considered, it’s relatively hard to perpetrate and usually computationally
complex. Tools are widely available, a good example is Ethereal.

Man-in-the-middle and replay attacks
Using online attacks with a man in the middle or replay attack require access to the
network. This is needed to sniff the cable and record raw network traffic, from
which authentication frames can be obtained.
With a MiM-attack the attacker has to wait for an authentication sequence so the
attacker can imitate a proxy. With the acquired information, the proxy can make
the connection to the other involving party. This way, the proxy can record all
information that’s passes him. With a replay attack, an attacker can repeat the
captured frames to gain access.

Password guessing
This method is password guessing until one password works. This is made easier
by:
Weak passwords (which is the core cause)
Open authentication points
Excessive information from server
Lack of password guessing controls
Consider this will take a long time and requires huge amounts of network
bandwidth. It’s also easily detected and stopped. Presume using a dictionary would
save time.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 9 of 55

Unsecured access to systems
One of the most interesting ways to acquire user credentials are systems that are
not properly secured. This can be for example an operating system or web server
where password files are world-readable or a database server where you can query
interesting tables. This also includes exploiting implementation specific flaws, like a
DLL-injection to gain access to a system process, or SQL-injection on a database
server.

User credentials acquired via this way are generally encrypted somehow, mostly by
applying a one-way hash-function. Our main purpose of this document is the
decryption of this information.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 10 of 55

Cracking methods
The purpose of this document is to describe what the possibilities are when
encrypted passwords are found via methods such as those mentioned in the
previous sections. There are different attacks possible to obtain unencrypted
passwords from these encrypted passwords. These attacks can be performed offline
at leisure.

When performing these attacks, there are some prerequisites to obtain the
passwords. One has to know how the passwords were encrypted, which encryption
method is used, and what the implementation-specific properties are. The structure
of a hash has to be clear.

This information can be found in documentation on the used software package or
the use of reverse engineering. Most documentation on used encryption algorithms
in software packages can be found in books or the Internet. For some software
implementations there are weaknesses known and in that case, there are already
tools available to crack the passwords.

In the following sections the attack methods to retrieve the original password from
the encrypted version are described.

Brute force attacks
A brute force attack is an attack on a password, where all possible character
combinations are tried. A major advantage of this method is, that all passwords will
be found. However, this way of attacking a password is very inefficient. It is a good
and fast method for cracking short passwords, but when password lengths are
longer, this method will get very slow.

Due to this characteristic, this attack is most of the time performed with
progressive complexity. For example, first thing to do is trying alphanumeric key
space, then alphanumeric with upper case, and then expanded with other symbols.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 11 of 55

Figure 1 - Brute forcing a hash

Dictionary attacks
When using a dictionary attack all passwords from a specific list are tried. This
attack utilizes the characteristic that many people use a word or a word
combination as a password. Trying a large number of words can be significantly
faster then a brute force attack.
The success factor of dictionary attacks depends on a big list of the chosen words.
This list is mostly language-dependent also. The success rate of this method also
highly depends on the type of passwords trying to crack.
For example passwords like “B_)r8wy#@3.!2” will not be found, because this
password is not based on an existing word and therefore is not found in the
wordlist.

Hybrid attack
A hybrid attack is a combination of the dictionary attack and the brute force attack.
It combines a wordlist with some mutations on the entropy. This means that this
method will generate new passwords based on the used wordlist, by using different
techniques. The entropy can be altered by appending a symbol or number at the
end of a word, or replacing letters with numbers. For example the dictionary word
“password" generates “password31” or “p4$Sw0rd”.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 12 of 55

The speed of this method is highly dependable on the alterations made on the
wordlist. When expanding the word “password” to “password<XX>” with XX in
character set [a-z,0-9], the complexity increases almost 1300 times. With more
advanced alterations, this number will be even higher. This method is more efficient
than a brute force attack. However, in comparison with a dictionary attack this
method is more time-consuming.

Both hybrid and dictionary methods attack the main problem with security; weak
passwords. Both methods are ineffective against well-chosen long passwords, which
are not based on exiting words using a combination of letters, numbers and special
characters.

Pre-computation attacks
The first concept of pre-computating passwords using a fast memory trade-off
theory was already proposed in 1980 by Martin Hellman1 and was refined by
Ronald Rivest in 19822. Recently there was some new development on this
technique. This attack method is further described in the section rainbow tables.

Rainbow tables
This method is based on generating all possible hash-values and stores them
together with the password in a table. When attacking, only the corresponding
hash-value has to be looked up in the database. This technique makes it
dramatically faster, up to a factor of over 12 times faster than traditional methods.
Storing all hashes requires huge amounts of storage space (example: all LM-hashes
take 166 Terabytes, all NT-hashes less than 15 characters takes 140,959,235,198
exabytes). The solution here is to use a time-space tradeoff, like the one developed
by Philippe Oechslin known as rainbow tables. This method generates most hashes
and store the commonality, and then brute force within the corresponding set. This
attack only works on algorithms that do not use salting.

Other attacks
One of the most common and successful examples of a non-technical attack is
“shoulder surfing”; this is when someone is watching while typing a password.
The most common known is “social engineering”. This requires some good socials
skills and preparation. A good example about social engineering is the chocolate bar
example, which can be found at http://zdnet.com.com/2100-1105_2-
5195282.html.
Another technical method is “keyboard sniffing”. This can be done with hardware
and software, which is cheap and hard to detect. These attacks are however out of
scope for this document.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 13 of 55

Implementation in operating systems
This section describes the implementation of encryption algorithms in widely used
operating systems in this section. Links are provided as reference for more in-depth
information.

Windows Networking

Microsoft LAN Manager (LM)
For Windows networking (including Active Directory domains) the password is
stored in two different ways by default, namely as an LM-hash and an NT-hash. The
biggest weakness of these methods is that in neither case a salt is used by
calculating the hash-value.

LAN Manager Hash (LM hash) is one of the formats that Microsoft LAN Manager and
Microsoft Windows uses to store user passwords. LM hash was developed in the
seventies by IBM for use with IBM 360/370 series. The technology was adopted by
LAN Manager, which was a joint venture of Microsoft and IBM, in the eighties. The
algorithm is still included in recent versions of Windows for backward compatibility
and activated by default.

The LM-hash is based on DES, and can be is easily subverted. In LM authentication
the password is case-insensitive, restricting each character to either one of the 26
letters or a special character. Long passwords, up to 14 characters, are divided into
7-character chunks. The combination of a small character set and the password
division results in a relatively small key space.

Due to the small key space successful brute force attacks are possible on LM
hashes. For example a character set [A-Z] + [0-9] and a password length of 5
characters will result in a key space of only 365 = 60,466,176. If the character set
was chosen out of [a-z] + [A-Z] + [0-9] it would result in a key space of 625 =
916,132,832. Notice that by increasing the length of the character set the key
space grows exponentially. Because dividing the passwords into 7 character
chunks, the total key space for LM Hash is 697 ≈ 7.4 trillion. This is not
consequently for all passwords with a length up to 14 characters. More detailed
information can be found in Peter Mudge’s rant3.

