
Understanding Smali

When an Android application is compiled, the Java compiler (javac) compiles .java �les into Java bytecode (.class �les). Likewise, Kotlin source �les

are compiled into .class �les by the Kotlin compiler (kotlinc). These are then translated into Dalvik bytecode, and the output is bundled into .dex

(Dalvik Executable) �les. Afterward, the Android Asset Packaging Tool (aapt) packages the compiled code, resources, and manifest into a single archive

known as an APK �le. When extracting and decoding the contents of an APK using APKTool, in addition to unpacking resources, a utility called

baksmali is used to disassemble the Dalvik bytecode into a human-readable format known as Smali.

Smali is a low-level, assembly-like language used by the Dalvik Virtual Machine and Android Runtime (ART). It symbolically represents the structure and

behavior of Android applications and is essential for understanding an app’s inner workings during static analysis. Having access to the disassembled

source code in Smali format enables penetration testers to analyze functionality and potentially modify application logic—a process known as

Application Patching. For example, security mechanisms such as root detection or license veri�cation can be bypassed by altering Smali code. We will

explore application patching in greater detail in upcoming sections.

To gain familiarity with Smali, let’s examine a simple example. The following is the original Java code for a class named Calculate:

Code: java

package com.hackthebox.myapp;

public class calculate {

 public static int add(int a, int b) {

 return a + b;

 }

}

The Smali representation of the above snippet is shown below.

Code: assembly

.class public Lcom/hackthebox/myapp/calculate;

.super Ljava/lang/Object;

.source "calculate.java"

direct methods

.method public constructor <init>()V

 .locals 0

 .line 3

 invoke-direct {p0}, Ljava/lang/Object;-><init>()V

 return-void

.end method

.method public static add(II)I

 .locals 0

 add-int/2addr p0, p1

 return p0

.end method

Here is a breakdown of the Smali representation:

✎

Instruction Description

.class public Lcom/hackthebox/myapp/calculate; Declares the public class calculate in the speci�ed package.

.method public constructor <init>()V Declares the default constructor method of the class.

.method public static add(II)I Declares a static method add that takes two integer parameters (I, I) and returns an integer (I).

.locals 0 Speci�es that no local (non-parameter) registers are used in this method.

invoke-direct {p0}, Ljava/lang/Object;-><init>()V Calls the constructor of the superclass (Object) on the current object (p0).

add-int/2addr p0, p1 Adds the integer in register p1 to the integer in p0, storing the result in p0.

return p0 Returns the value in p0 as the result of the add method.

Data Types
Smali uses speci�c shorthand representations for data types, known as primitive types. These types can be stored in registers or passed as method

parameters. Below is a summary of the commonly used types:

Type Description

V Represents the type void. Used in methods that don't return a value.

Z Represents the type boolean. It holds either of the two values: true or false.

B Represents the type byte, an 8-bit integer.

S Represents the type short, a 16-bit integer.

C Represents the type char, a single 16-bit Unicode character.

I Represents the type int, a 32-bit integer.

J Represents the type long, a 64-bit integer.

F Represents the type float, a 32-bit number.

D This stands for double, a 64-bit number.

In addition to primitive types, Smali also supports reference types for objects and arrays:

Type Description

L Represents an object of a speci�c class. For example, Ljava/lang/String; refers to a String object.

[Denotes an array. Used in combination with other types. For example, [I indicates an array of integers, and [Ljava/lang/String is an array of String objects.

These are the main data types used in Smali. It's worth noting that the J (long) and D (double) types take up two registers each because they're 64-bit

data types, whereas all other types take up one register.

Methods and Fields
Mthods are de�ned using the .method directive, followed by a series of modi�ers, the method name, and the method's parameters and return type. The

following Smali code de�nes a public static method named add that takes two integers as parameters and returns an integer.

Code: assembly

.method public static add(II)I

In the above method add(II)I, II represents two integer parameters, and I represents an integer return type. Methods are invoked using invoke-

instructions, such as invoke-virtual, invoke-super, invoke-direct, invoke-static, and invoke-interface. These instructions are followed by the

registers containing the arguments to be passed to the method, as well as the method reference itself. This reference is composed of the package

✎

registers containing the arguments to be passed to the method, as well as the method reference itself. This reference is composed of the package

name (Lpackage/name/), the class name (MyClass), and �nally the method signature (add(II)I).

Code: assembly

const v0, 5

const v1, 3

invoke-static {v0, v1}, Lpackage/name/MyClass;->add(II)I

The following snippet shows what the Java equivalent of the method add(II)I would look like.

