
Disassembling the APK

As we discussed in the previous section, the Android system uses APKs to distribute and install applications. APK �les are archived �les containing the

source code, assets, and resource �les needed for the app to run. In the following paragraphs, we will analyze the content of an APK �le by using tools

to decompile the app's source code to a more human-readable language, then decode the assets and resources to read any con�guration �les.

To perform this analysis, we will use APKTool — a powerful reverse engineering utility that allows us to decode the APK's resources and disassemble

the compiled �les, enabling inspection and even modi�cation. APKTool also supports rebuilding the APK after changes have been made.

Let's begin by downloading and installing APKTool. It's important to use the latest version to ensure compatibility with apps built using the newest

Android Studio versions. The latest release be found on the o�cial Install Guide for APKTool. Under the Linux section, we can �nd the installation

steps.

Start by right-clicking the wrapper script link and selecting Copy Link Address, then run the following command to download it:

rl1k@htb[/htb]$ wget https://raw.githubusercontent.com/iBotPeaches/Apktool/master/scripts/linux/apktool

Next, click on the latest version link.

Right-click on the latest JAR version (in this example: apktool_2.11.1.jar) and select Copy Link Address. Then, issue the following commands to

complete the installation.

rl1k@htb[/htb]$ wget https://bitbucket.org/iBotPeaches/apktool/downloads/apktool_2.11.1.jar
rl1k@htb[/htb]$ mv apktool_2.11.1.jar apktool.jar
rl1k@htb[/htb]$ sudo mv apktool /usr/local/bin
rl1k@htb[/htb]$ sudo mv apktool.jar /usr/local/bin

Disassembling the APK

Disassembling the APK

✎

https://apktool.org/
https://apktool.org/
https://apktool.org/docs/install
https://apktool.org/docs/install

rl1k@htb[/htb]$ sudo mv apktool.jar /usr/local/bin
rl1k@htb[/htb]$ sudo chmod +x /usr/local/bin/apktool
rl1k@htb[/htb]$ sudo chmod +x /usr/local/bin/apktool.jar

Once installed, we can use APKTool to disassemble an APK and decode its resources:

rl1k@htb[/htb]$ apktool d myapp.apk
rl1k@htb[/htb]$ ls -l myapp

total 16
-rw-r--r-- 1 bertolis bertolis 1779 Jun 15 13:21 AndroidManifest.xml
drwxr-xr-x 3 bertolis bertolis 96 Jun 15 13:21 META-INF
-rw-r--r-- 1 bertolis bertolis 2759 Jun 15 13:21 apktool.yml
drwxr-xr-x 3 bertolis bertolis 96 Jun 15 13:21 assets
drwxr-xr-x 9 bertolis bertolis 288 Jun 15 13:21 kotlin
drwxr-xr-x 6 bertolis bertolis 192 Jun 15 13:21 lib
drwxr-xr-x 4 bertolis bertolis 128 Jun 15 13:21 original
drwxr-xr-x 150 bertolis bertolis 4800 Jun 15 13:21 res
drwxr-xr-x 8 bertolis bertolis 256 Jun 15 13:21 smali
drwxr-xr-x 3 bertolis bertolis 96 Jun 15 13:21 unknown

The myapp directory now contains the decoded contents of the APK. One key �le of interest is AndroidManifest.xml. As we discussed in the Android

Fundamentals module, this �le is encoded in APKs and cannot be read by simply unzipping the APK. Fortunately, APKTool has decoded it, and we can

now examine its contents

Understanding the Manifest

Open the manifest �le using a text editor like vim or vscode:

rl1k@htb[/htb]$ vim myapp/AndroidManifest.xml

Code: xml

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

android:compileSdkVersion="32" android:compileSdkVersionCodename="12"

package="com.example.myapp" platformBuildVersionCode="32"

platformBuildVersionName="12">

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

 <uses-permission android:name="android.permission.MANAGE_EXTERNAL_STORAGE"/>

<application android:allowBackup="true" android:appComponentFactory="androidx.core.app.CoreComponentFactory"

android:dataExtractionRules="@xml/data_extraction_rules" android:fullBackupContent="@xml/backup_rules"

android:icon="@mipmap/ic_launcher" android:label="@string/app_name" android:name="com.example.myapp.Init"

android:networkSecurityConfig="@xml/network_security_config" android:requestLegacyExternalStorage="true"

android:roundIcon="@mipmap/ic_launcher_round" android:supportsRtl="true" android:theme="@style/Theme.MyApp">

<activity android:exported="true" android:name="com.example.myapp.MainActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