An example
Let’s calculate the time it takes to brute force 1 password with a maximum length
of 7 characters. The second part of the hash in this case is always the same
because this part is padded with NULL. Assume we can crack 3,000,000 crypts per
second on a 1.4 GHz machine with 1024 MB RAM running John. As we have
calculated before; the total key space 7,446,353,252,589, and use 0.5 as success

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 14 of 55

factor indicating a random password. On average the password will be found when
we are halfway through all possibilities.

Character set (C) 69 characters

Crypts per second (A) 3,000,000

Key space (K) 7,446,353,252,589

Success factor (S) 0.5

T = time in seconds
(K / A) · S = T
(7,446,353,252,589 / 3,000,000) · 0.5 = 1,241,058.88 seconds.

This is only 14,36 days which is far less than most passwords expiration times. In
the worst case it takes 28.72 days which is still less than most passwords
expiration times.

In many cases only an alphanumeric character set is used to compose passwords.
This will reduce the attack time significantly. The following calculation has a smaller
character set and shows how much time it saves.

K = key space
C = character set
N = password length
K = CN

367 = 78,364,164,096

(78,364,164,096 / 3,000,000) · 0.5 = 13,060.69 seconds.

This is only 3.6 hours and in the worst case 7.2 hours.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 15 of 55

Summary

Design
Name: LAN Manager hashing.

Applications: Microsoft Windows 95 series, 98 series, ME, NT series, 2000 series, XP
series, Server 2003 series.

Platforms: See applications.

Used for: Hashing Windows user passwords.

Algorithms
used:

DES.

Algorithm
input:

Password; in uppercase and when less then 14 characters the password is
padded with NULL to 14 characters.

Salting: No.

Implementation
Character set: 69 characters: [A-Z][0-9] and 33 special ALT characters: [!@#$%^&*()-

_+=~`[]{}|\:;"'<>,.?/space].

Limitations for
character set:

Standard character set:
Length of password is >= 0 and <= 14

Hash storage Location: “%WINDIR%\system32\config\sam“ (SAM database).
Size: 16 bytes: 8 bytes for first 7 characters and 8 bytes for characters 8 to
14.
Format:
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c
59d7e0c089c0:::
<username><rid><uppercase hash><hash>

Theoretical
key space:

K = CN

7,446,353,252,589 = 697

Key space
limitations:

A hash collision will occur after 2 ^ (storage bits) passwords as documented
in “Hash storage”.
= 2128 = 3.40 · 1038

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 16 of 55

1,0 E+00

1,0 E+03

1,0 E+06

1,0 E+09

1,0 E+12

1,0 E+15

1,0 E+18

1,0 E+21

1,0 E+24

1,0 E+27

1,0 E+30

1,0 E+33

1,0 E+36

1,0 E+39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

passw ord length N (characters)

ke
ys

p
ac

e
(p

o
ss

ib
il

it
ie

s)

theory absolute upper limit

Key space for LM

The graph above shows the key space based on a 69-long character set.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14

password length

d
ay

s

crack time

Attack time for LM

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 17 of 55

The graph above shows the attack time based on a 69-long character set.

raw storage

0

100000

200000

300000

400000

500000

600000

700000

0 5 10 15

password length (positions)

st
o

ra
g

e
(G

B
)

required

2006

2008 expect.

Storage for LM

The above graph is logarithmic and shows the raw disk storage for storing both
hashes and passwords based on a 69-long character set.

NTLMv1
Microsoft recognized the vulnerabilities in LM Hash, and introduced the significant
improved NTLM Hash. These vulnerabilities included the relative small character
set, which implicit a smaller key space, and the division of the password. The key
space grows exponentially because the effective password length was increased.
The NT-hash is used for authentication by domain members in for example
Windows NT 4, 2000, XP, 2003 and Active Directory Domains. The NT-hash is
generated from the password with the MD4 algorithm, which creates a 16-byte
one-way hash.

Dictionary attacks on NTLM are still a very good method to crack weak passwords,
but brute force attacks are a lot harder now in comparison with LM hash. The
weakness of this protocol is that it does not offer any signing or encryption of the
exchange of messages between clients and servers. The protocol is vulnerable for
“chosen plaintext” attacks, using message injection techniques by an attacker.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 18 of 55

Summary

Design
Name: NT LAN Manager hashing version 1

Applications: Microsoft Windows 95 series, 98 series, ME, NT series, 2000 series, XP
series, Server 2003 series.

Platforms: See application.

Used for: Hashing Windows user passwords

Algorithms
used:

MD4.

Algorithm
input:

Password.

Salting: No

Implementation
Character set: 65,536 characters.

Limitations for
character set:

Length of password is >= 0 and <= 128

Hash storage Location: “%WINDIR%\system32\config\sam“ (SAM database).
Size: 16 bytes
Format:
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c
59d7e0c089c0:::
<username><rid><uppercase hash><hash>

Theoretical
key space:

K = CN

3.232 · 10616 = 65,536128
Key space
limitations:

Theoretically, a hash collision will occur after 2 ^ (storage bits) passwords
as documented in “Hash storage”
= 2128 = 3.40 · 1038

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 19 of 55

1,0 E+00

1,0 E+03

1,0 E+06

1,0 E+09

1,0 E+12

1,0 E+15

1,0 E+18

1,0 E+21

1,0 E+24

1,0 E+27

1,0 E+30

1,0 E+33

1,0 E+36

1,0 E+39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

passw ord length N (characters)

ke
ys

p
ac

e
(p

o
ss

ib
il

it
ie

s)

theory absolute upper limit

Key space for NTLMv1 & NTLMv2

The graph above shows the key space based on a 95-long character set.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

password length N

d
ay

s

crack time

Attack time for NTLMv1 & NTLMv2

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 20 of 55

The graph above shows the attack time based on a 95-long character set.

raw storage

0

2500

5000

7500

10000

0 5 10 15

password length (positions)

st
o

ra
g

e
(G

B
)

required

2006

2008 expect.

Storage for NTLMv1 & NTLMv2

The graph above shows the raw disk storage for storing both hashes and passwords
based on a 95-long character set.

NTLMv2
After a weakness was identified in NTLMv1 Microsoft introduced NTLMv2. NTLMv2
added another enhancement to NTLMv1, which makes it more secure: the
challenge / response mechanism was improved. NTLMv2 provides enhanced session
security negotiation. It provides separate keys for message integrity and
confidentially. The client inputs the challenge to prevent chosen plaintext attacks
and makes use of the HMAC-MD5 algorithm (see RFC 2104) for message integrity
checking.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 21 of 55

Summary

Design
Name: NT LAN Manager hashing version 2

Applications: Microsoft Windows 95 series, 98 series, ME, NT series, 2000 series, XP
series, Server 2003 series.

Platforms: See application.

Used for: Hashing Windows user passwords

Algorithms
used:

MD4.

Algorithm
input:

Password.

Salting: No

Implementation
Character set: 65,536 characters.