Code: java

public int add(int a, int b) {

 // Method body

}

In Smali, variables that belong to a class are known as fields. A �eld declaration in Smali consists of the following parts:

Field Part Description

Class Type The type of the class to which the �eld belongs.

Field Name The identi�er used to access the �eld within the class.

Field Type The data type of the �eld. It de�nes the kind of data the �eld will store, such as int, �oat, String, etc.

A fully quali�ed �eld reference looks like this:

Code: assembly

Lpackage/name/ObjectName;->FieldName:Ljava/lang/String;

The snippet below de�nes a public �eld named myString of type String.

Code: assembly

.field public myString:Ljava/lang/String;

Registers
In Smali, like many low-level languages, we work directly with registers to perform operations. Dalvik bytecode uses registers instead of a stack to store

variables and intermediate results. Understanding how these registers work is crucial to understanding the Smali code. Each register in the Dalvik

Virtual Machine (DVM) is 32 bits in size and can hold any type of value that �ts within those 32 bits. This includes the integer, boolean, and �oat data

types, as well as references to objects or arrays. For example, consider the following Smali code:

Code: assembly

const v0, 10

In this case, v0 is a register, and the number 10 is stored in it. For larger data types that require 64 bits, such as Long and Double, Dalvik uses a pair of

registers. The lower 32 bits of the value go into the �rst register, and the upper 32 bits go into the second register. For example:

Code: assembly

const-wide v0, 0x100000000L

✎

In this case, the 64-bit long integer 0x100000000L is being stored across two registers, v0, and v1. This characteristic is important to remember when

handling method arguments. Let's consider a non-static method, LMyObject;->MyMethod(IJZ)V. This method takes three parameters: an integer (I), a

long (J), and a boolean (Z). Plus, since it's a non-static method, there is an implicit �rst parameter which is a reference to the instance of the object itself

(LMyObject;). So, in total, this method needs �ve registers to hold all its parameters. This is because an int and a boolean each require one register, the

long needs two registers because of its 64-bit size, and the reference to the object instance takes up another one. So, we end up with a total of �ve

registers needed for all these parameters.

Register Type

p0 this

p1 I

p2, p3 J

p4 Z

Method Invocation and Registers
In Smali, p and v denote two di�erent sets of registers, parameter and local registers, respectively. The p registers are used for method parameters. The

numbering of p registers starts with p0, p1, p2, and so on. In non-static methods, p0 refers to the object the method was called on (similar to this in

Java). For static methods, p0 refers to the �rst method argument. The v registers are used for local variables and temporary computations within the

method. The numbering starts with v0, v1, v2, and so on. When invoking a method, arguments are passed in registers. The registers p0, p1, p2, pn, refer

to the method's parameters. For instance:

Code: assembly

invoke-virtual {p0, v0}, Lcom/example/MyClass;->myMethod(I)V

Here, p0 typically refers to the object instance on which myMethod is invoked (similar to Java's this) and v0 is an integer parameter passed to the

method. We also notice that the integer parameter of the method is v0 and not p1. This occurs because Dalvik bytecode treats the p and v registers as

part of the same set. Parameters can be referred to by either p or v names, as these distinctions are mainly designed to make the Smali code easier to

read.

The available number of registers is declared at the beginning of the method using the .registers directive. For example, .registers 5 declares that

the method uses 5 registers, both p (parameter) registers and v (local variable).

Code: assembly

.method public exampleMethod(Ljava/lang/String;I)V

 .registers 5

<SNIP>

The alternate .locals directive speci�es the number of non-parameter registers in the method.

Code: assembly

.method public exampleMethod(Ljava/lang/String;I)V

 .locals 5

<SNIP>

If a non-static method with one parameter declares .registers 5, then p0 would be this, p1 would represent the parameter, and v0, v1, and v2 would

be available for local variables. However, internally, p0 is the same as v4, p1 is the same as v3, v0 is the same as v2, v1 as v1, and v2 as v0. The mapping

is done in reverse order, starting from the total register count minus one for p0/this.

✎

 Previous +10 Streak pts  Mark Complete & NextNext 

 Cheat Sheet􏅜

Table of Contents

Extracting and Enumerating APK Files

 Introduction

 Disassembling the APK

Understanding Smali

Analyzing Application's Source Code

 Reading Hardcoded Strings

 Bad Cryptography Implementation

 Reversing Hybrid Apps

 Reading Obfuscated Code

 Deobfuscating Code

Analyzing Native Libraries

 Reversing Shared Objects

 Reversing DLL Files

Application Patching

 Authentication Bypass

 Modifying Game Apps

 License Veri�cation Bypass

 Root Detection Bypass

Skills Assessment

 Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953

