
Reversing DLL Files

Unlike applications built with Android Studio—which typically use Java or Kotlin—Xamarin enables developers to create apps using the .NET framework

and C#. In Xamarin projects, C# code is �rst compiled into Intermediate Language (IL) via the .NET compiler, and then translated into platform-speci�c

code. Much like native C++ code is packaged into shared libraries (.so �les) within the �nal APK, Xamarin-based applications bundle their compiled

code into Dynamically Linked Libraries (.dll �les), which are stored collectively in a �le named assemblies.blob.

Some developers may assume that placing code in DLLs provides a degree of obfuscation. However, just as with the shared objects analyzed earlier,

these libraries contain native code, making them unreadable by tools like JADX or APKTool. In the following paragraphs, we will explore how to extract

and reverse-engineer a DLL �le in order to inspect its source code.

Locating Assemblies Inside APKs

The application shown below includes a feature that con�rms whether or not the password you've set is correct.

Now, let's use APKTool to decode and extract the �les from the APK.

rl1k@htb[/htb]$ apktool d myapp.apk

I: Using Apktool 2.7.0 on myapp.apk
I: Loading resource table...
I: Decoding AndroidManifest.xml with resources...
I: Loading resource table from file: /Users/bertolis/Library/apktool/framework/1.apk
I: Regular manifest package...
I: Decoding file-resources...
I: Decoding values */* XMLs...
I: Baksmaling classes.dex...
I: Copying assets and libs...
I: Copying unknown files...
I: Copying original files...

Listing the content of the directory myapp/smali reveals the following.

Reversing DLL Files

Reversing DLL Files

✎

rl1k@htb[/htb]$ ls -l myapp/smali

total 0
drwxr-xr-x 5 bertolis bertolis 160 Oct 26 15:36 android
drwxr-xr-x 39 bertolis bertolis 1248 Oct 26 15:36 androidx
drwxr-xr-x 5 bertolis bertolis 160 Oct 26 15:36 com
drwxr-xr-x 3 bertolis bertolis 96 Oct 26 15:36 crc640ba5056094cb42e6
drwxr-xr-x 4 bertolis bertolis 128 Oct 26 15:36 crc6414252951f3f66c67
drwxr-xr-x 193 bertolis bertolis 6176 Oct 26 15:36 crc643f46942d9dd1fff9
drwxr-xr-x 20 bertolis bertolis 640 Oct 26 15:36 crc64720bb2db43a66fe9
drwxr-xr-x 3 bertolis bertolis 96 Oct 26 15:36 crc64a0e0a82d0db9a07d
drwxr-xr-x 6 bertolis bertolis 192 Oct 26 15:36 crc64ee486da937c010f4
drwxr-xr-x 10 bertolis bertolis 320 Oct 26 15:36 mono
drwxr-xr-x 3 bertolis bertolis 96 Oct 26 15:36 xamarin

The directory xamarin implies that the application is created using Xamarin. We know that applications built with Xamarin store their code within

dynamically linked libraries (DLL �les). Let's enumerate the extracted directory myapp/unknown/assemblies/.

rl1k@htb[/htb]$ ls -l myapp/unknown/assemblies/

total 34128
-rw-r--r-- 1 bertolis bertolis 15872 Oct 29 21:04 FormsViewGroup.dll
-rw-r--r-- 1 bertolis bertolis 17284 Oct 29 21:04 FormsViewGroup.pdb
-rw-r--r-- 1 bertolis bertolis 166912 Oct 29 21:04 Java.Interop.dll
-rw-r--r-- 1 bertolis bertolis 63144 Oct 29 21:04 Java.Interop.pdb
-rw-r--r-- 1 bertolis bertolis 2183168 Oct 29 21:04 Mono.Android.dll
-rw-r--r-- 1 bertolis bertolis 639024 Oct 29 21:04 Mono.Android.pdb
-rw-r--r-- 1 bertolis bertolis 121856 Oct 29 21:04 Mono.Security.dll
-rw-r--r-- 1 bertolis bertolis 53472 Oct 29 21:04 Mono.Security.pdb
-rw-r--r-- 1 bertolis bertolis 442368 Oct 29 21:04 Myapp.Android.dll
-rw-r--r-- 1 bertolis bertolis 79216 Oct 29 21:04 Myapp.Android.pdb
-rw-r--r-- 1 bertolis bertolis 9728 Oct 29 21:04 Myapp.dll
<SNIP>

This directory contains the .NET assemblies (DLL �les) used by the application. Since the app's name is myapp, we could try reading the content of the

�le Myapp.dll, but unfortunately it contains compiled that isn't human-readable. However, the headers of the �le Myapp.dll reveal the magic number

MZ.

rl1k@htb[/htb]$ vim myapp/unknown/assemblies/Myapp.dll

Checking online for file signatures reveals the following as the �rst result.