Limitations for
character set:

Length of password is >= 0 and <= 128

Hash storage Location: “%WINDIR%\system32\config\sam“ (SAM database).
Size: 16 bytes
Format:
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c
59d7e0c089c0:::
<username><rid><uppercase hash><hash>

Theoretical
key space:

K = CN

3.232 · 10616 = 65,536128
Key space
limitations:

Theoretically, a hash collision will occur after 2 ^ (storage bits) passwords
as documented in “Hash storage”
= 2128 = 3.40 · 1038

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 22 of 55

Concluding on LM, NTLMv1 and NTLMv2 hashes
The weakness of Windows and most other software using the LM, NTLMv1 and
NTLMv2 protocols is that they are enabled by default. To secure the systems and
networks using these protocols, the recommendation is to use NTLMv2 only. This
will prevent attacks on LM or NTLMv1-hashes. This is however not always an
option, especially when backwards compatibility is required.

There are many references about this topic available; here are some we found
useful:
MIT – Authentication and Security
(http://web.mit.edu/ist/topics/windows/server/winmitedu/security.html)
Microsoft TechNet Security Management column – FAQ about passwords
(http://www.microsoft.com/technet/community/columns/secmgmt/sm1005.mspx)
Implementing CIFS (http://www.ubiqx.org/cifs/)

AIX
AIX 5L (abbreviation for Advanced Interactive eXecutive) is IBM’s4 latest operating
system based on UNIX System V. The AIX abbreviation was originally Advanced
IBM Unix.

AIX 5L uses the UNIX default user password encryption function crypt_unix. Crypt
uses the DES algorithm for generating passwords which are locally stored in
/etc/security/password. Username and password are stored in a format like:
sueuser:XgYgQDm8Itpe2. The standard character set for passwords has a total of
128 characters. In practice, this is only 95 characters because control characters
are not used.

Input for the algorithm is silently the passwords first 8 characters and a salt from
the function crypt(). Passwords longer then 8 characters are cut down to the first 8
characters. The 2 character salt is generated by crypt_gensalt() from the character
set [a-zA-Z0-9./]. When the non-default algorithm MD5 is used there is no salt
unless the rounds for the generation of the salt are specified.

Because salts are used it is currently impossible to use pre-generated rainbow
tables as an attack due to the huge amounts of storage it requires. Generating a
rainbow table costs a lot of disk space. When the non-standard MD5 algorithm is
used rainbow tables can’t be used either, unless it is known how many rounds are
used for the hash generation. A brute force attack seems most efficient. In 1998
EFF5 showed ‘Deep Crack’ known as EFF’s DES Cracker. The cracking machine
contained hundreds of custom chips and could brute force a DES key in 3 days.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 23 of 55

Summary

Design
Name: AIX Password hashing

Applications: AIX 5L

Platforms: AIX

Used for: User password encryption

Algorithms
used:

Default crypt_unix. (crypt = DES)
Optional MD5

Algorithm
input:

The first 8 characters of the password + salt from crypt().

Salting: The crypt() function calls crypt_gensalt(3c) to generate the 2 character salt
chosen from the set [a-zA-Z0-9./].
MD5; specify rounds used for generation of the salt.

Implementation
Character set: 95 characters.

Limitations for
character set:

Length of password is >= 0 and <= 8

Hash storage Location: /etc/security/passwd
Size: 13 bytes (default crypt() based)
Format: sueuser:XgYgQDm8Itpe2 (default crypt() based)

Theoretical
key space:

K = CN

958 = 6,634,204,312,900,000
Key space
limitations:

Theoretically, a hash collision will occur after 2 ^ (storage bits) passwords
as documented in “Hash storage”
= 2104 = 20,282,409,603,651,670,423,947,251,286,016

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 24 of 55

1,0 E+00

1,0 E+02

1,0 E+04

1,0 E+06

1,0 E+08

1,0 E+10

1,0 E+12

1,0 E+14

1,0 E+16

1,0 E+18

1,0 E+20

1,0 E+22

1,0 E+24

1,0 E+26

1,0 E+28

1,0 E+30

1,0 E+32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

passw ord length N (characters)

ke
ys

p
ac

e
(p

o
ss

ib
il

it
ie

s)

theory absolute upper limit

Key space for AIX

The graph above shows the key space based on a 95-long character set.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

password length N

d
ay

s

crack time

Attack time for AIX

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 25 of 55

The graph above shows the attack time based on a 95-long character set.

raw storage

0

2500

5000

7500

10000

0 5 10 15

password length (positions)

st
o

ra
g

e
(G

B
)

required

2006

2008 expect.

Storage for AIX

The graph above shows the raw disk storage for storing both hashes and passwords
based on a 95-long character set.

Solaris 10
Solaris is an operating system developed by Sun Microsystems and is a certified
version of UNIX. Solaris 10 is based on UNIX System V .
Solaris 10 uses, like AIX, the UNIX default user password encryption function
crypt_unix. The DES algorithm is used in the crypt() function for generating
encrypted passwords which are stored locally in /etc/security/passwd. An US ASCII
character set (128 characters) is used or eventually an international character set
(256 characters). In practice this is only 95 characters due to the fact that control
characters are not used.
The input for the crypt() function are the first 8 characters from the password and a
2 character salt which is generated by crypt_gensalt(). This salt is generated from
the character set [a-zA-Z0-9./]. Stronger password encryptions like MD5 and
blowfish are also supported. Besides it is possible for MD5 to specify the number of
rounds which are used to generate the salt it is also possible to use passwords with
a length up to 255 characters.
The salts make it currently impossible to use pre-generated rainbow tables as an
attack due to the huge amounts of storage it requires. When the non-standard MD5
algorithm is used rainbow tables can’t be used either, unless it is known how many
rounds are used for the hash generation. A brute force attack seems most efficient.
In 1998 EFF6 showed ‘Deep Crack’ known as EFF’s DES Cracker. The cracking
machine contained hundreds of custom chips and could brute force a DES key in 3
days.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 26 of 55

Summary

Design
Name: Solaris Password Hashing.

Applications: Solaris 10.

Platforms: Solaris 10.

Used for: User password encryption.

Algorithms
used:

Default crypt_unix. Also stronger password encryption options like MD5 &
blowfish. (crypt = DES)

Algorithm
input:

The first 8 characters of the password + salt from crypt().

Salting: The crypt() function calls crypt_gensalt(3c) to generate the 2 character salt
chosen from the set [a-zA-Z0-9./].
MD5; specify rounds used for generation of the salt.

