
Hooking Java Methods

In Android application penetration testing, understanding how apps behave at runtime is essential. This is where dynamic analysis becomes

particularly valuable, o�ering insights that static analysis may overlook. One of the most powerful techniques in dynamic analysis (and the focus of this

section) is Dynamic Code Instrumentation.

Unlike static analysis, dynamic instrumentation enables us to observe, trace, and modify an application's behavior during execution without altering its

original source code. This technique is invaluable for bringing hidden issues and vulnerabilities to the surface, understanding complex behavior, and

ultimately assessing the security of an application under real-world conditions.

Applications of Code Instrumentation

Application Description

Performance Analysis Instrumentation allows developers to measure the execution time of di�erent parts of the code, identify bottlenecks, and optimize performance.

Debugging By inserting logging statements or breakpoints, developers can trace the execution �ow and isolate bugs.

Behavioral Analysis Observing how an application reacts to various inputs provides insights into functionality and areas for improvement.

Security Analysis In penetration testing, instrumentation reveals how an app interacts with user data and uncovers vulnerabilities that attackers can exploit.

In the following section, we will demonstrate a technique for capturing the return value of a Java method using a tool called Frida—a dynamic

instrumentation toolkit widely used by developers, reverse engineers, and security researchers. It enables the injection of JavaScript or native code

directly into the memory of running Android processes.

Method hooking, a core technique in dynamic analysis, allows testers to intercept method calls to observe inputs and outputs, alter return values, or

change parameters. In this section, we will focus speci�cally on intercepting and logging a method's return value.

This example will primarily use an Android Virtual Device (AVD), although the process is compatible with any physical or emulated Android device. Let’s

begin by connecting to the device via ADB and installing the application.

rl1k@htb[/htb]$ adb connect
rl1k@htb[/htb]$ adb install myapp.apk

Performing Streamed Install
Success

Running the application, we see that it is an online shopping app that allows users to browse and purchase products.

Hooking Java Methods

✎

In the top-right corner of the screen, there is a Discount code �eld where users can enter a promotional code to receive a discount. Let's open the

application using JADX to examine its source code.

rl1k@htb[/htb]$ jadx-gui supermarket.apk

The source code reveals that class and method names have been obfuscated. However, upon analyzing the onTextChanged() method within the app's

MainActivity, we can deduce that it listens for input changes in a particular �eld and stores the input string in the variable obj.

Code: java

String obj = MainActivity.this.f2075q.getText().toString();

The code then performs a decryption operation using keys and algorithms sourced from native code. It compares the user's input to the result of this

decryption:

Code: java

if (!obj.equals(new String(cipher.doFinal(Base64.decode(stringFromJNI, 0)), "utf-8")))

Given that the discount code �eld is the only visible input on the app's screen, this code likely handles that feature. To investigate further, we'll use Frida

to hook into the method that processes the comparison—speci�cally the return value of cipher.doFinal(), which likely contains the correct discount

code. Before proceeding with our script, let's brie�y review how Frida interacts with Java code.

1. Injecting Code into Running Processes
Frida allows for the injection of arbitrary code into active processes. On Android and other Linux-based systems, this is typically done using ptrace,

though equivalent mechanisms exist on other platforms. Once injected, Frida operates within the target application's runtime, enabling custom scripts

to execute alongside the app's native code.

2. Bridging Di�erent Runtime Environments

Hooking Java Methods

✎

https://duktape.org/
https://duktape.org/
https://v8.dev/
https://v8.dev/
https://www.ibm.com/docs/en/b2b-integrator/6.1.1?topic=management-java-virtual-machine
https://www.ibm.com/docs/en/b2b-integrator/6.1.1?topic=management-java-virtual-machine

Frida acts as a bridge between its embedded JavaScript engine (Duktape or V8) and the target application's Java Virtual Machine (JVM). This bridge

allows JavaScript code to perform meaningful actions within the app's Java environment, such as invoking methods, accessing �elds, and modifying

class behavior at runtime.

3. Manipulating Java Objects and Classes
Frida uses a technique known as method hooking, which intercepts calls to speci�c methods of Java classes. When a method is hooked, Frida redirects

the call to a handler function de�ned in JavaScript. There, we can inspect or modify the arguments, execute the original method, or alter the return

value. This capability is crucial for dynamic analysis, enabling real-time inspection and modi�cation of the application's behavior.

4. Runtime Type Information
Runtime Type Information is a technology that allows applications (and, by extension, tools like Frida) to dynamically query and interact with objects,

regardless of their compile-time types. This is crucial for Frida's operation, as it needs to inspect, modify, and interact with various objects and classes

at runtime. Frida leverages Runtime Rype Information (RTTI), available within the JVM, to interact with Java objects and perform the previously

mentioned operations.

