
Bad Cryptography Implementation

Ensuring the security and privacy of user data in modern Android applications is paramount. One critical aspect of security is the correct

implementation of cryptography. Bad cryptography implementation can lead to numerous vulnerabilities, paving the way for attackers to exploit the

system and compromise sensitive data. In Android applications, this can be manifested in several ways, including the use of:

Bad Cryptography Implementation Ways

Outdated cryptographic algorithms.

Hardcoding keys.

Improper storage of keys.

Not utilizing secure random number generators.

Poor cryptographic practices can have far-reaching consequences. Users may su�er data loss, identity theft, or �nancial fraud, while for businesses,

bad cryptography can result in the loss of customer trust, legal repercussions, and substantial �nancial losses. Preventing bad cryptography

implementations starts with adhering to well-established cryptographic standards and principles. Developers should use up-to-date cryptographic

libraries widely recognized by the security community, avoid hardcoding cryptographic keys, and store keys securely using hardware-backed keystores

available in Android.

Static analysis is a powerful method for identifying and preventing poor cryptographic practices. By analyzing source code without executing the

application, developers can detect the use of weak algorithms, hardcoded keys, or insecure storage mechanisms. While static analysis is commonly

used in penetration testing, integrating it into the development lifecycle promotes a proactive security mindset and helps catch issues early.

Understanding and identifying bad cryptography implementations is essential in safeguarding Android applications from various security threats. In the

following example, we will go through the process of identifying and exploiting bad cryptography implementation of an Android application.

Exploiting Bad Cryptography Implementation

Let's connect to our Android Virtual Device and install the app using ADB.

rl1k@htb[/htb]$ adb connect
rl1k@htb[/htb]$ adb install myapp.apk

Performing Streamed Install
Success

The following features a chat application where users can send and receive messages. On the left corner, we can tap the Configure IP Address to

connect to the application's server. A pop-up window will allow us to �ll in this information.

󰋽 Note: The "adb connect" command is only required when attempting to connect to a remote android device.

Bad Cryptography Implementation

✎

As the application implies, the chat is end-to-end encrypted, which means it should be impossible for someone else to read it. As we can see in the

following screenshot, the app allows the user to chat with a bot.

Let's read the application's source code and see how it works. We can open this application with JADX by providing the complete �le path to the APK.

rl1k@htb[/htb]$ jadx-gui /path/to/chatapp.apk

The application seems to have only one activity: MainActivity. Looking at the MainActivity under the Source code -> com -> hackthebox.chatapp, we

can �nd hardcoded the URL http://192.168.1.122:8000/message that the app uses to communicate with the server. Looking further in the source

code reveals the methods encrypt and decrypt.

Bad Cryptography Implementation

✎

These methods use the AES cryptographic algorithm to encrypt and decrypt the messages sent and received. AES is a symmetric encryption algorithm

that operates on �xed-size blocks of data (128 bits for AES) using cryptographic keys of 128, 192, or 256 bits in length. In this example, AES uses the

CBC (Cipher Block Chaining) mode of operation, in which each plaintext block is XORed with the previous ciphertext block before being encrypted with

the AES algorithm. The �rst block, having no previous ciphertext block, is XORed with a special block called the Initialization Vector (IV), which is usually

random. That means that if we know the encryption algorithm, the encryption key, and the IV, we can decrypt any potentially encrypted sensitive

information stored in the app.

Looking closer at the method encrypt, we can see the R.string.secret_key and R.string.initialization_vector. This indicates that the key and

IV are retrieved from the strings.xml in order for the encryption to happen. Reading the content of the strings.xml �le reveals the encryption key

z5sR2v8y*AqKl7w!.

A few lines below, the IV p0o9i8u7y6t5r4e3 also appears.

Further reading shows how the app stores messages in a local database:

Let’s enumerate the app’s local storage via ADB. First, gain root shell access:

rl1k@htb[/htb]$ adb root
rl1k@htb[/htb]$ adb shell

emu64x:/ #

Next, we �nd application's package name. While the app is running, we issue the following command.

Bad Cryptography Implementation

✎

emu64x:/ # pm list packages | grep chatapp

package:com.hackthebox.chatapp

Now that we know the application's package name, let's list the content of its local directory.

emu64x:/ # ls -l /data/data/com.hackthebox.chatapp/

total 24
drwxrws--x 2 u0_a227 u0_a227_cache 4096 2023-09-13 16:13 cache
drwxrws--x 2 u0_a227 u0_a227_cache 4096 2023-09-14 16:38 code_cache
drwxrwx--x 2 u0_a227 u0_a227 4096 2023-09-13 16:19 databases

The above command reveals the subdirectory databases. Listing its contents, we see the database messages.db.

emu64x:/ # ls -l /data/data/com.hackthebox.chatapp/databases/

total 28
-rw-rw---- 1 u0_a227 u0_a227 20480 2023-09-14 16:40 messages.db
-rw-rw---- 1 u0_a227 u0_a227 0 2023-09-14 16:40 messages.db-journal

Fortunately, AVD has sqlite3 preinstalled. Let's try to list the tables of this database using the instruction .tables in the sqlite3 client.

emu64x:/ # sqlite3 /data/data/com.hackthebox.chatapp/databases/messages.db

SQLite version 3.32.2 2021-07-12 15:00:17
Enter ".help" for usage hints.
sqlite> .tables
android_metadata encrypted_messages

This reveals the table encrypted_messages. Finally, we can issue the following query to list the entries of this table.