Implementation
Character set: 128 characters for US ASCII

256 characters for the international set
95 characters in practice

Limitations for
character set:

Crypt has a maximum length of 8 characters
MD5 has a maximum length of 255 characters

Hash storage Location: /etc/security/passwd
Size: 13 bytes (default crypt() based)
Format: sueuser:XgYgQDm8Itpe2 (default crypt() based)

Theoretical
key space:

K = CN

In practice:
958 = 6,634,204,312,900,000
US ASCII with crypt():
1288 = 72,057,594,037,927,936
International with crypt():
2568 = 18,446,744,073,709,551,616
International with MD5:
256255 = 1.26 · 10614

Key space
limitations:

Theoretically, a hash collision will occur after 2 ^ (storage bits) passwords
as documented in “Hash storage”
= 2104 = 20,282,409,603,651,670,423,947,251,286,016
Limitation for MD5: 3.40 · 1038 = 1632 (32 long and hexadecimal)

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 27 of 55

1,0 E+00

1,0 E+02

1,0 E+04

1,0 E+06

1,0 E+08

1,0 E+10

1,0 E+12

1,0 E+14

1,0 E+16

1,0 E+18

1,0 E+20

1,0 E+22

1,0 E+24

1,0 E+26

1,0 E+28

1,0 E+30

1,0 E+32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

passw ord length N (characters)

ke
ys

p
ac

e
(p

o
ss

ib
il

it
ie

s)

theory absolute upper limit

Key space for Solaris

The graph above shows the key space based on a 95-long character set.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

password length N

d
ay

s

crack time

Attack time for Solaris

The graph above shows the attack time based on a 95-long character set.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 28 of 55

raw storage

0

2500

5000

7500

10000

0 5 10 15

password length (positions)

st
o

ra
g

e
(G

B
)

required

2006

2008 expect.

Storage for Solaris

The graph above shows the raw disk storage for storing both hashes and passwords
based on a 95-long character set.

Cisco Internetworking Operating System
Cisco password hashing is used in common Cisco hardware i.e. routers and
switches. The algorithms used to encrypt user passwords is Base64 encoded MD5
hashes (type 5) or a weak Cisco two-way algorithm (type 7). Passwords are based
upon a default 7 bit US ASCII character set and hashes of these passwords are
stored in the configuration file. Optionally it is possible to select an 8 bit
international character set. This means 128 (7 bit: 27) or 256 (8 bit: 28) different
characters can be used. These passwords are compatible with hashes used by
OpenBSD or FreeBSD.

The input for the encryption algorithm of type 5 is a password and optionally a
secret (set with enable secret). For example we have the Base64 formatted MD5
hash $1$6Je2$MurE4FTzoZjQShRW4Ui9H0. The $ in the MD5 hash separates the
fields into three parts. $1 is the version, $6Je2 is the salt and the final part
$MurE4FTzoZjQShRW4Ui9H0 is the Base64 encoded password hash. We assume a
maximum password length of 100 characters. This maximum was advised by Cisco
regarding a password buffer overflow attack.

Type 7 passwords look like 075F314940470E171E060E.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 29 of 55

Brute force, eventually with a dictionary, attack would be the best option to crack
passwords when enable secret is set and password is type 5. Otherwise it would be
possible to use a rainbow table attack for type 5 with pre-computated MD5 hashes
which are Base64 encoded.

Type 7 hashes can be decoded easily since they are not encrypted but encoded. A
number of tools is available to perform decoding: for example a Perl
implementation can be downloaded from
http://www.insecure.org/sploits/cisco.passwords.html

For Cisco hardware it’s safest to use type 5 passwords with enable secret set.

Summary

Design
Name: Cisco IOS password hashing.

Applications: Cisco IOS.

Platforms: See applications.

Used for: Password access encryption.

Algorithms
used:

Base64 encoded (MD5 hashes). (type 5)
Or a proprietary weak Cisco algorithm (type 7)

enable secret 5 $1$6Je2$MurE4FTzoZjQShRW4Ui9H0
The $ in the MD5 hash separates the field into three parameters:
<version><salt><base64(MD5 password hash)>

Algorithm
input:

Password, optional a secret.

Salting: Optional.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 30 of 55

Implementation
Character set: US-ASCII 128 characters

International 256 characters

Limitations for
character set:

Hash storage Location: Configuration file
Size: 16 bytes
Format: $1$6Je2$MurE4FTzoZjQShRW4Ui9H0

Theoretical
key space:

K = CN

128100 = 5.26 · 10210

Key space
limitations:

Due to limitations of MD5 this is 3.40 · 1038 (hexadecimal & 32 characters
long) or hash collisions occur.

1,0 E+00

1,0 E+03

1,0 E+06

1,0 E+09

1,0 E+12

1,0 E+15

1,0 E+18

1,0 E+21

1,0 E+24

1,0 E+27

1,0 E+30

1,0 E+33

1,0 E+36

1,0 E+39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

passw ord length N (characters)

ke
ys

p
ac

e
(p

o
ss

ib
il

it
ie

s)

theory absolute upper limit

Key space for Cisco IOS

The graph above shows the key space based on a 95-long character set.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 31 of 55

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

password length N

d
ay

s

crack time

Attack time for Cisco IOS

The graph above shows the attack time based on a 95-long character set.

raw storage

0

2500

5000

7500

10000

0 5 10 15

password length (positions)

st
o

ra
g

e
(G

B
)

required

2006

2008 expect.

Storage for Cisco IOS

The graph above shows the raw disk storage for storing both hashes and passwords
based on a 95-long character set.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 32 of 55

Implementation in database systems
Implementation of encryption algorithms in widely used database systems

In the past years, focus on security was a big item. Operating systems are
hardened and user applications are audited, but database systems were untouched.
This is a strange development, because database systems are the pillars of all
important company processes and a lot of important data is stored here.

Oracle
One of the main database software manufacturers is Oracle. Oracle is developing
database products since 1979 (on a PDP-11), and is used by many multinationals.
Oracle database systems are recently under attack, according to different news
sites, like:
 http://news.com.com/Oracle+password+system+comes+under+fire/2100-
1002_3-5918305.html?tag=nefd.top.

The Oracle password algorithm was not public until recently. The SANS-institute
published “An Assessment of the Oracle Password Hashing Algorithm”7, which can
be found at http://www.sans.org/press/oracle_pass.php. This paper releases
details on how passwords are encrypted before being stored in the Oracle database.
A renowned security expert and researcher at SANS named Joshua Wright released
details on how to breech the password hashing algorithm used by Oracle. He
demonstrated an attack tool he wrote that recovers plaintext passwords from even
very strong, well written passwords within minutes.
In order to abuse the weaknesses described in papers, an attacker needs to have
knowledge of the password hashes of a database user. Obtaining this information is
out of scope for this document, but can be done in a number of ways, like SQL
injection, access to the host operating system, access to backup tapes, etcetera.
The released documentation and recent postings on a number of mailing lists
discusses the techniques Oracle uses to store an encrypt user passwords in the
database. This highlights a number of weaknesses in these techniques, such as a
weak hashing algorithm and the lack of case preservation.

Hashing
Oracle can handle passwords up to 30 characters long. All these characters are
converted to uppercase before the hashing algorithm starts. This algorithm creates
an 8-byte hash using a modified DES encryption algorithm. The username is used
as a salt for this algorithm, by concatenation of the username with the password
before this is feed to the algorithm.
The Oracle password hashes are stored in the database, in the table SYS.USER$ -
Password
However, the hashes can also be found on other locations, like the Oracle Password
File, a Data File of the system tablespace, export files and archive logs.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 33 of 55

Cracking
There are a number of password crackers available for Oracle, which uses brute
force and dictionary attacks. Before the publication of the algorithm, cracking was
done with PL/SQL based crackers. Now there are some C-based crack tools
available. The most popular is probably “Orabf”8, it is a pretty fast tool which does
an average of 1,100,000 hashes per second on a standard Pentium 4.

