
Advanced

Malware Analysis

Techniques

Course training manual

Welcome

Course overview

About your trainer - Igor Kuznetsov

● Joined Kaspersky in 2001 as a virus analyst

● Specializes in: reverse engineering, forensics, incident response

● Analyzed: Flame, Gauss, Red October, ATM protocols, etc.

● The exercises are from Igor’s work / portfolio.

The course - Main focus

● Reverse engineering disassembled code in IDA Pro

● Automating decryption, decoding and other processing of the

samples

● Automating routine tasks

● Preserving most important steps of the analysis in code

● Most activities apply to the generic analysis workflow

● Exercises include unique corner cases that require special

treatment

The course - Overview

● x86/64 Intel code

● Windows PE, Mac OS X Mach-O files, raw shellcode

for Windows

● RTF, OLE2, PDF documents

● All exercises are hands-on

● Most tracks include code templates that need to be

filled in / modified to solve the exercises

● The scripts are written in Python 3 and most are

standalone, but most of the tasks can also be done

via the IDAPython scripting interface

The course - The disclaimer

● There is no single correct way to do reverse engineering

● The code and scripts are used for real-life analysis

● The workflow displayed is how we do it

IDA tips and tricks - hex-rays.com/blog/tag/idatips/

IDA Pro Shortcuts - hex-rays.com/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf

Sysinternals - Windows Internals, Part 1 - amazon.com/dp/0735684189

Nostarch - IDA Pro book - nostarch.com/idapro2.htm

MSDN: PE format - PE Format - Win32 apps | Microsoft Docs

X86 Opcode and Instruction Reference - X86 Opcode and Instruction Reference (x86asm.net)

Capstone Disassembler - The Ultimate Disassembly Framework – Capstone – The Ultimate Disassembler

(capstone-engine.org)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-

combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

Library of useful links

https://www.hex-rays.com/blog/tag/idatips/
https://hex-rays.com/products/ida/support/freefiles/IDA_Pro_Shortcuts.pdf
https://www.amazon.com/dp/0735684189
https://nostarch.com/idapro2.htm
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
http://ref.x86asm.net/
https://www.capstone-engine.org/
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

Track 1

Intro

In this track you will practice:

● Routine IDA Pro tasks: navigation, functions, code and data manipulation

● Advanced features of IDA Pro: structure types, fields, shifted structure pointers

● Code and data flow analysis

● Stack arithmetics

Intro - Overview

Initial context:

● A bank is being robbed in real-time

● A suspected victim machine is analysed during IR

● Artifact: RWX memory page in a 32-bit Windows process

● Memory is dumped and passed for analysis

Intro - Mission briefing

● Make code - C

● Undefine - U

● Follow the reference - Enter / Double click

● Go back - Esc

● Make function - P

● Type libraries - Shift-F11

● Structures - Shift-F9

● Add (structure, type, etc.) - Ins

● Apply struct offset - T

● Apply struct offset advanced - select+T

● Set type - Y

● Parse C header file - Ctrl+F9

Intro - IDA Pro cheatsheet

● Widely used by the MSVC compiler for iterating over structure pointers

● Unavoidable for “generic” linked list structures

Intro - Pointer into the middle of a structure

0 InLoadOrderModuleList

8 InMemoryOrderModuleList

Flink

Blink

...

0 InLoadOrderModuleList

8 InMemoryOrderModuleList

Flink

Blink

...

0 InLoadOrderModuleList

8 InMemoryOrderModuleList

Flink

Blink

...

Intro - Stack frame and stack pointer

Address increase

ebp

+0x20 Return address

0
Registers, saved by pusha (8

32-bit values)

-0x4 DWORD after push edx

-0x8 DWORD after push edi

Intro - Solution for exercise 4

Address increase

ebp

+0x28 Second argument

0
Registers, saved by pusha (8

32-bit values)

+0x24 First argument

+0x20 Return address

Track 2

Shell

In this track you will practice:

● Code and data flow analysis

● Stack mechanics and data layout

● Manual reconstruction of data structures

Shell - Overview

Initial context:

● Another bank is being robbed (it happens all the time)

● The infected machine is located, it is being analysed

during IR

● Artifact: RWX memory page in a 32-bit Windows process

● Memory is dumped and passed for analysis, and it looks

familiar

Shell - Mission briefing

● Win32 API use the stdcall calling convention

● All arguments are passed on the stack, in the reverse order: first argument is pushed last

