
SSL/TLS Certi�cate Pinning Bypass

SSL/TLS certificate pinning is a common technique used by developers to enhance the security of mobile applications.It ensures that the app

communicates only with a speci�c, trusted server by verifying the server’s certi�cate against a known copy embedded in the app. However, if

improperly implemented or combined with other vulnerabilities, this security feature may create a false sense of protection. Understanding how to

bypass SSL pinning is essential for penetration testers evaluating the security of an application’s network communication.

SSL (Secure Sockets Layer) pinning—more accurately referred to as TLS (Transport Layer Security) pinning, as SSL is now deprecated—is a

security measure designed to prevent man-in-the-middle (MITM) attacks. It involves pinning or hardcoding the certi�cate or public key of a known,

trusted server into an application. This way, the app can verify the identity of the server it's connecting to, ensuring that the data is being sent to and

received by the correct entity.

When an app communicates over HTTPS, it relies on a chain of trust established through Certi�cate Authorities (CAs). A CA is an entity that issues

digital certi�cates, which are used verify the identity of participants in secure communications over the Internet. The CA issues certi�cates to entities

after verifying their identity, and the app trusts the certi�cate if it is signed by a known CA. However, this trust model is not foolproof. If a CA is

compromised or impersonated, an attacker mmight intercept and alter communications. Certi�cate pinning strengthens this trust model by having the

app carry a prede�ned copy of the server's certi�cate or public key. When the app makes a network request, it compares the received server's

certi�cate (or public key) with the one it has pinned. If they match, the app can trust the server. If not, the app can assume a potential MITM attack and

abort the connection. Certi�cate pinning can be done by hardcoding the entire digital public certi�cate or only the public key (or a hash of the public

key) of the server in the app. Both are considered e�ective methods to enhance the security of an application and prevent man-in-the-middle (MITM)

attacks.

Despite its advantages, SSL/TLS pinning can still be bypassed using dynamic instrumentation tools like Frida. These allow attackers to modify the app's

behavior at runtime, including bypassing security checks. In this example, we'll demonstrate how to bypass certi�cate pinning using an Android Virtual

Device (AVD), although the method applies equally to physical devices. Begin by connecting to the AVD via ADB and installing the application:

rl1k@htb[/htb]$ adb connect
rl1k@htb[/htb]$ adb install myapp.apk

Performing Streamed Install
Success

Device Setup

Before launching the app, con�gure the hosts �le on the AVD to resolve the target domain to the appropriate IP address. First, boot the AVD in writable

mode. Assuming you’ve created a rooted AVD named Pixel_3a_API_34 and that Android SDK is installed in your home directory, run the following:

rl1k@htb[/htb]$ ~/Android/sdk/emulator/emulator -avd Pixel_3a_API_34 -netdelay none -netspeed full -dns-server 8.8.8.8 -writable-system

INFO    | Android emulator version 33.1.23.0 (build_id 11150993) (CL:N/A)
INFO    | Found systemPath /Users/bertolis/Library/Android/sdk/system-images/android-34/google_apis/arm64-v8a/
INFO    | Storing crashdata in: , detection is enabled for process: 14952
INFO    | Duplicate loglines will be removed, if you wish to see each individual line launch with the -log-nofilter flag.
INFO    | Changing default hw.initialOrientation to portrait
INFO    | Increasing RAM size to 2048MB
WARNING | System image is writable
<SNIP>

Once the device has started, issue the following commands. Replace the IP address 192.168.5.183 with that of the remote server.

SSL/TLS Certi�cate Pinning Bypass

SSL/TLS Certi�cate Pinning Bypass

SSL/TLS Certi�cate Pinning Bypass

✎

https://www.cloudflare.com/learning/ssl/what-is-ssl/
https://www.cloudflare.com/learning/ssl/what-is-ssl/
https://www.digicert.com/blog/what-is-a-certificate-authority
https://www.digicert.com/blog/what-is-a-certificate-authority


rl1k@htb[/htb]$ adb root
rl1k@htb[/htb]$ adb remount
rl1k@htb[/htb]$ adb shell mount -o rw,remount /system
rl1k@htb[/htb]$ adb shell 'echo "192.168.5.183   www.chatapp.com" >> /system/etc/hosts'
rl1k@htb[/htb]$ adb shell mount -o ro,remount /system
rl1k@htb[/htb]$ adb shell reboot

This will remount the /system partition in writable mode, allowing us to edit �les located within it. After editing the hosts �le, the process remounts the

partition in read-only mode and reboots the device. Once the domain has been added to the hosts �le, any requests from the app to this domain will be

redirected to the IP address 192.168.1.183. After the device restarts, we can run the application. Replace with the server's PORT while using the app if

necessary.