Reversing DLL Files

Reversing DLL Files

Reversing DLL Files

✎

Using the control+F, we can search on the website for the MZ magic numbers, which eventually brings us to the following cell in the table.

In the Description cell, we can see that this is a DOS MZ executable. This is the executable �le format used for .EXE �les in DOS. The output of the

following command also indicates that this is an executable �le for MS Windows.

rl1k@htb[/htb]$ file myapp/unknown/assemblies/Myapp.dll

myapp/unknown/assemblies/Myapp.dll: PE32 executable (DLL) (console) Intel 80386 Mono/.Net assembly, for MS Windows

Furthermore, our command indicates that it's a .NET assembly, which means we should be able to produce human-readable code using tools like

dnSpy or ILSpy. These are .NET decompilers/assembly browsers used to inspect and analyze .NET assemblies (DLL and EXE �les). Before we begin our

analysis with these tools, let's �rst examine two other cases of retrieving.NET assemblies from APK �les.

Extracting Assemblies from Compressed DLLs

Assume we are testing a similar application and have already extracted the �les of the APK using APKTool. Reading the content of the directory myapp/

unknown/assemblies/ reveals the �le Myapp.dll, but this time, the file command produces the following output.

rl1k@htb[/htb]$ file myapp/unknown/assemblies/Myapp.dll

myapp/unknown/assemblies/Myapp.dll: Sony PlayStation Audio

Again, we will check the headers of the �le.

rl1k@htb[/htb]$ vim myapp/unknown/assemblies/Myapp.dll

Reversing DLL Files

Reversing DLL Files

Reversing DLL Files

✎

https://github.com/dnSpy/dnSpy
https://github.com/dnSpy/dnSpy
https://github.com/icsharpcode/AvaloniaILSpy
https://github.com/icsharpcode/AvaloniaILSpy

We notice that this time the headers start with the magic number XALZ. After reading the following Pull request from Xamarin's GitHub repository, we

can conclude that the XALZ magic bytes indicate the use of the LZ4 compression algorithm. Searching online for xalz file header reveals the

following as the �rst result.

According to the description in the comments of the �le Xamarin_XALZ_decompress.py, this tool decompresses special Xamarin DLL �les. Let's

download it to our local machine and run it.

rl1k@htb[/htb]$ wget https://raw.githubusercontent.com/x41sec/tools/master/Mobile/Xamarin/Xamarin_XALZ_decompress.py
rl1k@htb[/htb]$ python Xamarin_XALZ_decompress.py myapp/unknown/assemblies/Myapp.dll myapp_decompressed.dll

Running the script on the compressed Myapp.dll �le will output the new �le myapp_decompressed.dll. Subseqeuntly, the �le type now shows that it's

a .NET assembly.

rl1k@htb[/htb]$ file myapp_decompressed.dll

myapp_decompressed.dll: PE32 executable (DLL) (console) Intel 80386 Mono/.Net assembly, for MS Windows

At this point, we could begin analysis using a .NET decompiler like ILSpy or dnSpy. Now, let's examine the third case of retrieving .NET assemblies from

an APK �le.

Extracting Assemblies from .blob Files

Assuming once again that we are testing a similar app, and we have already used APKTool to extract the �les from the APK. This time, listing the

content of the directory myapp/unknown/assemblies/ outputs the following �les.

rl1k@htb[/htb]$ ls -l myapp/unknown/assemblies/

-rw-r--r-- 1 bertolis bertolis 5118997 Oct 30 11:00 assemblies.blob
-rw-r--r-- 1 bertolis bertolis 3067 Oct 30 11:00 assemblies.manifest

In this example, the DLL �les are bundled in a single �le called assemblies.blob. In the latest version of Xamarin, compressing and bundling the DLL

