
Deobfuscating Code

In the previous section, we explored how to manually analyze obfuscated code by tracing method calls and control �ow to better understand an

application's behavior and uncover potential security issues. While obfuscation can obscure variable names, method structures, and logic, it does not

render the code entirely unreadable. With time and e�ort, it's often possible to reconstruct the program's functionality—even in heavily obfuscated

apps.

In this section, we shift our focus to deobfuscation, the process of reversing obfuscated code to make it more readable. Rather than manually

inspecting every line, we will showcase tools and techniques that automate parts of this process, particularly for reversing string obfuscation. These

methods can signi�cantly reduce the time and complexity involved in analyzing protected applications, especially those using open-source libraries to

obfuscate their code.

Deobfuscating With Tools

In this example, we will analyze the code of an application that has been obfuscated using an open-source library to conceal sensitive hardcoded

strings. This is an application with a single screen that can purchase a product.

Let's use JADX to decompile the application.

rl1k@htb[/htb]$ jadx-gui myapp.apk

Deobfuscating Code

✎

Reading the content of the MainActivity reveals the button R.id.purchaseButton. Double-clicking the UserActionHandler method inside the

onClick() method reveals the UserActionHandler class. Continuing to trace the code as in the previous example leads us to the Authenticator class.

The variable API_KEY indicates that the app uses an API key to connect with the remote server. As we have seen in previous sections, storing API keys

insecurely could lead to unauthorized access to critical systems, data breaches, �nancial losses, and more. Upon closer examination, we see that the

value of the API is not readable and the string is obfuscated. The Deobfuscator$myapp$app.getString() method seems to be returning the original

value of the obfuscated string, and the line import org.lsposed.lsparanoid.Deobfuscator$myapp$app; at the top of the class indicates the

obfuscation library. Searching online for org.lsposed.lsparanoid reveals the following as the �rst result.

According to the project description, this is a string obfuscator for Android applications called LSParanoid. Searching online for a tool to deobfuscate

the app's strings reveals the following:

The �rst result is a GitHub project named paranoid-deobfuscator, a tool speci�cally designed to reverse string obfuscation in apps protected with

Paranoid or LSParanoid. To download and install the tool, we can issue the following commands.

rl1k@htb[/htb]$ wget https://github.com/giacomoferretti/paranoid-deobfuscator/archive/refs/tags/v2.0.1.zip
rl1k@htb[/htb]$ unzip v2.0.1.zip
rl1k@htb[/htb]$ cd paranoid-deobfuscator-2.0.1
rl1k@htb[/htb]$ python -m venv .venv

󰋽 Note: Newer versions of paranoid-deobfuscator have problems with applications containing multiple getString methods, so for this exercise
we will use version 2.0.1.

Deobfuscating Code

✎

https://github.com/LSPosed/LSParanoid/tree/master
https://github.com/LSPosed/LSParanoid/tree/master
https://github.com/giacomoferretti/paranoid-deobfuscator
https://github.com/giacomoferretti/paranoid-deobfuscator

rl1k@htb[/htb]$ python -m venv .venv
rl1k@htb[/htb]$ source .venv/bin/activate
rl1k@htb[/htb]$ pip install "numpy==1.26.0"

Once it's installed, we'll decompile the app using APKTool.

rl1k@htb[/htb]$ apktool d myapp.apk

Now, let's try to deobfuscate the source code by running paranoid_deobfuscator as a python module.

rl1k@htb[/htb]$ python -m paranoid_deobfuscator -v myapp

Finally, we'll build the app using APKTool and read the content of the Authenticator class using JADX.

rl1k@htb[/htb]$ apktool b myapp
rl1k@htb[/htb]$ jadx-gui myapp/dist/myapp.apk

The API key xmjPceil0E5ekn6QisfF1XLVSxq3n7HkfK9duVJxaqLPxZ4eB9EiYacvgswubvKZ is successfully deobfuscated.

Deobfuscating Manually

Relying on tools to deobfuscate an application's code isn't always feasible. Thus, learning to do it manually will increase your chances of success. In the

following example, we will analyze the source code of an Android app to understand the obfuscation technique in use and manually construct a

deobfuscation script. The functionality of this app mirrors that of the previous example.