Building the Script

Now that we have an understanding of how Frida uses JavaScript to hook into method calls, the next step is to gather the information needed to hook

the Cipher.doFinal() method. Speci�cally, we need to identify the method;s argument types and the full package name of the Cipher class. A quick

search for Cipher.doFinal() android provides the following as the �rst result.

This is Android's o�cial documentation for the Class Cipher. Right at the top of the screen, we notice the class's package name is

javax.crypto.Cipher.

As we continue to read through the documentation, we come to the section Public Methods. It includes the method signatures available within the

Cipher class, showcasing the diversity of overloads for handling di�erent operations. Looking at the table on the right-side of the page, we can see

seven di�erent methods with the name doFinal().

✎

https://duktape.org/
https://duktape.org/
https://v8.dev/
https://v8.dev/
https://www.ibm.com/docs/en/b2b-integrator/6.1.1?topic=management-java-virtual-machine
https://www.ibm.com/docs/en/b2b-integrator/6.1.1?topic=management-java-virtual-machine
https://en.wikipedia.org/wiki/Run-time_type_information
https://en.wikipedia.org/wiki/Run-time_type_information
https://developer.android.com/reference/javax/crypto/Cipher#public-methods_1
https://developer.android.com/reference/javax/crypto/Cipher#public-methods_1

We already know that the speci�c doFinal() method used in the app takes only one argument, which suggests it is the public final byte[]

doFinal(byte[] input) variant. To write an e�ective Frida script, it's essential to identify both the method's signature (including the number and type

of parameters) and the class that implements it. In this case, the method accepts a single parameter of type byte[].

With both the method signature and the class's package name con�rmed, we can now write our hook. Create a �le named snippet.js and add the

following JavaScript code:

Code: js

// Initiates a Frida script to interact with Java classes and methods.

Java.perform(function () {

// Accesses the Cipher class from the Java Cryptography API.

var Cipher = Java.use('javax.crypto.Cipher');

// Hooks into the doFinal method of the Cipher class that processes a byte array.

 Cipher.doFinal.overload('[B').implementation = function (input) {

// Executes the original doFinal method with the given input and stores the result.

var result = this.doFinal(input);

// Creates a new String object from the result byte array assuming it's UTF-8 encoded.

var decryptedString = Java.use("java.lang.String").$new(result, "UTF-8");

// Logs the decrypted string to the console.

 console.log("Decrypted string: " + decryptedString);

// Returns the decryption result to ensure the app's functionality remains unaffected.

return result;

};

});

Let's analyze the the script.

Instruction Description

Java.perform(function () {...}) The Java.perform is a Frida function that ensures the enclosed code is executed within the Java
Virtual Machine (JVM). This is necessary for interacting with Java classes and methods in the targeted
application.

var Cipher = Java.use('javax.crypto.Cipher') The Java.use function is part of Frida's Java API, allowing the script to interact with Java classes. This
line creates a reference to the javax.crypto.Cipher class from the Java Cryptography API that
provides functionality for encryption and decryption operations.

Cipher.doFinal.overload('[B').implementation =
function (input) {...}

This line of code hooks into the doFinal method of the Cipher class, speci�cally targeting the
overload that takes a byte array ([B]) as input. The overload function speci�es which version of the
method to hook based on its parameters, and the implementation instruction is used to de�ne a
new implementation for the hooked method.

✎

var result = this.doFinal(input) Inside the custom implementation, the snippet �rst calls the original doFinal method with the
provided input (the encrypted data) to perform decryption. The result of this operation, which is a
decrypted byte array, is stored in the variable result.

var decryptedString =
Java.use("java.lang.String").$new(result, "UTF-8")

After the decryption, the script creates a new String object from the decrypted byte array, assuming
the data is encoded in UTF-8. This step converts the binary data into a format readable for logging.

console.log("Decrypted string: " +
decryptedString)

The decrypted string is logged and printed to the console.

return result Finally, the script returns the original decryption result so that the app's functionality is not disrupted by
the Frida script. This allows it to continue working with the decrypted data as if the hook was not in
place.