Other issues
One of the biggest problems of Oracle is the use of default passwords, sometimes
even needed by bad software implementations based on an Oracle database. There
are multiple wordlists available with standard username and password
combinations, like the one from Pete Finnigan (at
http://www.petefinnigan.com/default/default_password_list.htm).
Another big issue is that user rights are not managed strictly enough. Limiting user
rights is the first step in preventing that hashes become available for cracking
purpose.
There is a lot of information available to secure Oracle systems. Oracle has released
a paper about Oracle Database Hardening9. Some references can be found at
SecurityFocus10 and the website of Pete Finnigan11.

Rainbow tables
In the paper SANS released, Josh Wright already mentioned the use of rainbow
tables on Oracle databases. He created a proof of concept and describes his
findings.
Since the release of his paper, no other publications concerning the use of rainbow
tables on Oracle showed up. Because of that, we contacted Josh Wright. His
reaction on our question why there where not any further publications regarding his
findings, he answered that he did not released the source code of the path on the
RainbowCrack tool. Reason is that he is concerned about the negative effect the
release of his code would have on the security status of the Oracle databases. His
concerns are that Oracle customers do not have an alternative available yet.
Oracle’s position is that they are planning to address a new password hashing
algorithm in the future, but they do not have a solution available yet.
The potential abuse with the use of rainbow tables is enormous he said, cracking a
password is reduced to a 100% hit ratio within minutes. Generating tables is quite
practical, and it works well due to the weaknesses in the hashing algorithm. Due to
the fact that there is no case preservation and the character set used is quite small,
tables can be generated easily. Only drawback is the use of username as salt,
making the generated tables only applicable on the specific user account. However,
generating a table with the username SA or SYSTEM, grants you all rights.

For now, we can not give more information about this topic. It is now wait and see
when Josh releases his source, or when someone releases an alternative patch to
the RainbowCrack tool.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 34 of 55

Advice
Even with the potential risk of rainbow tables used on Oracle, there are a number
of thinks you can consider to do:
Do not use the same username on multiple machines. Instead concatenate the
system name, or something other variable like the database name, to the
username. The password hash will be different, due to the change of the salt. This
reduces the change that if a password is broken, the attacker gains access to
multiple machines.
Important account names which can be found on all systems, like SA or SYSTEM,
are first subject to (precomputation) attacks. The obvious solution for this is that
these accounts should have very strong passwords, including a mix of digits and
punctuation marks and at least a password length of 10 or more.
Also disable all accounts that are not used, especially accounts with more rights,
and change default usernames and their corresponding passwords.

Summary

Design
Name: Oracle password hashing

Applications: Oracle Databases version 8, 8i, 9i, 10g

Platforms: All platforms supported by Oracle (HP-UX, MS Windows, SUN Solaris, …)

Used for: Hashing passwords of database users

Algorithms
used:

DES in CBC mode

Algorithm
input:

Username, password

Salting: Account specific (username is salt, password hash for <user> and <pass>
is the same for all systems

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 35 of 55

Implementation
Character set: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789#$_ (39 characters)

Limitations for
character set:

Username and password MUST start with a alpha character [A-Z]
Length of both username and password is > 0 and <= 30

Hash storage Oracle table DBA_USERS, column PASSWORD, 8 byte (= 64 bits) field

Theoretical
key space:

(Limitation · character set ^ length)
3.61 · 1047 = 26/39 · 3930

Key space
limitations:

Theoretically, a hash collision will occur after 2 ^ (storage bits) passwords
as documented in “Hash storage”
18,446,744,073,709,551,616 = 264

1,0 E+00

1,0 E+02

1,0 E+04

1,0 E+06

1,0 E+08

1,0 E+10

1,0 E+12

1,0 E+14

1,0 E+16

1,0 E+18

1,0 E+20

1,0 E+22

1,0 E+24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

passw ord length N (characters)

ke
ys

p
ac

e
(p

o
ss

ib
il

it
ie

s)

theory absolute upper limit

Key space for Oracle

The graph above shows the key space based on a 39-long character set.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 36 of 55

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

password length N

d
ay

s

crack time

Attack time for Oracle

The graph above shows the attack time based on a 95-long character set.

raw storage

0

2500

5000

7500

10000

0 5 10 15

password length (positions)

st
o

ra
g

e
(G

B
)

required

2006

2008 expect.

Storage for Oracle

The graph above shows the raw disk storage for storing both hashes and passwords
based on a 95-long character set.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 37 of 55

Microsoft SQL Server 2000
Microsoft SQL Server 2000 is a relational database management system and
supports Microsoft’s version of Structured Query Language (SQL). It is widely used
by companies ranging from small- to medium-sized databases and in the past five
years some large enterprise databases.
MS SQL Server 2000 uses the SHA1 algorithm for hashing passwords of database
users. The input the first time for the algorithm is a salt and the password in
UNICODE. The second time the input is a salt and the uppercase version of the
password in UNICODE. The salt is generated from two calls to rand() (one call for
the original password and one call for the uppercase password) which result in 8
numbers. In UNICODE there are 65535 characters are possible. The maximum
password length is 128 characters.

Free password auditing utilities like NGSSQLCrack or SQLdict are available to verify
the complexity of SQL passwords.
An interesting tool is SQLPAT http://www.cqure.net/wp/?page_id=16. This tool
should be used to audit the strength of passwords offline. The performance in brute
force or dictionary attack mode on a 1 GHz Pentium with 256MB RAM is 750.000
guesses / sec. To perform an audit one needs the password hashes from the
sysxlogins table, column password. The hashes are easy to retrieve although you
need a privileged account like sa to do so.

Summary

Design
Name: MS Sql 2000 password hashing.

Applications: MS Sql 2000.

Platforms: Windows.

Used for: Hashing passwords of database users.

Algorithms
used:

SHA1.

Algorithm
input:

First round (mixed case): salt + password in UNICODE.
Second round (upper case): salt + uppercase(password in UNICODE)

Salting: Salt from two calls to rand() which result in 8 bytes.
One salt (4 bytes) for the original password and one salt (4 bytes) for the
uppercase password.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 38 of 55

Implementation
Character set: 65,535 characters.

Limitations for
character set:

Length of password is >= 0 and <= 128
Password is uppercased.