<meta-data android:name="android.app.lib_name" android:value=""/>

</activity>

<activity android:exported="true" android:name="com.example.myapp.MenuActivity">

<meta-data android:name="android.app.lib_name" android:value=""/>

<intent-filter>

<action android:name="android.intent.action.VIEW"/>

Disassembling the APK

Disassembling the APK ✎

<category android:name="android.intent.category.DEFAULT"/>

<category android:name="android.intent.category.BROWSABLE"/>

<data android:host="myapp" android:scheme="app"/>

</intent-filter>

</activity>

<provider android:name="com.example.myapp.MyProvider" android:authorities="com.provider"/>

<provider android:authorities="com.example.myapp.androidx-startup" android:exported="false"

android:name="androidx.startup.InitializationProvider">

<meta-data android:name="androidx.emoji2.text.EmojiCompatInitializer" android:value="androidx.startup"/>

<meta-data android:name="androidx.lifecycle.ProcessLifecycleInitializer" android:value="androidx.startup"/>

</provider>

<service

android:name="com.example.myapp.MyService"

android:exported="false"

android:icon="@drawable/ic_launcher" >

</service>

</application>

</manifest>

Package Name
The <manifest> tag contains several important attributes. One of the �rst things to look at is the package name, which uniquely identi�es the

application:

Code: xml

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

android:compileSdkVersion="32" android:compileSdkVersionCodename="12"

package="com.example.myapp" platformBuildVersionCode="32"

platformBuildVersionName="12">

The package name (com.example.myapp) is essential when performing both static and dynamic analysis. From the same snippet, we can see the target

SDK version is 32, which is also valuable information as di�erent Android SDK versions may present di�erent security implications.

Permissions
Apps will sometimes request permissions from the user while running, attempting to access various functionalities. The following snippet shows these

permissions declared in the manifest.

Code: xml

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.MANAGE_EXTERNAL_STORAGE"/>

Overly permissive apps or those with poor security hygiene may request more permissions than necessary, which can introduce risk. For example,

storing sensitive data in external storage may allow other apps to access that data if they also have Read permissions. Below is a table summarizing

some permissions that a pentester should carefully evaluate:

Permissions Description

READ_SMS, SEND_SMS, RECEIVE_SMS Grants the app the ability to read, send, and receive SMS messages. This can be exploited to intercept one-time passwords
(OTPs) used in two-factor authentication or to send unauthorized messages.

READ_CALL_LOG, WRITE_CALL_LOG Allows the app to access and modify the device's call history. This could expose sensitive metadata about the user's
communication patterns or be used to conceal malicious calls.

READ_CONTACTS, WRITE_CONTACTS Provides access to the device's contact list and the ability to alter it. A malicious app could ex�ltrate contact data or inject
fraudulent entries for social engineering or spam purposes.

✎

ACCESS_FINE_LOCATION,
ACCESS_COARSE_LOCATION

Enables the app to access the device's location. This may allow real-time tracking of the user’s physical movements without
consent.

READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

Permits the app to access and modify �les stored on external storage. Sensitive information could be exposed or altered,
especially if improperly secured by the app or the user.

GET_ACCOUNTS Lets the app query the list of accounts registered on the device. This information could be misused to target speci�c accounts
or harvest data for phishing attacks.

CAMERA Provides the app with access to the device's camera hardware. If misused, it could enable covert photo or video capture
without the user's knowledge.

RECORD_AUDIO Grants the app permission to capture audio through the device's microphone. This could be exploited to eavesdrop on
conversations in the background.

INSTALL_PACKAGES,
REQUEST_INSTALL_PACKAGES

Allows the app to trigger package installations via the system installer. If abused, it could lead to silent installation of additional
malicious apps.

SYSTEM_ALERT_WINDOW Enables the app to draw overlays on top of other apps. This can be leveraged to create deceptive UI elements for phishing or
tricking users into performing unintended actions (e.g., clicking "Allow" instead of "Deny").

Application Class
The next element we see is <application>, which contains many attributes.

Code: xml

<application android:allowBackup="true" android:appComponentFactory="androidx.core.app.CoreComponentFactory"

android:dataExtractionRules="@xml/data_extraction_rules" android:fullBackupContent="@xml/backup_rules"

android:icon="@mipmap/ic_launcher" android:label="@string/app_name" android:name="com.example.myapp.Init"

android:networkSecurityConfig="@xml/network_security_config" android:requestLegacyExternalStorage="true"

android:roundIcon="@mipmap/ic_launcher_round" android:supportsRtl="true" android:theme="@style/Theme.MyApp">

An interesting attribute in this manifest is the android:name="com.example.myapp.Init". This attribute is used to specify a custom Application class (a

subclass of the Application class). The Application class and any subclass, like the Init in this example, are instantiated before any other class when

the application process is created. This means the Init class will run immediately when the app starts and before the user interacts. Developers

usually use this for initializations, but penetration testers should pay attention to such classes since, among other reasons that might have a security

impact, they are often used for third-party libraries that require initialization. If these libraries have known vulnerabilities or are not securely con�gured,

they could introduce security risks.