● For Win64, the ABI is different: rcx, rdx, r8, r9, then stack in the reverse order

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-connect

https://docs.microsoft.com/en-us/cpp/cpp/calling-conventions?view=msvc-160

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160

Shell - Solution for exercise 1

int WSAAPI connect(

SOCKET s,

const sockaddr *name,

int namelen

);

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-connect
https://docs.microsoft.com/en-us/cpp/cpp/calling-conventions?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160

Shell - Solution for exercise 2

Address Opcode bytes Disassembly

000000B3

000000B8

68 0A 01 03 D2

68 02 00 11 5C

push 0D203010Ah

push 5C110002h

sockaddr_in

02 00

11 5C

0A 01 03 D2

short sin_family

u_short sin_port

struct in_addr sin_adr

Addr

x - 4

x

02 00 11 5C

0A 01 03 D2

Stack data

The opcodes modify the stack

Start of the

structure
Address

increase

Stack

growth

Decompose into the structure fields

“The sockaddr structure varies depending on the protocol selected. Except for the sin*_family parameter, sockaddr contents are

expressed in network byte order.”

Shell - Solution for exercise 2

sockaddr_in

02 00

11 5C

0A 01 03 D2

short sin_family

u_short sin_port

struct in_addr sin_adr

sockaddr_in

02 00

11 5C

0A 01 03 D2

sin_family = 2 (little endian)

sin_port = 0x115C = 4444 (big endian)

sin_addr = 10.1.3.210 (big endian)

https://docs.microsoft.com/en-us/windows/win32/winsock/sockaddr-2

MSDN links:

Track 3

Msfvenom

In this track you will practice:

● Analyzing Powershell scripts

● Decoding Msfvenom (Metasploit) payloads

● Manual reconstruction of data structures

Msfvenom - Overview

Initial context:

● During the IR activities in the bank (track Shell) you discover traces of lateral movement

● The attackers installed a service remotely

● Artifact: event log record (“service was created”)

● The command line for the service executes a Powershell script

Msfvenom - Mission briefing

https://docs.microsoft.com/en-

us/powershell/module/microsoft.powershell.core/about/about_pwsh?view=powershell-7.1

MSDN links:

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pwsh?view=powershell-7.1

● Powershell wrappers and initial shellcode loaders are likely used for pivoting

● Knowing the inner workings of the shellcode allows automation

● Can be easily integrated in a general digital forensics / incident response, SOC workflow

● Automated extraction of IOCs in offline mode, on-premises, under NDA constraints

Msfvenom - Conclusion

https://docs.microsoft.com/en-us/windows/win32/winsock/sockaddr-2

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-bind

MSDN links:

https://docs.microsoft.com/en-us/windows/win32/winsock/sockaddr-2
https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-bind

Track 4

Bangladesh GPCA

In this track you will practice:

● Code and data flow analysis

● Recognizing a well-known encryption algorithm

● Automating decryption with a decoding framework

Bangladesh GPCA - Overview

Initial context:

● The Bangladesh (central) bank heist, happened in 2016

● The attackers tried to transfer funds with SWIFT transactions

● Artifacts: nroff_b.exe (1d0e79feb6d7ed23eb1bf7f257ce4fee)

and gpca.dat

● We need to decrypt gpca.dat, that is known to be used by

nroff_b.exe

Bangladesh GPCA - Mission briefing

Data flow: tracking values at various points in the program

“gpca.dat” - obvious string value to look for

● read/write/offset cross-references

● “what reads this value?”

● “what writes this value?”

● “what uses the address of this value?”

Code (control) flow: determining possible sequences of execution

● call/jump/offset cross-references

● “what calls this code?”

● “what jumps to this code?”

● “what uses the address of this code?”

Bangladesh GPCA - Tracking the value

● Most important: what is the algorithm?

○ homebrew XOR, SUB, ADD

○ well-known ciphers: DES, AES, RC4, RC5, RC6,

Salsa20, ChaCha20, RSA, Tea, Xtea, XXtea

● Key

● IV

● Padding

● Magic numbers?

Bangladesh GPCA - Key features to look for

● Specific constant values

○ DES, AES, Camellia: S-Boxes

○ RC5, RC6: P32=0xb7e15163, Q32=0x9e3779b9

● Specific code sequences

○ XTea: specific constant + algorithm

○ RC4: algorithm only

Bangladesh GPCA - How to recognize ciphers

Preserve the decryption sequence

● Easily searchable artifacts:

● code of the homebrew algorithm

● magic constants

● specific key / data constraints

● custom data and executable formats

● Reproducible analysis

● Retargetable for similar samples

● Code can be migrated to tools, products

Bangladesh GPCA - Why code?