Hash storage Location: "select * from master.dbo.sysxlogins;", column "password".
Location:
HKLM\security\policy\secrets\SQLSERVERAGENT_HostPassword\currval
(accessible by Windows LocalSystem account, Administrators can take
ownership and give themselves permissions to these keys)
Size: 20 bytes
Format: 0x0100F612916E596524EC954399F27089FA416
046C6DA07D04B8845E41ED1A655CD5F6E23F86E573B
A550BA17D21C
<tag(2)><salt(4)>< sha1 mixed case password hash (20)>< sha1 upper
case password hash (20)>

Theoretical
key space:

K = CN

65,535128 = 3.23 · 10616
Key space
limitations:

Theoretically, a hash collision will occur after 2 ^ (storage bits) passwords
as documented in “Hash storage”
1.46 · 1048 = 2160

1,0 E+00

1,0 E+03

1,0 E+06

1,0 E+09

1,0 E+12

1,0 E+15

1,0 E+18

1,0 E+21

1,0 E+24

1,0 E+27

1,0 E+30

1,0 E+33

1,0 E+36

1,0 E+39

1,0 E+42

1,0 E+45

1,0 E+48

1,0 E+51

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

passw ord length N (characters)

ke
ys

p
ac

e
(p

o
ss

ib
il

it
ie

s)

theory absolute upper limit

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 39 of 55

Key space for Microsoft SQL Server 2000 & 2005

The graph above shows the key space based on a 95-long character set.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

password length N

d
ay

s

crack time

Attack time for Microsoft SQL Server 2000 & 2005

The graph above shows the attack time based on a 95-long character set.

raw storage

0

2500

5000

7500

10000

0 5 10 15

password length (positions)

st
o

ra
g

e
(G

B
)

required

2006

2008 expect.

Storage for Microsoft SQL Server 2000 & 2005

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 40 of 55

The graph above shows the raw disk storage for storing both hashes and passwords
based on a 95-long character set.

Microsoft SQL Server 2005
Five years after the introduction of Microsoft SQL Server 2000 Microsoft introduces
Microsoft SQL Server 2005. This new product Microsoft is relatively secure by
default, there are several security flaws removed from MS SQL Server 2000. These
included the removal of the uppercase encrypted password and no more sa blank
passwords.

The ability to manage SQL Account passwords is new. Now it is possible to enforce
password complexity, password expiration and account lockout. Another addition is
the ability to encrypt and decrypt data with certificates. No third party tools are
required. The encryption algorithm for passwords didn’t changed and is still SHA1.
Also the maximum password length is still 128 characters.

Summary

Design
Name: MS Sql 2005 password hashing.

Applications: MS Sql 2005.

Platforms: Windows.

Used for: Hashing passwords of database users.

Algorithms
used:

SHA1.

Algorithm
input:

Salt + mixed case password in UNICODE.

Salting: Salt from call to rand() which result in 4 bytes.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 41 of 55

Implementation
Character set: 65535 characters.

Limitations for
character set:

Length of password is >= 0 and <= 128

Hash storage Location: "select * from sys.sql_logins;", column "password_hash".
Size: 20 bytes
Format:
0x0100B42B151AEE6F82D0317AB58C9B5CF5BAC39932E2B82360FE
<tag(2)><salt(4)><sha1 mixed case password hash(20)>

Theoretical
key space:

K = CN

65,535128 = 3.23 · 10616
Key space
limitations:

Theoretically, a hash collision will occur after 2 ^ (storage bits) passwords
as documented in “Hash storage”
1.46 · 1048 = 2160

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 42 of 55

Conclusion
Real life
In real life the limiting issues in the security of systems are mostly implementation
oriented. As we take a look at the tables for key spaces we can conclude that the
real maximum is crossed below the length of a password of 14 characters for
NTLMv1, NTLMv2, Oracle, Microsoft SQL Server 2000 and Microsoft SQL Server
2005.
When we look at the crack times, we see that they vary a lot. LM hashes can be
cracked easily, while NTLMv2 and Microsoft SQL Server 2005 take relatively much
longer.

Although we didn’t had the time to incorporate al the time-space trade-off systems
for all algorithms, we still can conclude that the storage amounts for LM hashes,
Oracle, Solaris and AIX are relatively low in contrast to NTLMv2 and Microsoft SQL
Server 2000 & 2005. The more storage it takes how longer it takes to prepare a
rainbow table attack.

Limiting the possible success of threats can be established in many ways depending
on the implementations. A number of ways are possible to defend a system and or
network against threats.

Combination of policy and technology
The combination of policy and technology can extensively increase the security of
ones system and or network. When defining password policies for deceasing the
crackability of passwords, consider these points :

• Require a minimum password length
• Require pass phrases
• An expiration date
• Force the use of special characters (complex passwords)
• Account lockout (where appropriate)
•

Disabling technologies like LM hashes (see KB 299656 and KB 828861) or defining
strong encryption algorithms (i.e. blowfish) with salting for user passwords on UNIX
would increase a systems security. It is advisable to analyse and test this before
applying it widely. Some applications might depend on these rather old
technologies.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 43 of 55

Pass Phrases vs. passwords
Pass phrases are long strings, for example: “http://www.google.com is my
favourite search engine”. Pass phrases come along with several advantages:
- Very strong protection against attacks
- Easy to remember, a bit longer to type
- Sometimes break older applications

Passwords are short complex strings, for example: “P4S$w0Rd”. Passwords come
along with several disadvantages:
- Hard to remember
- Often difficult to type
- Not resistant against current attacks (Obvious substitutions are quickly broken)

To summarize: Long easily-remembered pass phrases are better than short
complex passwords. This is still of course depending on the implementation and the
used encryption algorithms.

The final conclusion
How secure a password is, is depending on a large key space, the used algorithm
and the size of the stored hashes. A large key space is mostly realised using a long-
length password. A huge character set simply isn’t feasible because users refuse to
use it and the keyboard doesn’t allow easily more then 95 different characters.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 44 of 55

Future research
Unfortunately, due to the lack of time caused by improper planning, there was no
time left to research and incorporate WPA-PSK, HP-UX, LDAP, PAM, MS Cache,
other Linux distributions and many other implementations in this document.
Including these in this document would give a better view of password security on
different operating systems and database management systems.

Time-space tradeoffs based on Philippe Oechslin principle were not used as input
for the diagrams also due to the lack of time. This would give an even more
realistic view for password attacks. Time-space trade-off mechanisms are relatively
dangerous for the future of password security. When applicable, we however
mentioned this risk at each implementation.

All items which are mentioned above rest for the future research.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 45 of 55

Appendix A: General information
Widely used terms in cryptography
There are a lot of terms used in cryptography. The most common terms are
discussed briefly in the following section. It will be out of the scope of this article to
discuss every term completely. This section forms a base for understanding this
document. The terms are listed randomly; however we tried to sort them from
basic to in-depth information. A more extensive description or explanation of the
topics can be most of the time found by entering the topic in, for example, the
Wikipedia (on: http://en.wikipedia.org/wiki/).

Cryptography
Cryptography is the science of writing in code. Cryptography is an ancient art and
science, the first documented use of cryptography in writing dates back to circa
1900 B.C. when an Egyptian scribe used non-standard hieroglyphs in an inscription.
A newer form of cryptography arises after the widespread development of computer
communications. When communicating over an untrusted medium, like the internet
or any other network, the use of cryptography is imperative. More information
about this subject, including an interesting description of the history, can be found
on the Wikipedia12.