Network Security Con�gurations
Another attribute worth noticing is the android:networkSecurityConfig="@xml/network_security_config". This attribute refers to a �le that

contains network security con�gurations of the app, where we can specify custom trusted Certi�cate Authorities, permit or deny cleartext (HTTP)

tra�c, and other network-related settings. Let's read the content of this �le.

rl1k@htb[/htb]$ vim myapp/res/xml/network_security_config.xml

Code: xml

<?xml version="1.0" encoding="utf-8"?>

<network-security-config>

<domain-config cleartextTrafficPermitted="false">

<domain includeSubdomains="true">192.168.1.20</domain>

<trust-anchors>

<certificates src="@raw/certificate" />

</trust-anchors>

</domain-config>

</network-security-config>

Disassembling the APK

✎

In this example, the attribute cleartextTrafficPermitted="false" indicates that only a secure (HTTPS) connection is allowed for communication

with the domain 192.168.1.20. Also, the element <certificates src="@raw/certificate" /> refers to the custom certi�cate the app trusts for the

secure connection. The certi�cate �le of the app is located in the following directory.

rl1k@htb[/htb]$ ls -l myapp/res/raw

total 8
-rw-r--r-- 1 bertolis bertolis 1029 Jun 15 14:55 certificate.der

The following snippet shows an example of the network_security_config.xml �le. It implies the implementation of a technique called Certi�cate

Pinning, which adds an extra security layer to the app.

Code: xml

<network-security-config>

<domain-config>

<domain includeSubdomains="true">example.com</domain>

<pin-set expiration="2030-12-31">

<pin digest="SHA-256">7HIpactkIAq2Y49orFOOQKurWxmmSFZhBCoQYcRhJ3Y=</pin>

</pin-set>

</domain-config>

</network-security-config>

Certi�cate pinning is a security measure that ensures the application is actually connecting to the intended server and not an imposter. Knowing the

above con�gurations, the pen-tester could use the appropriate techniques to bypass this protection layer and intercept the tra�c. In both cases, the

tester should recon�gure the app to trust another certi�cate that will be used from the proxy tool to intercept the tra�c. Such techniques will be

discussed in later sections.

Components
The next snippet of the manifest shows the activities of the application.

Code: xml

<activity android:exported="true" android:name="com.example.myapp.MainActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

<meta-data android:name="android.app.lib_name" android:value=""/>

</activity>

This declares an activity that can be accessed from other components of the app, other apps, or the system. In the above snippet, the <activity>

element includes the attributes android:exported="true" and android:name="com.example.myapp.MainActivity". The android:name attribute

indicates the name of the Activity, which in case is MainActivity. The android:exported="true" indicates that the activity is accessible from outside

the app, meaning it can be launched by external apps or system components. Because of this, the activity can also be triggered by ADB.

Another important attribute is the <action android:name="android.intent.action.MAIN"/> found under the <intent-filter> element. This

designates the activity as the main entry point of the application, the �rst screen launched when the user taps the app icon. Only one activity in the app

should de�ne this action.

In the snippet below, it shows that the app has two Content Providers and one Service.

Code: xml

Disassembling the APK

✎

<provider android:name="com.example.myapp.MyProvider" android:authorities="com.provider"/>

<provider android:authorities="com.example.myapp.androidx-startup" android:exported="false"

android:name="androidx.startup.InitializationProvider">

<meta-data android:name="androidx.emoji2.text.EmojiCompatInitializer" android:value="androidx.startup"/>

<meta-data android:name="androidx.lifecycle.ProcessLifecycleInitializer" android:value="androidx.startup"/>

</provider>

<service

android:name="com.example.myapp.MyService"

android:exported="false"

android:icon="@drawable/ic_launcher" >

</service>

All of the component declarations mentioned above are valuable to the pentester, as they provide a clearer understanding of the application. By

identifying the application's entry point, the pentester gains a logical starting point for the testing process. Based on the information provided, testers

should begin by examining the com.example.myapp.MainActivity class, which serves as the app’s entry point, as well as the

com.example.myapp.Init class, which extends the Application class. As previously noted, this class runs automatically when the app starts, even

before MainActivity.