● For every file...

with open(‘input’, ‘rb’) as f:

data = f.read()

data = decrypt(data)

with open(‘output’, ‘wb’) as f2:

f2.write(data)

● Format parsers (PE, ELF, Mach-O, Golang, etc.)

● Code analysis

Bangladesh GPCA - Why automate?

● Decoders preserve your analysis

● Can be reproduced and adapted for new samples

● Well-known ciphers can be easily recognized

● Use a framework to automate routine tasks

● Use off-the-shelf crypto (compression, etc.) libraries

Bangladesh GPCA - Conclusion

Track 5

Regin driver

In this track you will practice:

● Analyzing a homebrew crypto algorithm

● Raw offset - virtual address conversions

● Automating decryption of PE files

Regin driver - Overview

Initial context:

● Regin, a sophisticated APT platform

● The driver is the first stage, just a loader

● The location of the next stage is unique and encrypted

within the driver’s body

● There are dozens of such samples, need to decrypt

them all

Regin driver - Mission briefing

Regin driver - Virtual addresses and file offsets

SECTION 1

File on disk

SECTION 2

SECTION 3

HEADER

SECTION 1

SECTION 2

SECTION 3

Image in memory

HEADER

● Typical example: data is encrypted in a contiguous block

● Decryption is usually required for the analysis

● Automation enables scaling

Regin driver - Conclusion

Track 6

Decrypt strings

In this track you will practice:

● Analyzing a homebrew crypto algorithm

● Automating decryption of Mach-O files

● Processing multiple encrypted strings, referenced

as function arguments

Decrypt strings - Overview

Initial context:

● Sofacy, a sophisticated APT platform

● Mach-O 64-bit x86_64 executable

● Need to process the sample for high-level analysis

Decrypt strings - Mission briefing

● Single sample: step with the debugger / create a tiny script /

manual decryption

● Many samples: wrap common steps in a module, reuse

● Many complicated samples: upgrade to a static analysis

framework

Decrypt strings - Evolution of the tools

● Process common binary formats: PE, ELF, Mac-O,

raw binary

● Use a disassembler to extract generic code flow

information

○ call, jmp, j*, ret

● Light emulation: stack arguments, registers, simple

arithmetic operations

○ push, pop, sub/add esp, mov, xor, …

● Handle key events

○ call to the decryption function

● Can be implemented with IDA python API, Ghidra as

backends

Decrypt strings - Static analysis, automated

Event: call to the decryption function
call Coder::decryptString(char const*,int)

Prerequisite: function arguments
lea rsi, FILE_NAME

mov edx, 8

Handler:

● extract the location and size of the string

● if the string is already decrypted, skip

● decrypt the string

Decrypt strings - Static analysis, an example

Track 7

Driver

In this track you will practice:

● Processing encrypted strings

○ Preparing the sample for the analysis

● Applying structures, enumerations

● Re-creating a C++ class/structure

● In-depth reverse engineering of a sample

Driver - Overview

Initial context:

● Equation, “the death star of malware galaxy”

● x86 Windows Native PE = driver

● Need a one-liner description of the sample

● All-in-one: pre-process first, then analyze

Driver - Mission briefing

1. Is the sample ready for analysis?

Format: does the format require pre-processing

(custom binary format, stripped headers, memory dump with relocations)?

Code: is the code encrypted, compressed, encoded in any way?

Data: are there encrypted entities (strings, resources, etc.)

1. Decode, decrypt, pre-process

(manual, third-party tools, custom scripts)

1. Analyze the code. When more processing is required, goto 2.

Driver - General workflow

Look for:

● Unique code sequences that load addresses of

encrypted data in operands (combinations of lea,

push, mov, ..)

● Calls to functions that lead to decryption and get

addresses of encrypted data as arguments

● Tables of virtual, relative or any other addresses of

encrypted entities

Finding a way to extract the addresses is the key

to automating the decryption.