Examining the Authenticator class reveals the line private static final String API_KEY =

Deobfuscator$myapp$app.getString(-280514339328L);, which was shown in an earlier screenshot. This indicates that the API key is retrieved

through a call to the getString(-280514339328L) method found in the Deobfuscator$myapp$app class. To investigate further, we'll double-click on the

getString() method to inspect its implementation.

The Deobfuscator$myapp$app class contains the method getString(), which takes one argument, the variable long j. This is the value

-280514339328L that is passed as a parameter when the method is called, likely representing an identi�er or key. Inside this method, we can see that

there is another method, DeobfuscatorHelper.getString(j, chunks). The values passed when this method is called are j—which we identi�ed a

Deobfuscating Code

Deobfuscating Code

Deobfuscating Code

✎

moment ago—and chunks, which seems to be the obfuscated string (API key). Let's double-click on the getString(j, chunks) method to examine the

DeobfuscatorHelper class.

This class contains the method getString(long j, String[] strArr), which is called from the previous class and receives the identi�er

-280514339328L and the obfuscated string as parameters. Inside the method, we notice the following two lines.

Code: java

long next = RandomHelper.next(RandomHelper.seed(4294967295L & j));

long next2 = RandomHelper.next(next);

These lines use a helper class RandomHelper to generate random values based on the input j. Reading the rest of the method, we can tell that it is

designed to extract and decode strings from the array of obfuscated strings (strArr) and eventually return the original string based on the identi�er.

Let's also look at the RandomHelper class by double-clicking on it.

Now that we know how the deobfuscation mechanism works, we can build a script in Java to deobfuscate the API key. One approach is to copy-paste

the code of the JADX classes Deobfuscator$myapp$app and DeobfuscatorHelper locally. If this method does not work, we can pull these classes

directly from the o�cial GitHub repository. For this example, we'll go with the second approach. Below is the class DeobfuscatorHelper.

Code: java

public class DeobfuscatorHelper {

 public static final int MAX_CHUNK_LENGTH = 0x1fff;

 private DeobfuscatorHelper() {

 // Cannot be instantiated.

 }

 public static String getString(final long id, final String[] chunks) {

 long state = RandomHelper.seed(id & 0xffffffffL);

 state = RandomHelper.next(state);

 final long low = (state >>> 32) & 0xffff;

✎

https://github.com/LSPosed/LSParanoid/tree/master/core/src/main/java/org/lsposed/lsparanoid
https://github.com/LSPosed/LSParanoid/tree/master/core/src/main/java/org/lsposed/lsparanoid

 state = RandomHelper.next(state);

 final long high = (state >>> 16) & 0xffff0000;

 final int index = (int) ((id >>> 32) ^ low ^ high);

 state = getCharAt(index, chunks, state);

 final int length = (int) ((state >>> 32) & 0xffffL);

 final char[] chars = new char[length];

 for (int i = 0; i < length; ++i) {

 state = getCharAt(index + i + 1, chunks, state);

 chars[i] = (char) ((state >>> 32) & 0xffffL);

 }

 return new String(chars);

 }

 private static long getCharAt(final int charIndex, final String[] chunks, final long state) {

 final long nextState = RandomHelper.next(state);

 final String chunk = chunks[charIndex / MAX_CHUNK_LENGTH];

 return nextState ^ ((long) chunk.charAt(charIndex % MAX_CHUNK_LENGTH) << 32);

 }

}

Let's also create the class RandomHelper.

Code: java

public class RandomHelper {

 private RandomHelper() {

 // Cannot be instantiated.

