
WHAT IS A BUFFER OVERFLOW? 
LEARN ABOUT BUFFER 
OVERRUN VULNERABILITIES, 
EXPLOITS & ATTACKS
A buffer overflow, or buffer overrun, is a common software coding mistake that an 
attacker could exploit to gain access to your system. To effectively mitigate buffer 
overflow vulnerabilities, it is important to understand what buffer overflows are, 
what dangers they pose to your applications, and what techniques attackers use 
to successfully exploit these vulnerabilities.

• This error occurs when there is more data in a buffer than it can handle, 
causing data to overflow into adjacent storage.

• This vulnerability can cause a system crash or, worse, create an entry 
point for a cyberattack.

• C and C++ are more susceptible to buffer overflow.

• Secure development practices should include regular testing to detect and 
fix buffer overflows. These practices include automatic protection at the 
language level and bounds-checking at run-time.

• Veracode’s binary SAST technology identifies code vulnerabilities, such as 
buffer overflow, in all code — including open source and third-party 
components —so that developers can quickly address them before they 
are exploited.

https://www.veracode.com/security/code-security
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/software-composition-analysis
https://www.veracode.com/products/software-composition-analysis


Definition of a Buffer Overflow

A buffer is a sequential section of memory allocated to contain anything from a 
character string to an array of integers. A buffer overflow, or buffer overrun, 
occurs when more data is put into a fixed-length buffer than the buffer can 
handle. The extra information, which has to go somewhere, can overflow into 
adjacent memory space, corrupting or overwriting the data held in that space. 
This overflow usually results in a system crash, but it also creates the opportunity 
for an attacker to run arbitrary code or manipulate the coding errors to prompt 
malicious actions.

Many programming languages are prone to buffer overflow attacks. However, the 
extent of such attacks varies depending on the language used to write the 
vulnerable program. For instance, code written in Perl and JavaScript is generally 
not susceptible to buffer overflows. However, a buffer overflow in a program 
written in C, C++, Fortran or Assembly could allow the attacker to fully 
compromise the targeted system.

Cybercriminals exploit buffer overflow problems to alter the execution path of the 
application by overwriting parts of its memory. The malicious extra data may 
contain code designed to trigger specific actions — in effect sending new 
instructions to the attacked application that could result in unauthorized access to 
the system. Hacker techniques that exploit a buffer overflow vulnerability vary per 
architecture and operating system.

Coding errors are typically the cause of buffer overflow. Common application 
development mistakes that can lead to buffer overflow include failing to allocate 
large enough buffers and neglecting to check for overflow problems. These 
mistakes are especially problematic with C/C++, which does not have built-in 
protection against buffer overflows. Consequently, C/C++ applications are often 
targets of buffer overflow attacks.



Buffer Overflow Attack Example

[Adapted from “Buffer Overflow Attack Explained with a C Program Example,” 
Himanshu Arora, June 4, 2013, The Geek Stuff]

In some cases, an attacker injects malicious code into the memory that has been 
corrupted by the overflow. In other cases, the attacker simply takes advantage of 
the overflow and its corruption of the adjacent memory. For example, consider a 
program that requests a user password in order to grant the user access to the 
system. In the code below, the correct password grants the user root privileges. If 
the password is incorrect, the program will not grant the user privileges.

printf ("\n Correct Password \n");
pass = 1;
}
if(pass)
{
/* Now Give root or admin rights to user*/
printf ("\n Root privileges given to the user \n");
}
return 0;
However, there is a possibility of buffer overflow in this program because the 
gets() function does not check the array bounds.

Here is an example of what an attacker could do with this coding error:

$ ./bfrovrflw
Enter the password :
hhhhhhhhhhhhhhhhhhhh
Wrong Password
Root privileges given to the user
In the above example, the program gives the user root privileges, even though 
the user entered an incorrect password. In this case, the attacker supplied an 
input with a length greater than the buffer can hold, creating buffer overflow, 
which overwrote the memory of integer “pass.” Therefore, despite the incorrect 



password, the value of “pass” became non zero, and the attacker receives root 
privileges.

To prevent buffer overflow, developers of C/C++ applications should avoid 
standard library functions that are not bounds-checked, such as gets, scanf and 
strcpy.

In addition, secure development practices should include regular testing to detect 
and fix buffer overflows. The most reliable way to avoid or prevent buffer 
overflows is to use automatic protection at the language level. Another fix is 
bounds-checking enforced at run-time, which prevents buffer overrun by 
automatically checking that data written to a buffer is within acceptable 
boundaries.

Veracode Helps Identify Buffer Overflows

Veracode’s cloud-based service identifies code vulnerabilities, such as buffer 
overflow, so that developers can address them before they are exploited.

Unique in the industry, Veracode’s patented binary static application security 
testing (SAST) technology analyzes all code — including open source and third-
party components — without requiring access to source code. 

SAST supplements threat modeling and code reviews performed by developers, 
finding coding errors and omissions more quickly and at lower cost via 
automation. It’s typically run in the early phases of the software development 
lifecycle because it’s easier and less expensive to fix problems before going into 
production deployment.

SAST identifies critical vulnerabilities such as SQL injection, cross-site scripting 
(XSS), buffer overflows, unhandled error conditions and potential back-doors. In 
addition, our binary SAST technology delivers actionable information that 

https://www.veracode.com/services/developers.html
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/software-composition-analysis
https://www.veracode.com/products/software-composition-analysis
https://www.veracode.com/security/sql-injection
https://www.veracode.com/security/xss
https://www.veracode.com/security/xss
http://en.wikipedia.org/wiki/Buffer_overflow


prioritizes flaws according to severity and provides detailed remediation 
information to help developers address them quickly.

https://www.veracode.com/security/buffer-overflow

https://www.veracode.com/security/buffer-overflow