Encryption
This is the process of scrambling information to make a message unreadable for
those who do not have the decoding key. Encryption has been used to protect
communications for centuries and can be used to ensure secrecy. Techniques are
needed for secure communications to verify the integrity and authenticity of a
message.

Cryptanalysis13
This is the study of a cryptographic system with the purpose of finding weaknesses.
In practice this means breaking the code which is used to encrypt the message
without knowing the secret key.

Cipher
A cipher is an algorithm for performing encryption.

Plaintext
Plaintext is the original information which is the input of an encryption algorithm.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 46 of 55

Ciphertext
Ciphertext is the encrypted form of a plaintext, which is the output of an encryption
algorithm.

Block cipher
A symmetric key cipher operates on a fixed-length group of bits (blocks). A block
cipher takes for example a 64 bits block of plaintext and a secret key as input, and
generates a 64 bits block ciphertext as output

Stream cipher
A stream cipher, also known as a state cipher, is a symmetric cipher in which
plaintext digits are encrypted one by one and in which the transformation of digits
varies during the encryption.

Symmetric key
Symmetric-key is also known as private-key or single-key. A symmetric-key
algorithm uses trivially related cryptographic keys for both encryption and
decryption.

Asymmetric key
This form of cryptography allows parties to communicate securely without having
prior access to a shared secret key. A pair of keys, known as a public key and a
private key is used for communication. The public key is distributed widely while
the private key is kept secret. The sender uses the public key from the receiver to
encrypt the message. The receiver uses his private key (secret) to decrypt the
message.

Key schedule
A key schedule is the algorithm for computing the sub keys for each round in a
product cipher from the encryption (or decryption).

S-box
Short for Substitution box is a basic component of symmetric key algorithms. An S-
box is used to obscure the relationship between the ciphertext and plaintext. The
input is a number of bits which are then transformed into a number of output bits.
Fixed tables are normally used as lookup tables.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 47 of 55

Hexadecimal
Hexadecimal, also known as base-16 or simply hex, is a numeral system with 16
written symbols using also the symbols A-F in addition to the usual symbols 0-9.

Base64
Base 64 is a positional numbering system using a base of 64. This is the largest
power of two base that can be represented using only printable ASCII characters.
All well-known variants use the characters A-Z, a-z and 0-9 in that order for the
first 62 digits but the symbols chosen for the last two digits vary.

Exclusive OR
Exclusive OR (XOR) is a logic operator which results in true if one of the operands,
but not both of them, is true.

Hash function
A hash function examines input data and produces a hash value as output. The
input has a limited variable length in contrast to the output length which fixed. The
input is a user password combined with an optionally a salt, depending on the used
encryption algorithm. It is unlikely that two different inputs hash to the same
output. One-way hashes are named one-way because they cannot be reversed.

Figure 2 - A hash function

Salting
The use of salts in cryptography is to make a key derivation function produce
random output. Salts mostly consist of random bits, which are used as an input to
the cryptographic algorithm, next to the password.
Salting was first introduced early Unix-systems. Users, who had access to the
passwd-files, could view the usernames and hash-values. Because different

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 48 of 55

usernames had the same hashes, they could conclude this user had the same
password. This was because the input on the algorithm was the same, so the result
was also the same. This is why a 12-bit salt was added to the input, which resulted
in randomized output. In modern implementations bigger salts are used.

Most hash functions use a salt value, because salting makes it more difficult to
compare hashes generated with the same password. The salt value may or may not
be protected as a secret. Most of the time, the salt value is stored with the hash
value. Adding a salt makes it more difficult to conduct a dictionary attack using
dictionary or pre-encrypted entries, as each bit of salt doubles the amount of
storage and computation required.

Key spaces
The key space of a cryptographic algorithm refers to all possible keys that can be
used to initialize it. The use of a large key space makes it computationally infeasible
to check each possible key by brute force.

 For example, a 20-bit key would have a key space of 1,048,576 (220). The Rijndael
algorithm allows a key of up to 256 bits, which is over 1,15792 x 1077 (2256).

Cracking a hash value
Password cracking is performing an attack to retrieve a users password. There is a
difference between normal password cracking, like just trying passwords on an
online password field and get a go or no-go, or performing an offline attack by
cracking the hash value to get the text used as the input of the hash.
This document describes the last one, performing offline attacks. This is not actual
password cracking, but an attack on the cryptographic hash value. The purpose is
to find an input value that generates the same hash as the hash value of the
password we already have. If a value is found that generates the same hash as the
one we are comparing with, than we have found a value that can be used as correct
password to login.
There is a possibility that this value is not the correct original password but just
some nonsense input. If this is the case, we have found a hash collision. The
change that this will occur is highly unlikely and dependent on the algorithm used.

Cracking speeds
Cracking speed indicates how many times per second an input value is used to
create a hash value and compared against the original hash. The cracking speed of
an attack, often measured in crypts per second, primarily depends on the algorithm
used to perform the crypts and the speed of the hardware used performs the
crypts.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 49 of 55

Ciphers in cryptography
Ciphers are used very often in popular software these days to obscure information.
These ciphers vary from weak to strong algorithms. In this section we will briefly
discuss often-used ciphers in popular software. This section forms the base for
understanding the terms which are used in the chapters.

DES
The Data Encryption Standard (DES) is a method for encrypting information. This
symmetric-key encryption method was developed in 1975 and standardized by
ANSI14 in 1981 (ANSI X.3.92). DES is a block cipher method which breaks text into
64-bit blocks and encrypts them. A 56 bit key is used to customize the
transformation.

3DES
3DES, also referred to as Triple DES, is a block cipher formed from the Data
Encryption Standard by using it 3 times. 3DES with three different 56 bit DES keys
has a key length of 168 bits. Together with the parity bits it takes up a total of 192
bits. In general the first encryption is encrypted with the second key, and the
resulting ciphertext is encrypted with a third key.

Advanced Encryption Standard (AES)
AES, also known as Rijndael is a block cipher and was adopted by National Institute
of Standards and Technology (NIST)15. AES uses a block size of 128 bits, key sizes
of 128, 192 or 256 bits and 10, 12 or 14 rounds (for the respective key sizes). AES
operates on a 4x4 array of bytes; the state. For encryption each round consists of 4
stages;

1. SubBytes; a non-linear substitution where each byte is replaced with
another byte according to a table lookup.

2. ShiftRows; a transposition step, each row of the state is shifted cyclically a
certain number of steps.

3. MixColumns; mixing on the columns of the state, combining the four bytes
in each column using a linear transformation.

4. AddRoundKey; each byte of the state is combined with the round key; each
round key is derived from the cipher key using a key schedule.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 50 of 55

Feistel cipher
The Feistel cipher is a block cipher with very similar encryption and decryption
operations, requiring a reversal of the key schedule. The plaintext is split into two
pieces. The round function f is applied to one half using a sub key and the output of
f is exclusive-ored with the other half. Then the two pieces are swapped, each
round follows the same transformation except for the last round where there is no
swap.