Code: sqlite

sqlite> select * from encrypted_messages;

1|cTI/ewGOxoi+COl9gbceJGU7pEtLgbn9dAGCO3bkJaA=

|OUTGOING

2|i86d39WVaIHcU/Drli+uAJwsGP76I5VkN3pfpsJ1jqI=|INCOMING

3|HXnPXiKgrqqGrgjzRkEiAw==

|OUTGOING

4|Je7FNN9AbbMQ6vwP+vGyGD6GHcHec11ws7Yciovnw5GWCo85ETVIxRgedAmnH4petYowGtvEmnsLQRzC3PhH8pIBCTfHun1hjcBI+Vl2N8nxH3vwHYX+2nMhxlkjQAnTaqws/pRaTKEs

The database contains the encrypted conversations generated by the application. By combining the information previously discovered through source

code analysis—speci�cally the encryption key, algorithm, and initialization vector—we can attempt to decrypt these messages. To do so, we will create

the following Android application that performs the decryption.

Code: java

package com.example.myapplication;

import android.os.Bundle;

import android.util.Base64;

Bad Cryptography Implementation

Bad Cryptography Implementation

Bad Cryptography Implementation

Bad Cryptography Implementation

✎

import android.util.Log;

import androidx.appcompat.app.AppCompatActivity;

import java.nio.charset.StandardCharsets;

import java.security.Key;

import java.security.spec.AlgorithmParameterSpec;

import javax.crypto.Cipher;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 String secretKey = "z5sR2v8y*AqKl7w!";

 String initializationVector = "p0o9i8u7y6t5r4e3";

 String[] encryptedMessages = {

 "cTI/ewGOxoi+COl9gbceJGU7pEtLgbn9dAGCO3bkJaA=",

 "i86d39WVaIHcU/Drli+uAJwsGP76I5VkN3pfpsJ1jqI=",

 "HXnPXiKgrqqGrgjzRkEiAw==",

 "Je7FNN9AbbMQ6vwP+vGyGD6GHcHec11ws7Yciovnw5GWCo85ETVIxRgedAmnH4petYowGtvEmnsLQRzC3PhH8pIBCTfHun1hjcBI+Vl2N8nxH3vwHYX+2nMhxlkjQ

 };

 for (String encryptedMessage : encryptedMessages) {

 try {

 String decryptedMessage = decrypt(encryptedMessage, secretKey, initializationVector);

 Log.d("Decrypted Message", decryptedMessage);

 } catch (Exception e) {

 Log.e("Decryption Error", "Error while decrypting", e);

 }

 }

 }

 public static String decrypt(String cipherText, String key, String iv) throws Exception {

 byte[] cipherData = Base64.decode(cipherText, Base64.DEFAULT);

 byte[] keyData = key.getBytes(StandardCharsets.UTF_8);

 byte[] ivData = iv.getBytes(StandardCharsets.UTF_8);

 Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

 Key secretKeySpec = new SecretKeySpec(keyData, "AES");

 AlgorithmParameterSpec ivSpec = new IvParameterSpec(ivData);

 cipher.init(Cipher.DECRYPT_MODE, secretKeySpec, ivSpec);

 byte[] decryptedData = cipher.doFinal(cipherData);

 return new String(decryptedData, StandardCharsets.UTF_8);

 }

}

Running the above app in Android Studio will decrypt and print the following messages in the Logcat window.

Another useful way of decrypting the above messages is using the CyberChef. From the left side menu, we select From base64 to convert the

cyphertext from base64 string to raw bytes.

✎

https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/

Then, we remove the From Base64 and select the AES Decrypt on the left side menu. Next, we con�gure the parameters with the key and the IV and

give as an input the output we got from the From Base64,

The cyphertext is successfully decrypted, and both approaches work.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

UK 26ms

✎

Start Instance

 / 1 spawns left

Waiting to start...

+ 3 What is the decrypted message stored in the app's database? Format: HTB{Th1s_1s_a_Fl4g}

+10 Streak pts Submit  myapp_bad_crypto.zip

Questions
Answer the question(s) below to complete this Section and earn cubes!

Target(s): Click here to spawn the target system!

Cheat Sheet􏅜

􏆲

Submit your answer here...

􏄞

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Extracting and Enumerating APK Files

 Introduction

 Disassembling the APK

Understanding Smali

Analyzing Application's Source Code

 Reading Hardcoded Strings

 Bad Cryptography Implementation

 Reversing Hybrid Apps

 Reading Obfuscated Code

 Deobfuscating Code

Analyzing Native Libraries

 Reversing Shared Objects

 Reversing DLL Files

Application Patching

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

Enable step-by-step solutions for all questions

✎

https://academy.hackthebox.com/storage/modules/221/myapp_bad_crypto.zip
https://academy.hackthebox.com/storage/modules/221/myapp_bad_crypto.zip
https://academy.hackthebox.com/storage/modules/221/myapp_bad_crypto.zip
https://academy.hackthebox.com/storage/modules/221/myapp_bad_crypto.zip
https://academy.hackthebox.com/storage/modules/221/myapp_bad_crypto.zip
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682

 Authentication Bypass

 Modifying Game Apps

 License Veri�cation Bypass

 Root Detection Bypass

Skills Assessment

 Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953