The android:exported="true" attribute of an Activity is critical, as it indicates that the component is accessible to other apps. Among other tests, a

pentester must determine whether sensitive information could leak when a malicious application attempts to access this exported Activity.

The following snippet reveals a Deep Link that is used from the MenuActivity.

Code: xml

<activity android:exported="true" android:name="com.example.myapp.MenuActivity">

<meta-data android:name="android.app.lib_name" android:value=""/>

<intent-filter>

<action android:name="android.intent.action.VIEW"/>

<category android:name="android.intent.category.DEFAULT"/>

<category android:name="android.intent.category.BROWSABLE"/>

<data android:host="myapp" android:scheme="app"/>

</intent-filter>

</activity>

The four elements inside the <intent-filter> indicate that this Activity uses a Deep Link. Bad programming using Deep Links could lead to security

issues and must be thoroughly examined. This is a topic that will be discussed in later sections.

Application Resources

As we look at the �les we extracted from the APK �le at the beginning of the section using the APKTool, we also see the lib, res, and smali directories.

The directory lib contains separate shared library (SO) �les created for di�erent architectures containing the Native Code of the application. These

�les can also be retrieved and examined by decompressing the APK �le using tools like unzip. The directory res contains resources like the app's

layout, UI strings, images, and other static �les. Among other directories, we also notice the directory values within the res directory. This directory

contains XML �les with hardcoded strings and integers, such as Strings.xml, which stores UI strings as key-value pairs. This �le could reveal useful

information to a pen-tester, like potential entry points for attack, API keys, secret tokens, database credentials, or cryptographic keys, or help them to

understand the application's functionality further. The following is an example of what the strings.xml �le looks like.

Code: xml

<resources>

<string name="app_name">My App</string>

<string name="welcome_message">Welcome</string>

<string name="api_key">1234567890abcdef</string>

<string name="server_url">http://example.com/api/</string>

<string name="error_invalid_credentials">Invalid username or password</string>

<string name="error_unauthorized_access">You do not have permission to access this resource</string>

<string name="password_hint">Your password is the name of your first pet.</string>

✎

<string name password_hint >Your password is the name of your first pet.</string>

<string name="database_name">user_db</string>

<string name="database_password">db_password123</string>

</resources>

In addition, under the res directory, we could see the drawable and layout directories containing images and XML �les that de�ne the user interface

layouts. Inspecting resources like these can provide useful information about the application's functionality, which can help in better understanding

how the application works. Another useful directory that is worth examining during the testing is xml. This directory could contain �les with network

con�gurations revealing the IP address of potential API endpoints that the app is communicating with. Files like this could also reveal whether the app

is told to trust unencrypted connections, an insight that could be taken into consideration in the next steps of the pen-testing process. This directory

can also include the sub-directory raw, which in turn includes arbitrary �les saved in their raw form, like certi�cates and keys placed there by the

developer.

Another interesting directory revealed after extracting the �les from the APK using APKTool is the directory smali, which contains Smali �les. Smali is

the human-readable representation of the Dalvik bytecode, which will be the next section's topic.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

UK 39ms

Start Instance

 / 1 spawns left

Waiting to start...

+ 3 What is the application's package name?

Questions
Answer the question(s) below to complete this Section and earn cubes!

Cheat Sheet􏅜

􏆲

Enable step-by-step solutions for all questions

✎

+10 Streak pts Submit  myapp_disass.zip

+ 3 What is the name of the class that is executed immediately after the app launches and before any user interaction occurs?

+10 Streak pts Submit

+ 3 Which �le in Android applications stores UI strings in key-value format?

+10 Streak pts Submit

Submit your answer here...

􏄞

􏆲

Submit your answer here...

􏄞

􏆲

Submit your answer here...

􏄞

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Extracting and Enumerating APK Files

 Introduction

 Disassembling the APK

Understanding Smali

Analyzing Application's Source Code

 Reading Hardcoded Strings

 Bad Cryptography Implementation

 Reversing Hybrid Apps

 Reading Obfuscated Code

 Deobfuscating Code

Analyzing Native Libraries

 Reversing Shared Objects

 Reversing DLL Files

Application Patching

 Authentication Bypass

 Modifying Game Apps

 License Veri�cation Bypass

 Root Detection Bypass

Skills Assessment

 Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

✎

https://academy.hackthebox.com/storage/modules/221/myapp_disass.zip
https://academy.hackthebox.com/storage/modules/221/myapp_disass.zip
https://academy.hackthebox.com/storage/modules/221/myapp_disass.zip
https://academy.hackthebox.com/storage/modules/221/myapp_disass.zip
https://academy.hackthebox.com/storage/modules/221/myapp_disass.zip
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