Driver - String decryption

The driver injects a DLL, specified in its “Parameters\Excluded” registry value,

or a default “msvcp73.dll”, in one of the running processes: “services.exe”,

“lsass.exe”, “winlogon.exe”

Complete cycle of analysis:

● Processed encrypted entities with a decryption script

● Multiple iterations of “decrypt-reload-analyze”

● Reverse engineered the code to produce the description

Driver - Conclusion

Track 8

Miniduke

In this track you will practice:

● Processing a custom assembly-coded shellcode

● Extracting opcode information without a disassembler

● Reconstructing a custom API hashing algorithm

● Exporting information to IDA via an IDC script

Miniduke - Overview

Initial context:

● Miniduke

● x86 Windows shellcode, extracted from a PDF exploit

● Hand-written assembly

● Strings are already decrypted

● Need to resolve API hashes to enable analysis

Miniduke - Mission briefing

To resolve the API hashes, we need:

● Identify the code sequences that load the API hash values

● Find a way to extract the hash values from these code

sequences

● Reconstruct the hashing function and pre-calculate the

hashes for known names

● Resolve all the hash values discovered

● Transfer resolved function names into the IDB

Miniduke - The plan

● Where clever automation fails, simpler code may succeed

● Manual extraction of operands - know the format

● Reconstruction of a custom API hashing function

○ Hashes are good IOCs

● IDC is a universal medium for exporting to IDA

Miniduke - Conclusion

Track 9

Rocra

In this track you will practice:

● Extracting a binary payload from the RTF document

● Analyzing an exploit’s shellcode payload

● Extracting the final payload from the document

Rocra - Overview

Initial context:

● Red October, a large scale APT operation

● Victims received a weaponized document

● CVE-2010-3333 pFragments vulnerability

● Need to analyze the exploit’s code to extract the final payload

Rocra - Mission briefing

Basic rules:

● Control words (tags) are placed in groups, surrounded by {braces}

● Each control word starts with the backslash symbol \

● Most of the binary data, except for the \bin control words,

is stored as hexadecimal strings

Rocra - RTF format

Rocra - Solution for exercise 2

00 00 00 30

alah

00 00 03 00

alah

‘0’

00 00 00 39

alah

00 00 03 90

alah

‘9’

shl 4

shl 4

Rocra - Solution for exercise 2

00 00 00 61

alah

00 00 06 10

alah

‘a’ 00 00 06 A0

alah

00 00 00 46

alah

00 00 04 60

alah

‘F’ 00 00 04 F0

alah

shl 4

shl 4

add 90h

add 90h

● Extracting binary payloads from RTF files

● Exploit payloads are usually similar

● Analyzing the code allows to automate payload extraction

● API hash values and algorithm provide input to hunting

and clustering

Rocra - Conclusion

Track 10

Cobalt

In this track you will practice:

● Using oletools to inspect an OLE2 container

Cobalt - Overview

Initial context:

● Cobalt, a financially motivated APT group

● OLE2 file embedded in an RTF document

● CVE-2017-11882, Equation editor exploit

● Extract the payload

Cobalt - Mission briefing

● RTF documents are used to deliver embedded payloads

● OLE2 objects require more complicated tools (oletools, for example)

● DOC, XLS, PPT, MSI and many other formats are OLE2-based

Cobalt - Conclusion

Track 11

Cloud Atlas

In this track you will practice:

● Extracting binary data from a crafted RTF document

● Using oletools to inspect an OLE2 container

● Analyzing binary and scriptable (VBS) payloads

Cloud Atlas - Overview

Initial context:

● Cloud Atlas, advanced cyber espionage actor

● Initial infection vector: malicious RTF document

● Multiple layers: binary payload, VBS wrapper

● Extract the payload

Cloud Atlas - Mission briefing

● Multi-stage attacks are frequently used by malicious actors

● Dissecting all the stages may provide additional indicators

● External and internal IDA scripting can replace routine tasks

● Unique complicated RTF samples can be processed by hand

Cloud Atlas - Conclusion

Track 12

Miniduke PDF

In this track you will practice:

● Analyzing a malicious PDF document

● Inspecting a ROP-building Javascript

● Reconstructing a ROP chain

Miniduke PDF - Overview

Initial context:

● Miniduke, the one from Track 08

● Initial infection vector: malicious PDF document

● No executable code, but a complete ROP chain

● Practice reconstructing the code execution chain

Miniduke PDF - Mission briefing

● Return Oriented Programming

● When the stack is not executable but still writable, you can change return addresses

● Set return addresses to tiny code sequences - “rop gadgets” - chained by a series or RETs

● Combine the gadgets to emulate the required business logic

Miniduke PDF - ROP chain

0x4109..
xor eax, eax

ret

0x4121..
mov al, [esi]

ret

...