Bypassing SSL Pinning

Running the application, we see that it's an app designed for chatting and sending encrypted messages.

Let's examine the application's source code using JADX, and �nd out if the communication with the remote server is secure.

rl1k@htb[/htb]$ jadx-gui myapp.apk

The sendMessage() method saves encrypted messages by calling saveMessageToDatabase(). It also invokes the method:

SSL/TLS Certi�cate Pinning Bypass

✎



Code: java

MainActivity.this.m126lambda$sendMessage$1$comhacktheboxchatappMainActivity(obj);

This in turn calls sendToServer(), whose return value is the message written to the database.

The snippet above sends a POST request to https://www.chatapp.com:8000/message and includes the user's input, str, as a parameter. Notably, it

also implements certi�cate pinning via the line:

Code: java

CertificatePinner.Builder().add("www.chatapp.com", certHash());

Searching for CertificatePinner leads to documentation for the okhttp3 library:

Here, we �nd that CertificatePinner exists as a class within the okhttp3 package.

According to the documentation, CertificatePinner pins a certi�cate's Subject Public Key Info using either base64 SHA-256 (commonly used in

HTTP Public Key Pinning) or SHA-1 hashes. The usage pattern .add(hostname, "sha256/...") matches the one found in the application. Based on

this, the pinned host is www.chatapp.com, and the certi�cate hash is returned from the method certHash(). This con�rms the app uses both HTTPS

and certi�cate pinning to secure communication. Let's try to intercept this request using Burp Suite. Follow the same proxy setup steps outlined in the

previous Intercepting API Calls section. Then, send a message (e.g., hello) from the app.

Although the request was issued, Burp's Intercept tab shows nothing. However, the Event Log shows activity:

✎



Although the request was issued, Burp's Intercept tab shows nothing. However, the Event Log shows activity:

The alert indicates that the client does not trust or recognize the server's TLS certi�cate. We can resolve this issue by creating a CA certi�cate in Burp,

installing it on the device, and con�guring the application to trust this custom certi�cate. In Burp, we navigate to Proxy -> Proxy Settings, and under

the Proxy listeners section, we click on Regenerate CA certificate and click Yes to the pop-up window.

Next, click on Import/export CA certificate, select Certificate in DER format under the Export section, and follow the steps to save the �le.

In this example, we will save the �le on the Desktop using the name BurpCA.cer. Then, we can exit the Settings window and upload and install the

exported �le on the device. We can upload the �le using ADB.

rl1k@htb[/htb]$ adb push ~/Desktop/BurpCA.cer /sdcard/Download/

/Users/bertolis/Desktop/BurpCA.cer: 1 file pushed, 0 skipped. 0.3 MB/s (939 bytes in 0.003s)

SSL/TLS Certi�cate Pinning Bypass

✎



Now, we can install the certi�cate by navigating to Settings -> Security and privacy -> More security & privacy -> Encryption & credentials ->

Install a certificate -> CA certificate -> INSTALL ANYWAY, and tap the �le BurpCA.cer. The message CA certificate installed should be

displayed on the screen.

From here, we can inspect the app's network con�guration using APKTool:

rl1k@htb[/htb]$ apktool d ChatApp.apk
rl1k@htb[/htb]$ ls -l ChatApp/res/xml/

total 24
-rw-r--r--  1 bertolis  bertolis   62 Mar  7 21:05 backup_rules.xml
-rw-r--r--  1 bertolis  bertolis  108 Mar  7 21:05 data_extraction_rules.xml
-rw-r--r--  1 bertolis  bertolis  304 Mar  7 21:05 network_security_config.xml

This reveals the �le network_security_config.xml, which contains the network security con�gurations of the app. Therefore, it can be used to specify

custom trusted Certi�cate Authorities (CA).

rl1k@htb[/htb]$ cat ChatApp/res/xml/network_security_config.xml

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
    <base-config cleartextTrafficPermitted="true">
        <trust-anchors>
            <certificates src="system" />
            <certificates src="@raw/certificate" />
        </trust-anchors>
    </base-config>
</network-security-config>% 

The line <certificates src="@raw/certificate" /> indicates that the app stores and trusts a certi�cate located in ./raw/certificate. Listing this

directory shows the following results.

rl1k@htb[/htb]$ ls -l ChatApp/res/raw

-rw-r--r--  1 bertolis  bertolis  955 Mar  7 21:05 certificate.der

Let's patch the application and replace this certi�cate with the one we exported from Burp.