Once the script is created, we can move on to setting up Frida. As a client-server tool, Frida requires the server to be installed on the device and the

client to be installed on our host machine. Attention should be given to installing the same version on both sides, or there will be di�culties with

running the snippets. Start by downloading the correct version from the o�cial GitHub project.

rl1k@htb[/htb]$ wget https://github.com/frida/frida/releases/download/16.1.11/frida-server-16.1.11-android-arm64.xz

<SNIP>
frida-server-16.1.11-android-ar 100%[==>] 14,85M 1,66MB/s in 17s
2024-02-24 22:47:00 (907 KB/s) - ‘frida-server-16.1.11-android-arm64.xz’ saved [15566872/15566872]

Attention should also be given to selecting the correct architecture and matching Frida version. Since we've already installed Frida 16.1.11 on our host

machine, it's important to use the same version for the Frida server running on the Android device. Additionally, the server binary must match the CPU

architecture of the device—common architectures include arm, arm64, x86, and x86_64. In this example, the device uses an ARM64 architecture, so

we'll download frida-server-16.1.11-android-arm64.xz.

Once downloaded, we'll decompress the �le, rename it for convenience, push it to a world-writable directory on the device, assign execution

permissions, and start the server.

rl1k@htb[/htb]$ sudo apt install xz-utils
rl1k@htb[/htb]$ unxz frida-server-16.1.11-android-arm64.xz
rl1k@htb[/htb]$ mv frida-server-16.1.11-android-arm64 frida-server
rl1k@htb[/htb]$ adb push frida-server /data/local/tmp/
rl1k@htb[/htb]$ adb shell chmod +x /data/local/tmp/frida-server
rl1k@htb[/htb]$ adb shell /data/local/tmp/frida-server &

[1] 99344

The output of the last command indicates the process has started and is running in the background. Issue the following command to con�rm the Frida

server's version.

rl1k@htb[/htb]$ adb shell /data/local/tmp/frida-server --version

16.1.11

After con�rming the server version 16.1.11, we can now install the same version of Frida client locally.

rl1k@htb[/htb]$ pip3 install frida-tools
rl1k@htb[/htb]$ pip3 install frida==16.1.11

<SNIP>
Installing collected packages: frida
 Attempting uninstall: frida

Hooking Java Methods

Hooking Java Methods

Hooking Java Methods

Hooking Java Methods

✎

https://github.com/frida/frida/releases
https://github.com/frida/frida/releases

 Attempting uninstall: frida
 Found existing installation: frida 16.2.1
 Uninstalling frida-16.2.1:
 Successfully uninstalled frida-16.2.1
Successfully installed frida-16.1.11

Now that everything is set up, issue the following command to hook the method.

rl1k@htb[/htb]$ frida -U -l snippet.js -f com.example.supermarket

 / _ | Frida 16.1.11 - A world-class dynamic instrumentation toolkit
 | (_| |
 > _ | Commands:
 /_/ |_| help -> Displays the help system
 object? -> Display information about 'object'
 exit/quit -> Exit

 More info at https://frida.re/docs/home/

 Connected to Android Emulator (id=emulator-5554)
Spawned `com.example.supermarket`. Resuming main thread!
[Android Emulator::com.example.supermarket]->

When the app starts, enter a random input to invoke the onTextChanged() method

Back in our host machine's terminal, the decrypted string is displayed—indicating a successful hook of the doFinal() method.

rl1k@htb[/htb]$

<SNIP>
 Connected to Android Emulator (id=emulator-5554)
Spawned `com.example.supermarket`. Resuming main thread!
[Android Emulator::com.example.supermarket]-> Decrypted string: HTB{Fr1d4_ho0k1ng_1ntro!}

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

Hooking Java Methods

Hooking Java Methods

UK 36ms

✎

Start Instance

 / 1 spawns left

Waiting to start...

+ 5 What is the value of "Discount code" ?

+10 Streak pts Submit  hook_java_method.zip

Questions
Answer the question(s) below to complete this Section and earn cubes!

Cheat Sheet􏅜

􏆲

Submit your answer here...

􏄞

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Enumerating and Exploiting Installed Apps

Introduction

 Enumerating Local Storage

 Exported Activities

 Insecure Logging

 Pending Intents

 Exploiting WebViews

 Insecure Library Load Through Deep Linking

Dynamic Code Instrumentation

 Hooking Java Methods

 Altering Method Values

 Hooking Native Methods

 Bypassing Detection Mechanisms

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

Enable step-by-step solutions for all questions

✎

https://academy.hackthebox.com/storage/modules/249/hook_java_method.zip
https://academy.hackthebox.com/storage/modules/249/hook_java_method.zip
https://academy.hackthebox.com/storage/modules/249/hook_java_method.zip
https://academy.hackthebox.com/storage/modules/249/hook_java_method.zip
https://academy.hackthebox.com/storage/modules/249/hook_java_method.zip
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821

 Authentication Token Manipulation

Intercepting HTTP/HTTPS Requests

 Intercepting API Calls

 IDOR Attack

 SSL/TLS Certi�cate Pinning Bypass

Skills Assessments

 Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954