● ASLR was created to mitigate the risk, now the modules have random base addresses

● Leaked pointer into the module (i.e. data section) allows to bypass ASLR

● No ASLR: look for arrays of static return addresses into known image base of non-relocatable

libraries

● ASLR: look for the code that builds such arrays using a computed image base value (our JS!)

Miniduke PDF - ROP chain

● Analysis of PDF files

● Basics of return-oriented programming

● Extracting the ROP gadgets

● Reconstructing the ROP chain

Miniduke PDF - Conclusion

Track 13

Ragua Py2exe

In this track you will practice:

● Extracting a py2exe binary

● Decompiling Python bytecode

Ragua - Overview

Initial context:

● Ragua, an extensive espionage framework in Python

● Binaries are Py2exe compiled bytecode

● Need to extract the bytecode (.pyc)

● Then, need to decompile the bytecode

Ragua Py2exe - Mission briefing

● Python: uncompyle6, python-decompile3

● .NET: dnSpy, ILspy, .NET reflector

● Java: jad(old), Jeb decompiler

● Visual Basic: VB decompiler

● Lua: luadec

Ragua Py2exe - Decompiling bytecode

● Bytecode: decompilers required

● Py2exe binaries can be extracted using the same Python version

● Resulting source code is almost identical to the original

Ragua Py2exe - Conclusion

Track 14

Cridex

In this track you will practice:

● Dynamically unpacking / decrypting Windows executables

Cridex - Overview

Initial context:

● Major financial cyberthreat (later Dridex)

● Malicious attachments sent by e-mail

● Binaries are protected with a polymorphic layer

● Need to extract the payload

Cridex - Mission briefing

Major types of protections (protection and/or compression):

● Replaces the current EXE image with the payload:

Set write breakpoints on major locations: MZ/PE header, start of the code section

Trace the source of the memory that is copied there

● Allocates dynamic memory for the original image, updates the existing section:

Set code execution breakpoints on major image startup events:

user mode: LoadLibraryA, GetProcAddress

kernel mode: PsCreateSystemThread

Trace the caller’s location and look for non-image, RWE and/or newly allocated memory

Cridex - Dynamic decoding: the plan

Cridex - The Disclaimer

Beware that after this exercise you will need to revert your

virtual environment to the initial state and your progress on

previous exercises in the virtual environment will not be saved.

● Polymorphic machine-generated protections may be removed

dynamically

● Most of the process can be automated in a debugger-based

tool, debugger plugin or emulators

● Approach is universal, the key is in the correct breakpoint

location

Cridex - Conclusion

Track 15

Carbanak

In this track you will practice:

● Analyzing and dynamically unpacking / decrypting Windows .NET executables

Carbanak - Overview

Initial context:

● APT-style financially motivated actor

● Malicious samples were sent by e-mail

● Payload is wrapped in protective layers

● Need to extract the payload

Carbanak - Mission briefing

Carbanak - The Disclaimer

Beware that after this exercise you will need to revert your

virtual environment to the initial state and your progress on

previous exercises in the virtual environment will not be saved.

● Analyzing .NET code: “analyze”, cross-references

● Debugging multiple stages

● Loading order may need to be preserved

Carbanak - Conclusion

● Analyzing .NET code: “analyze”, cross-references

● Debugging multiple stages

● Loading order may need to be preserved

Carbanak - Conclusion

Track 16

Snake

In this track you will practice:

● Analyzing Golang samples

● Mapping basic Golang structures

● Extracting and decrypting Golang string literals

Snake - Overview

Initial context:

● Ransomware, used to attack industrial companies

● Samples are unique, generated for each victim

● Strings are encrypted

● Written in Golang

● Need to decrypt the strings

Snake - Mission briefing

● Multiple return values

func Parse(layout, value string) (Time, error)

● Strings are condensed in a single buffer

● Arrays and []slices of arbitrary types

● The runtime and compiler are open source

● IDA’s decompiler leads to more confusion

Snake - Reversing Golang

● Python’s regular expressions can be applied to binary data

● Find the prolog instruction: b“\x64\x8B\x0D\x14\x00\x00\x00” (mov ecx, large fs:14h)

● Parentheses () form groups that can be addressed within each match

● Dots . match any byte, and .{exact} or .{min,max} allow to match/skip ranges of bytes

Snake - Let’s re

● Basic Golang runtime structures

● String slices

● Addressing multiple return values

● Hard to analyze without auto-analysis

Snake - Conclusion

The end