SSL/TLS Certi�cate Pinning Bypass

SSL/TLS Certi�cate Pinning Bypass

SSL/TLS Certi�cate Pinning Bypass

SSL/TLS Certi�cate Pinning Bypass

✎



rl1k@htb[/htb]$ cp BurpCA.cer ChatApp/res/raw/certificate.der

Next, we re-build and sign the app using the following commands.

rl1k@htb[/htb]$ apktool b ChatApp
rl1k@htb[/htb]$ echo -e "password\npassword\njohn doe\ntest\ntest\ntest\ntest\ntest\nyes" > params.txt
rl1k@htb[/htb]$ cat params.txt | keytool -genkey -keystore key.keystore -validity 1000 -keyalg RSA -alias john
rl1k@htb[/htb]$ zipalign -p -f -v 4 ChatApp/dist/ChatApp.apk myChatApp.apk
rl1k@htb[/htb]$ echo password | apksigner sign --ks key.keystore myChatApp.apk

Keystore password for signer #1:

Uninstall ChatApp and install the patched myChatApp. We already know the app's package name from our earlier analysis with JADX.

rl1k@htb[/htb]$ adb uninstall com.hackthebox.chatapp
rl1k@htb[/htb]$ adb install myChatApp.apk

Performing Incremental Install
Serving...
All files should be loaded. Notifying the device.
Success
Install command complete in 125 ms

After replacing the trusted certificate.der �le in network_security_config.xml with the one exported from Burp, sending a message and

intercepting it with Burp no longer triggers any alert messages or errors. This indicates that the application now trusts the Burp certi�cate. However, to

fully intercept the requests in plaintext, we also need to address certi�cate pinning. The app likely uses a hardcoded SHA256 hash of the server's p

public key, and it may still block the connection if the received certi�cate doesn't match this value. To bypass this, we must replace the hardcoded hash

with the SHA256 hash of the Burp certi�cate.

As a �rst step, we'll use Frida to hook the return value of the certHash() method and con�rm that it returns the expected SHA256 value. Let's create a

�le named snippet.js and add the following content:

Code: js

// Wait for 5 seconds before executing the function to ensure the Java environment is fully loaded.

setTimeout(function() {

// Perform operations within the Java VM

    Java.perform(function () {

// Reference the MainActivity class of the target application

var MainActivity = Java.use("com.hackthebox.chatapp.MainActivity");

        

// Check if the certHash method exists in MainActivity

if (MainActivity.certHash) {

// Override the implementation of certHash method

            MainActivity.certHash.implementation = function () {

// Call the original certHash method and store its return value

var returnValue = this.certHash();

// Log the original return value of certHash() method

                console.log("\ncertHash() return value: " + returnValue);

// Return the original certificate hash value without making any changes

return returnValue;

};

// Log a message indicating successful hooking of the certHash method

            console.log("certHash method hooked successfully.");

} else {

// Log a message if the certHash method cannot be found in MainActivity

SSL/TLS Certi�cate Pinning Bypass

SSL/TLS Certi�cate Pinning Bypass

SSL/TLS Certi�cate Pinning Bypass

✎



            console.log("certHash method not found.");

}

});

// Set a delay of 5000 milliseconds (5 seconds) before executing the above script

}, 5000);

Then, we execute the following command to run the script, and once the app is started, we tap the SEND button..

rl1k@htb[/htb]$ frida -U -l snippet.js -f com.hackthebox.chatapp                                             14s ≡
     ____
    / _  |   Frida 16.1.11 - A world-class dynamic instrumentation toolkit
   | (_| |
    > _  |   Commands:
   /_/ |_|       help      -> Displays the help system
   . . . .       object?   -> Display information about 'object'
   . . . .       exit/quit -> Exit
   . . . .
   . . . .   More info at https://frida.re/docs/home/
   . . . .
   . . . .   Connected to Android Emulator 5554 (id=emulator-5554)
Spawned `com.hackthebox.chatapp`. Resuming main thread!                 
[Android Emulator 5554::com.hackthebox.chatapp ]-> certHash method hooked successfully.

certHash() return value: sha256/dsWDLWseOwJ5FOuYjjooIdLtY49WuQAYWE4V9ZkuhHE=

The return value con�rms that it's the SHA256 hash of the public key. Let's change the return value to the SHA256 hash of the Burp's certi�cate. First,

we have to extratct it by issueing the following command.

rl1k@htb[/htb]$ openssl x509 -in BurpCA.cer -pubkey -noout | openssl rsa -pubin -outform der | openssl dgst -sha256 -binary | openssl enc -bas

writing RSA key
oIRt9h6JBHnXEXpbd3R/SocR4j4Clv2+lyZXssKOFTA=

Next, update the script to look like this:

Code: js

// Wait for 5 seconds before executing the function to ensure the Java environment is fully loaded.

