
Reading Hardcoded Strings

Sensitive information that may be accidentally or improperly stored in an Android application can encompass a wide variety of data types. During a

penetration test, it is crucial to examine the application for any indicators that such data may be stored or transmitted insecurely. Below are common

examples of sensitive strings that may be discovered within an Android application:

Title Description

API keys Often used to authenticate a client app’s requests to a server. If stored insecurely, API keys can be stolen and misused by malicious
actors.

Database credentials If an application interacts with a database, it may require a username and password. These should never be stored in plain text.

OAuth tokens Used for authenticated communication between the app and services like Google, Facebook, Twitter, etc. A malicious user with
access to these tokens can potentially impersonate the app or user.

Cryptographic keys Employed to encrypt and decrypt sensitive data. If a key is stored insecurely, an attacker might be able to decrypt sensitive
information.

Hardcoded passwords or
passphrases

These may be used to access restricted parts of the application or to enable leftover debugging functionality in production builds.

Personally identifiable
information (PII)

Includes data such as names, email addresses, social security numbers, and credit card information. This type of data must be
handled with strict security measures.

Sensitive URLs or IP addresses Can reveal information about backend servers or services the application interacts with, potentially aiding in targeted attacks.

Debugging information May include verbose error messages, stack traces, or internal implementation details that can assist an attacker in understanding or
exploiting the app.

When conducting a security review or penetration test, one should always look for these sensitive pieces of information and recommend secure

storage practices. This includes using encryption, storing the data on secure servers, and accessing it through secure connections when necessary.

Analyzing with JADX and APKTool

For Android application static analysis, understanding the underlying Java code is crucial. JADX (Java Decompiler for Android) is a popular open-source

tool for decompiling Android applications. It takes APKs and converts them back into readable Java source code. While the decompiled output is not

identical to the original source code, it provides a representation close enough to analyze the application's behavior and logic. JADX o�ers several key

features that support e�ective static analysis, including:

Feature Description

File Formats Decompiles Dalvik bytecode to java classes from APK, dex, aar, aab, and zip �les.

GUI and CLI Provides both a GUI version (jadx-gui) for a more visual experience and a CLI version (jadx) for scripting and automation.

Decoding Files Decodes AndroidManifest.xml and other resources from resources.arsc.

Deobfuscation Renames obfuscated methods and variables with meaningful names to make the code easier to read.

Smali Supports Smali representation and debugging through ADB.

Other Functionalities Full-text search, highlighted syntax, jump to declaration, Annotation.

It's essential to highlight the importance of JADX in understanding what an application does under the hood. Reading the decompiled code gives

insights into potential vulnerabilities, logic �aws, or suspicious behaviors that might not be visible just by examining the application's behavior. At this

point, It is worth mentioning that despite all these features JADX provides, it won't allow code editing and recompilation. As we mentioned earlier, JADX

is a CLI tool, but it also provides a GUI, which is the one that we will be using in this section. Below, we will see various examples that will give us a

✎

better image of what we can do with this tool, while in some examples, we will also use APKTool.

Reading Strings from Source Code
The res, smali, and libs directories often contain �les with hardcoded strings, making them a logical starting point for our examination. These

common directories can be analyzed using tools like JADX and APKTool. JADX is available for download from its o�cial Github repository. On Debian-

based Linux distributions, JADX-GUI can be installed and launched using the following commands.

rl1k@htb[/htb]$ sudo apt upgrade
rl1k@htb[/htb]$ sudo apt update
rl1k@htb[/htb]$ sudo apt install jadx
rl1k@htb[/htb]$ jadx-gui /full/path/to/myapp.apk

In the image above, we have started JADX-GUI and loaded the myapp.apk. As we can see in the left-side menu, under the Source code -> com ->

example.myapplication, there is the decompiled code of the MainActivity. Examination of the app's source code reveals a login functionality over an

HTTP post request. In line 58, we see the forgotten hardcoded password tempDebuggingPassword, which is left there for debugging purposes.

Hardcoded strings like this must be removed from production applications.