Blowfish
Blowfish is a keyed symmetric block cipher designed by Bruce Schneier in 1993 as
an alternative to existing encryption algorithms, such as DES. Blocks have a size of
64 bits and the key sizes are between 32 and 448 bits in steps of 8 bits. Blowfish is
a 16-round Feistel cipher which uses large key-dependent S-boxes.

Twofish
Twofish is a symmetric key block cipher with a block size of 128 bits. Key sizes are
up to 256 bits. Twofish is related to the Blowfish cipher but has some distinctive
features such as a pre-computed key-dependent S-box and a complex key
schedule.

MD2
Message Digest 2 is a hash function developed by Ronald Rivest of MIT16. A 128 bit
hash value is formed from any message by padding it to a multiple block length
and adding a 16 byte checksum to it. The hash represents typical 32 digit
hexadecimal numbers.

MD4
Message Digest 4 is a hash function also developed by Ronald Rivest. The 128 bit
(16 byte) hashes are typically representing 32 digit hexadecimal numbers.

MD5
Message Digest 5 is a widely used hash function with a 128 bit hash value. The
Internet standard (RFC 132117) MD5 was designed by Ronald Rivest. It has been
employed in a variety of security applications and is also used to check the integrity

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 51 of 55

of files. MD5 processes a variable length message into a fixed-length output of 128
bits.

SHA-1
Secure Hash Algorithm 1 is a set of related hash functions which is implemented in
a variety of popular security applications and protocols. The SHA algorithms were
designed by the National Security Agency (NSA)18 and published as a US
government standard. SHA-1 produces a 160 bit digest from a message with a
maximum size of 264 bits and is based on the principles similar in the design of MD4
and MD5. The algorithm is slower but creates a larger message digest, which
makes it more challenging to brute force attacks.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 52 of 55

Appendix B - Creative Commons Licence

Attribution 2.5 1

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC
LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE
LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
PROHIBITED. BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN
CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its
entirety in unmodified form, along with a number of other contributions, constituting separate and independent
works in themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be
considered a Derivative Work (as defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a
translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art
reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or
adapted, except that a work that constitutes a Collective Work will not be considered a Derivative Work for the
purpose of this License. For the avoidance of doubt, where the Work is a musical composition or sound recording,
the synchronization of the Work in timed-relation with a moving image ("synching") will be considered a Derivative
Work for the purpose of this License.

c. "Licensor" means the individual or entity that offers the Work under the terms of this License.
d. "Original Author" means the individual or entity who created the Work.
e. "Work" means the copyrightable work of authorship offered under the terms of this License.
f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of

this License with respect to the Work, or who has received express permission from the Licensor to exercise
rights under this License despite a previous violation.

2. Fair Use Rights.

Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other
limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant.
Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-
exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated
below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as

incorporated in the Collective Works;
b. to create and reproduce Derivative Works;
c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital

audio transmission the Work including as incorporated in Collective Works;
d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital

audit transmission Derivative Works.
e. For the avoidance of doubt, where the work is a musical composition:

 i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether
individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance
or public digital performance (e.g. webcast) of the Work.

 ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether individually

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 53 of 55

or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You
create from the Work ("cover version") and distribute, subject to the compulsory license created by 17 USC
Section 115 of the US Copyright Act (or the equivalent in other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording,
Licensor waives the exclusive right to collect, whether individually or via a performance-rights society (e.g.
SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work, subject to the compulsory
license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other jurisdictions). The above
rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include
the right to make such modifications as are technically necessary to exercise the rights in other media and formats.
All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions.
The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of
this License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or
phonorecord of the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not
offer or impose any terms on the Work that alter or restrict the terms of this License or the recipients’ exercise of the
rights granted hereunder. You may not sublicense the Work. You must keep intact all notices that refer to this
License and to the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly
digitally perform the Work with any technological measures that control access or use of the Work in a manner
inconsistent with the terms of this License Agreement. The above applies to the Work as incorporated in a
Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to the
terms of this License. If You create a Collective Work, upon notice from any Licensor You must, to the extent
practicable, remove from the Collective Work any credit as required by clause 4(b), as requested. If You create a
Derivative Work, upon notice from any Licensor You must, to the extent practicable, remove from the Derivative
Work any credit as required by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or any Derivative Works or
Collective Works, You must keep intact all copyright notices for the Work and provide, reasonable to the medium or
means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the
Original Author and/or Licensor designate another party or parties (e.g. a sponsor institute, publishing entity, journal)
for attribution in Licensor’s copyright notice, terms of service or by other reasonable means, the name of such party
or parties; the title of the Work if supplied; to the extent reasonably practicable, the Uniform Resource Identifier, if
any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice
or licensing information for the Work; and in the case of a Derivative Work, a credit identifying the use of the Work in
the Derivative Work (e.g., "French translation of the Work by Original Author," or "Screenplay

based on original Work by Original Author"). Such credit may be implemented in any reasonable manner; provided,
however, that in the case of a Derivative Work or Collective Work, at a minimum such credit will appear where any
other comparable authorship credit appears and in a manner at least as prominent as such other comparable
authorship credit.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE
WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE
WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO
YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of
this License. Individuals or entities who have received Derivative Works or Collective Works from You under this
License, however, will not have their licenses terminated provided such individuals or entities remain in full
compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 54 of 55

license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is required to be, granted under the terms of this
License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the
recipient a license to the Work on the same terms and conditions as the license granted to You under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a license to
the original Work on the same terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or
consent shall be in writing and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There
are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall
not be bound by any additional provisions that may appear in any communication from You. This License may not
be modified without the mutual written agreement of the Licensor and You.

Research Report
“Password cracking in the field”

©opyright Amsterdam 2006 - Gert Bon and Steffen van Loon page 55 of 55

References

1 A cryptanalytic time-memory trade off – IEEE Transactions of Information Theory,

IT-26:401-406, 1980
2 Cryptography and Data Security, page 100. Addison-Wesley, 1982
3 Windows NT rantings from L0pht -

http://www.packetstormsecurity.org/Crackers/NT/l0phtcrack/l0phtcrack.rant.nt.p
asswd.txt

4 http://www.ibm.com/us/
5 http://www.eff.org/
6 http://www.eff.org/
7 http://www.sans.org/rr/special/index.php?id=oracle_pass
8 Orabf – A brute force/dictionary tool for Oracle -

http://www.toolcrypt.org/index.html?orabf
9 Oracle paper – Oracle Database Hardening -

http://www.oracle.com/technology/deploy/security/pdf/twp_security_checklist_db
_database.pdf.

10 SecurityFocus - http://www.securityfocus.com/infocus/1689
11 Website of Pete Finigan - http://www.PeteFinnigan.com
12 Wikipedia, the free encyclopedia – http://en.wikipedia.org/wiki
13 http://en.wikipedia.org/wiki/Cryptanalysis
14 http://www.ansi.org/
15 http://www.nist.gov/
16 http://www.mit.edu/
17 http://www.ietf.org/rfc/rfc1321.txt
18 http://www.nsa.gov/