setTimeout(function() {

// Perform operations within the Java VM

    Java.perform(function () {

// Reference the MainActivity class of the target application

var MainActivity = Java.use("com.hackthebox.chatapp.MainActivity");

        

// Check if the certHash method exists in MainActivity

if (MainActivity.certHash) {

// Override the implementation of certHash method

            MainActivity.certHash.implementation = function () {

// Call the original certHash method and store its return value

var returnValue = this.certHash();

// Define a new certificate hash value

var newCertHash = "sha256/oIRt9h6JBHnXEXpbd3R/SocR4j4Clv2+lyZXssKOFTA=";

// Log the original return value of certHash() method

                console.log("\ncertHash() return value: " + returnValue);

// Log the new certificate hash value you wish to use

                console.log("certHash() new value: " + newCertHash);

// Return the original certificate hash value without making any changes

return newCertHash;

}

SSL/TLS Certi�cate Pinning Bypass

SSL/TLS Certi�cate Pinning Bypass

✎



};

// Log a message indicating successful hooking of the certHash method

            console.log("certHash method hooked successfully.");

} else {

// Log a message if the certHash method cannot be found in MainActivity

            console.log("certHash method not found.");

}

});

// Set a delay of 5000 milliseconds (5 seconds) before executing the above script

}, 5000);

This time, the SHA256 hash oIRt9h6JBHnXEXpbd3R/SocR4j4Clv2+lyZXssKOFTA= will be returned to the application, overriding the original pinned hash.

This forces the app to trust the Burp certi�cate, allowing the request to be intercepted in plaintext. Run the following command to execute the script:

rl1k@htb[/htb]$ frida -U -l snippet.js -f com.hackthebox.chatapp

<SNIP>
   . . . .   Connected to Android Emulator 5554 (id=emulator-5554)
Spawned `com.hackthebox.chatapp`. Resuming main thread!                 
[Android Emulator 5554::com.hackthebox.chatapp ]-> certHash method hooked successfully.

certHash() return value: sha256/dsWDLWseOwJ5FOuYjjooIdLtY49WuQAYWE4V9ZkuhHE=
certHash() new value: sha256/oIRt9h6JBHnXEXpbd3R/SocR4j4Clv2+lyZXssKOFTA=

Just as we anticipated, the parameter message=hello is intercepted successfully. Let's now click on three rows on the right of the window and select

Send to Repeater to then intercept the response of the request. To accomplish this, we �rst need to con�gure our host machine's /etc/hosts �le to

map the domain name www.chatapp.com to the server's IP address.

rl1k@htb[/htb]$ echo "192.168.1.183   www.chatapp.com" | sudo tee -a /etc/hosts > /dev/null

Finally, we navigate to Repeater from the top menu bar and click on Send.

SSL/TLS Certi�cate Pinning Bypass

SSL/TLS Certi�cate Pinning Bypass

✎



We have e�ectively bypasses the certi�cate pinning, as the parameter hiddenParam is ultimately revealed.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

UK 41ms

Start Instance

 / 1 spawns left

Waiting to start...

+ 5  What is the value of the parameter "hiddenParam" found in the server's HTTP response?

+10 Streak pts  Submit   ssl_pinning.zip

Questions
Answer the question(s) below to complete this Section and earn cubes!

Target(s): Click here to spawn the target system!

Cheat Sheet􏅜

􏆲

Submit your answer here...

􏄞

  Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?

Enable step-by-step solutions for all questions

✎

https://academy.hackthebox.com/storage/modules/249/ssl_pinning.zip
https://academy.hackthebox.com/storage/modules/249/ssl_pinning.zip
https://academy.hackthebox.com/storage/modules/249/ssl_pinning.zip
https://academy.hackthebox.com/storage/modules/249/ssl_pinning.zip
https://academy.hackthebox.com/storage/modules/249/ssl_pinning.zip
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2954


 Go to Questions?ဿ

Table of Contents

Enumerating and Exploiting Installed Apps

Introduction

  Enumerating Local Storage

  Exported Activities

  Insecure Logging

  Pending Intents

  Exploiting WebViews

  Insecure Library Load Through Deep Linking

Dynamic Code Instrumentation

  Hooking Java Methods

  Altering Method Values

  Hooking Native Methods

  Bypassing Detection Mechanisms

  Authentication Token Manipulation

Intercepting HTTP/HTTPS Requests

  Intercepting API Calls

  IDOR Attack

  SSL/TLS Certi�cate Pinning Bypass

Skills Assessments

  Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

My Workstation

O F F L I N E

  Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2774
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2782
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2793
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2794
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2795
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2796
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2817
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2818
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2819
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2820
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2821
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2822
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2823
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2824
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2825
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954
https://academy.hackthebox.com/module/249/section/2954