Let's walk through how to retrieve this hardcoded information using APKTool. First, we'll decompile and decode the APK �le.

rl1k@htb[/htb]$ apktool d myapp.apk

I: Using Apktool 2.7.0 on myapp.apk
I: Loading resource table...
I: Decoding AndroidManifest.xml with resources...
I: Loading resource table from file: /Users/bertolis/Library/apktool/framework/1.apk
I: Regular manifest package...
I: Decoding file-resources...
I: Decoding values */* XMLs...
I: Baksmaling classes.dex...
I: Copying assets and libs...
I: Copying unknown files...
I: Copying original files...
I: Copying META-INF/services directory

Reading Hardcoded Strings

Reading Hardcoded Strings

✎

https://github.com/skylot/jadx
https://github.com/skylot/jadx

A directory called myapp is created containing all the decoded resources and the Smali representation of the source code. As a �rst step, we could run

the grep command searching for keywords like the following.

rl1k@htb[/htb]$ grep -Rnw './myapp' -e 'password'

<SNIP>
./smali/com/example/myapplication/MainActivity.smali:106: const-string v0, "password"
./smali/com/example/myapplication/MainActivity$2.smali:97: const-string v3, ". Debug password: tempDebuggingPassword"

The above command revealed the Debug password: tempDebuggingPassword, which we found earlier in the MainActivity within the decompiled

source code with JADX-GUI. Another key-word example could be:

rl1k@htb[/htb]$ grep -Rnw './myapp' -e 'api_key'

./res/values/public.xml:3560: <public type="string" name="api_key" id="0x7f0f001d" />

./res/values/strings.xml:32: <string name="api_key">12345678-ABCD-EFGH-IJKL-1234567890AB</string>

./smali/com/example/myapplication/R$string.smali:19:.field public static final api_key:I = 0x7f0f001d

The command above revealed the key-value pair 12345678-ABCD-EFGH-IJKL-1234567890AB, an API key stored in the Strings.xml. The key-words

password and api_key are common names used while developing apps. The above commands will save us time while enumerating the app, and often

reveal common mistakes. Our next move is to search the decoded �les manually for additional hardcoded strings or any other sensitive information.

When decompiling an APK with APKTool, the generated Smali �les will be stored in the directory smali, and more speci�cally, in our case, under ./

myapp/smali/com/example/myapplication/. Listing the content of this directory reveals the following.

rl1k@htb[/htb]$ ls -l ./myapp/smali/com/example/myapplication/

total 120
-rw-r--r-- 1 bertolis bertolis 619 Sep 6 20:22 BuildConfig.smali
-rw-r--r-- 1 bertolis bertolis 2575 Sep 6 20:22 MainActivity$1.smali
-rw-r--r-- 1 bertolis bertolis 4806 Sep 6 20:22 MainActivity$2.smali
-rw-r--r-- 1 bertolis bertolis 4216 Sep 6 20:22 MainActivity.smali
-rw-r--r-- 1 bertolis bertolis 855 Sep 6 20:22 R$color.smali
-rw-r--r-- 1 bertolis bertolis 629 Sep 6 20:22 R$drawable.smali
-rw-r--r-- 1 bertolis bertolis 712 Sep 6 20:22 R$id.smali
-rw-r--r-- 1 bertolis bertolis 550 Sep 6 20:22 R$layout.smali
-rw-r--r-- 1 bertolis bertolis 609 Sep 6 20:22 R$mipmap.smali
-rw-r--r-- 1 bertolis bertolis 1794 Sep 6 20:22 R$string.smali
-rw-r--r-- 1 bertolis bertolis 554 Sep 6 20:22 R$style.smali
-rw-r--r-- 1 bertolis bertolis 675 Sep 6 20:22 R$xml.smali
-rw-r--r-- 1 bertolis bertolis 696 Sep 6 20:22 R.smali
drwxr-xr-x 3 bertolis bertolis 96 Sep 6 20:22 databinding