 }

 public static long seed(final long x) {

 final long z = (x ^ (x >>> 33)) * 0x62a9d9ed799705f5L;

 return ((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32;

 }

 public static long next(final long state) {

 short s0 = (short) (state & 0xffff);

 short s1 = (short) ((state >>> 16) & 0xffff);

 short next = s0;

 next += s1;

 next = rotl(next, 9);

 next += s0;

 s1 ^= s0;

 s0 = rotl(s0, 13);

 s0 ^= s1;

 s0 ^= (s1 << 5);

 s1 = rotl(s1, 10);

 long result = next;

 result <<= 16;

 result |= s1;

 result <<= 16;

 result |= s0;

 return result;

 }

 private static short rotl(final short x, final int k) {

 return (short) ((x << k) | (x >>> (32 - k)));

 }

}

✎

Finally, let's create a Main.java class to initialize the necessary values.

Code: java

public class Main {

 public static void main(String[] args) {

 long key = -280514339328L;

 String[] chunks = { "\uffbf\ub795\u17a0\u6064\ud99e\u9a6e\ua1ab\u6067\ud9a2\u9a3d\ua18b\u603b\ud9ab\u9a66\ua1a0\u6038\ud99f\u9a64\ua1b

 };

 String result = DeobfuscatorHelper.getString(key, chunks);

 System.out.println(result);

 }

}

In the above snippet, the line long key = -280514339328L contains the identi�cation number of the obfuscated string that we can get from the class

Authenticator when the Deobfuscator$myapp$app.getString(-280514339328L) method is called.

The variable named chunks contains the obfuscated string itself, and since its characters are not visible in the code mode inside JADX, we have to

change to smali mode to get the Java unicode escape sequence. The button is located at the bottom of the window in the class

Deobfuscator$myapp$app.

Once the script is ready, we can run the following command to compile and execute it.

rl1k@htb[/htb]$ javac Main.java; java Main

xmjPceil0E5ekn6QisfF1XLVSxq3n7HkfK9duVJxaqLPxZ4eB9EiYacvgswubvKZ

The API key xmjPceil0E5ekn6QisfF1XLVSxq3n7HkfK9duVJxaqLPxZ4eB9EiYacvgswubvKZ has been successfully deobfuscated.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

Deobfuscating Code

UK 34ms

✎

Start Instance

 / 1 spawns left

Waiting to start...

+ 3 Deobfuscate the source code of the APK found inside the "myapp_deobfuscate_1.zip" archive. What is the API key value?

+10 Streak pts Submit  myapp_deobfuscate_1.zip

+ 5 Deobfuscate the source code of the APK found inside the "myapp_deobfuscate_2.zip" archive. What is the API key value?

+10 Streak pts Submit  myapp_deobfuscate_2.zip

Questions
Answer the question(s) below to complete this Section and earn cubes!

Cheat Sheet􏅜

􏆲

Submit your answer here...

􏄞

􏆲

Submit your answer here...

􏄞

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Extracting and Enumerating APK Files

 Introduction

 Disassembling the APK

􏆲

􏆲

Enable step-by-step solutions for all questions

✎

https://academy.hackthebox.com/storage/modules/221/myapp_deobfuscate_1.zip
https://academy.hackthebox.com/storage/modules/221/myapp_deobfuscate_1.zip
https://academy.hackthebox.com/storage/modules/221/myapp_deobfuscate_1.zip
https://academy.hackthebox.com/storage/modules/221/myapp_deobfuscate_1.zip
https://academy.hackthebox.com/storage/modules/221/myapp_deobfuscate_1.zip
https://academy.hackthebox.com/storage/modules/221/myapp_deobfuscate_2.zip
https://academy.hackthebox.com/storage/modules/221/myapp_deobfuscate_2.zip
https://academy.hackthebox.com/storage/modules/221/myapp_deobfuscate_2.zip
https://academy.hackthebox.com/storage/modules/221/myapp_deobfuscate_2.zip
https://academy.hackthebox.com/storage/modules/221/myapp_deobfuscate_2.zip
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392

Understanding Smali

Analyzing Application's Source Code

 Reading Hardcoded Strings

 Bad Cryptography Implementation

 Reversing Hybrid Apps

 Reading Obfuscated Code

 Deobfuscating Code

Analyzing Native Libraries

 Reversing Shared Objects

 Reversing DLL Files

Application Patching

 Authentication Bypass

 Modifying Game Apps

 License Veri�cation Bypass

 Root Detection Bypass

Skills Assessment

 Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953