Reading the content of one of the "MainActivity" �les will reveal the Smali representation of the source code from MainActivity.java(which

contains the hardcoded string we found earlier). In this case, it is the MainActivity$2.smali.

rl1k@htb[/htb]$ cat ./myapp/smali/com/example/myapplication/MainActivity\$2.smali

<SNIP>
 move-result-object v3
 invoke-virtual {v3}, Lokhttp3/ResponseBody;->string()Ljava/lang/String;
 move-result-object v3
 invoke-virtual {v1, v3}, Ljava/lang/StringBuilder;->append(Ljava/lang/String;)Ljava/lang/StringBuilder;
 const-string v3, ". Debug password: tempDebuggingPassword"
 invoke-virtual {v1, v3}, Ljava/lang/StringBuilder;->append(Ljava/lang/String;)Ljava/lang/StringBuilder;
 invoke-virtual {v1}, Ljava/lang/StringBuilder;->toString()Ljava/lang/String;

Reading Hardcoded Strings

Reading Hardcoded Strings

Reading Hardcoded Strings

Reading Hardcoded Strings

✎

In this directory, we can also �nd the Smali representation for all of the application's activities and classes.

Reading Strings from strings.xml
In line 52, we can also see the R.string.login_url integer. Breaking it down, we should know several things: the R.java �le contains the IDs of all the

resources in the res/ directory, string is a static class within R that provides references to string resources de�ned acrossthe project, and login_url

is the ID given to a speci�c string resource. With the string's ID, we can proceed to search inside the strings.xml �le, where the hardcoded strings are

typically kept in Android apps. Navigating to the Resources -> resources.arsc -> res -> values -> strings.xml, we can see the following content.

Using Control+F or Command+F, we can search using the ID of the string. In the above image we see the value http://10.10.10.10/login, which

represents the server's IP and a login page that can be further enumerated. Other sensitive information like the crypto_key, database_password, and

api_key, are also stored in this �le. In production applications, sensitive strings like these should never be stored directly within strings.xml—or any

other resource �le—without proper encryption or obfuscation.

APKTool can extract the strings.xml �le, typically located under the ./myapp/res/values directory. The res directory contains various application

resources, including layouts, images, and other static �les. It also includes subdirectories such as values and xml, which store resource de�nitions and

con�guration data. Upon examining the ./myapp/res/values/strings.xml �le, we can identify hardcoded string values referenced in the application’s

code via the R.java class.

rl1k@htb[/htb]$ cat ./myapp/res/values/strings.xml

<SNIP>
 <string name="api_key">12345678-ABCD-EFGH-IJKL-1234567890AB</string>
 <string name="app_name">EvilBank</string>
 <string name="backend_server_url">http://evilBank.com/api/</string>
 <string name="bottom_sheet_behavior">com.google.android.material.bottomsheet.BottomSheetBehavior</string>
 <string name="bottomsheet_action_collapse">Collapse the bottom sheet</string>
 <string name="bottomsheet_action_expand">Expand the bottom sheet</string>

As we can see in the results, the API key 12345678-ABCD-EFGH-IJKL-1234567890AB is included in this �le in plaintext.

Reading Hardcoded Strings

✎

Reading Strings from network_security_con�g.xml
Moving on to examining the xml directory for strings won't reveal much sensitive information. Still, the �le res/xml/network_security_config.xml will

give us a good picture of the app's connections with any potential API endpoints. Therefore, this �le will reveal at least a Domain Name or an IP. The

following command will list its contents.

rl1k@htb[/htb]$ cat ./myapp/res/xml/network_security_config.xml

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <base-config cleartextTrafficPermitted="false">
 <trust-anchors>
 <certificates src="system" />
 <certificates src="@raw/certificate" />
 </trust-anchors>
 </base-config>
 <domain-config cleartextTrafficPermitted="true">
 <domain includeSubdomains="true">192.168.1.8</domain>
 </domain-config>
</network-security-config>%

Reading the content of this �le reveals that the app does not allow unencrypted communication (HTTP), except for communicating with the URL

192.168.1.8. Having an IP and the insight that an unencrypted connection is used, the attacking surface is getting bigger. The �le also indicates that

certi�cates stored in the system can be used for establishing the secure connection or the custom self-signed certi�cate speci�ed in <certificates

src="@raw/certificate" />. The certi�cate can be found in the directory ./myapp/res/raw.

rl1k@htb[/htb]$ ls -l ./myapp/res/raw

total 8
-rw-r--r-- 1 bertolis bertolis 1029 Jun 15 14:55 certificate.der

JADX can also reveal this information by navigating Resources -> res -> xml -> network_security_config.xml.

Reading Strings from Shared Libraries
applications store their native C++ code in the directory ./myapp/lib/x86_64/. In this example, the code is inside libmyapplication.so, and although the

content of this �le is compiled, hardcoded strings can still be retrieved. Using JADX to read the content of this �le will not be successful because it

Reading Hardcoded Strings

Reading Hardcoded Strings

✎

content of this �le is compiled, hardcoded strings can still be retrieved. Using JADX to read the content of this �le will not be successful because it

doesn't work with native shared libraries. However, reading the content using Vim reveals the following.

rl1k@htb[/htb]$ vim ./myapp/lib/x86_64/libmyapplication.so

Though it's hard for someone to understand the meaning of random strings when reading the content of this �le, some might be pretty straightforward,

like the string hardcodedSensitiveInformation we found in the above example.

Reading Strings from JS
Reading hardcoded strings from a web-based Android application can be done using both JADX and APKTool. Web-based apps store their code inside

.js �les under the assets directory. Navigating to Resources -> Assets -> js in JADX, we see the �le script.js containing the following code.

The code above exposes the hardcoded URL http://192.178.5.178/login and the plaintext password tempDebuggingPassword. These �ndings can

also be obtained using APKTool, which decompiles the application and allows direct inspection of the ./myapp/assets/js/script.js �le.

rl1k@htb[/htb]$ cat ./myapp/assets/js/script.js

document.getElementById('loginButton').onclick = function() {
 var username = document.getElementById('username').value;
 var password = document.getElementById('password').value;

 fetch('http://192.168.5.178/login', {
 method: 'POST',
 headers: {

Reading Hardcoded Strings

Reading Hardcoded Strings

✎

 'Content-Type': 'application/json',
 },
 body: JSON.stringify({ username, password }),
 })
 .then(response => response.json())
 .then(data => {
 console.log('Success:', data, ". Debug password: tempDebuggingPassword");
 })
 .catch((error) => {
 console.error('Error:', error);
 });
};

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

UK 27ms

Start Instance

 / 1 spawns left

Waiting to start...

+ 3 What is the value of the "oauth_token"?

+10 Streak pts Submit  myapp_hardcoded_strings.zip

Questions
Answer the question(s) below to complete this Section and earn cubes!

Cheat Sheet􏅜

􏆲

Submit your answer here...

􏄞

Enable step-by-step solutions for all questions

✎

https://academy.hackthebox.com/storage/modules/221/myapp_hardcoded_strings.zip
https://academy.hackthebox.com/storage/modules/221/myapp_hardcoded_strings.zip
https://academy.hackthebox.com/storage/modules/221/myapp_hardcoded_strings.zip
https://academy.hackthebox.com/storage/modules/221/myapp_hardcoded_strings.zip
https://academy.hackthebox.com/storage/modules/221/myapp_hardcoded_strings.zip
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2628

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Extracting and Enumerating APK Files

 Introduction

 Disassembling the APK

Understanding Smali

Analyzing Application's Source Code

Reading Hardcoded Strings

 Bad Cryptography Implementation

 Reversing Hybrid Apps

 Reading Obfuscated Code

 Deobfuscating Code

Analyzing Native Libraries

 Reversing Shared Objects

 Reversing DLL Files

Application Patching

 Authentication Bypass

 Modifying Game Apps

 License Veri�cation Bypass

 Root Detection Bypass

Skills Assessment

 Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953