�les into an assemblies.blob �le is the default option for optimizing the app's performance, size, and startup time. Checking the �le type indicates that

this is not an executable �le.

rl1k@htb[/htb]$ file myapp/unknown/assemblies/assemblies.blob

myapp/unknown/assemblies/assemblies.blob: Sony PlayStation Audio

Reversing DLL Files

Reversing DLL Files

Reversing DLL Files

Reversing DLL Files

✎

https://github.com/xamarin/xamarin-android/pull/4686
https://github.com/xamarin/xamarin-android/pull/4686
https://github.com/lz4/lz4
https://github.com/lz4/lz4

Opening assemblies.blob with ILSpy or dnSpy will result in an error, since the expected format is an uncompressed DLL �le containing IL

(Intermediate Language) code. Searching online for "extract dll from assemblies.blob", we �nd this article. It suggests tool pyxamstore for

extracting and decompressing DLLs from the assemblies.blob �le. Let's clone the repository and try it out.

rl1k@htb[/htb]$ sudo pip3 install git+https://github.com/jakev/pyxamstore.git
rl1k@htb[/htb]$ pyxamstore unpack -d myapp/unknown/assemblies/

Extracting Myapp.Android...
Extracting FormsViewGroup...
Extracting Myapp...
Extracting Xamarin.AndroidX.Activity...
Extracting Xamarin.AndroidX.AppCompat.AppCompatResources...
Extracting Xamarin.AndroidX.AppCompat...
Extracting Xamarin.AndroidX.CardView...
<SNIP>

After running the tool, a new directory named out is created containing the decompressed DLL �le. We can now open the �le out/Myapp.dll using

ILSpy (since dnSpy can only be installed in Windows operating systems.)

rl1k@htb[/htb]$ wget https://github.com/icsharpcode/AvaloniaILSpy/releases/download/v7.2-rc/Linux.x64.Release.zip
rl1k@htb[/htb]$ unzip Linux.x64.Release.zip
rl1k@htb[/htb]$ unzip ILSpy-linux-x64-Release.zip
rl1k@htb[/htb]$ cd artifacts/linux-x64
rl1k@htb[/htb]$./ILSpy

When the program starts up, click on File -> Open and select the out/Myapp.dll. It will load after a few moments, and we can then navigate through

the project. The following image shows the source code of the function MainPage(), which is likely the constructor of the class MainPage.

This function calls the InitializeComponent(). Let's click on it to see its source code.

Reversing DLL Files

Reversing DLL Files

✎

https://www.thecobraden.com/posts/unpacking_xamarin_assembly_stores/
https://www.thecobraden.com/posts/unpacking_xamarin_assembly_stores/
https://github.com/jakev/pyxamstore
https://github.com/jakev/pyxamstore

At the end of this function, we can see the line button.Clicked += mainPage.Master_Override_Passphrase;. Let's click on this as well.

It appears to be a function that checks the user's input with a hardcoded master password, possibly provided by the developer directly to the user as a

backdoor or fail-safe. In this snippet, we can see three hardcoded strings that, judging from the variable names buffer, rgbKey, and rgbIV, must be the

cipher text, the key, and the IV accordingly. Let's use CyberChef to decrypt the cipher text. On the left side panel, search and select From Base64, then

paste the encoded cipher text CJS8pFL5WeWwLbSjbQ6xQXNKSV+EVFi5c0OllWMhQ8pfgS8EhS7Qkbn1CP5+wbgf into the Input area on the right. Next, we

will search and select AES Decrypt and �ll in the Key and the IV accordingly, while setting their type to UTF8. Finally, we will set the Input �eld to Raw

and click on BAKE!.

The hardcoded password HTB{hardcoded_override_master_password} has been successfully decrypted.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

UK 30ms

✎

https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/

Start Instance

 / 1 spawns left

Waiting to start...

+ 5 What is the value of the hardcoded password?

+10 Streak pts Submit  myapp_dll.zip Hint

Questions
Answer the question(s) below to complete this Section and earn cubes!

Cheat Sheet􏅜

􏆲

Submit your answer here...

􏄞 􏇍

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Extracting and Enumerating APK Files

 Introduction

 Disassembling the APK

Understanding Smali

Analyzing Application's Source Code

 Reading Hardcoded Strings

 Bad Cryptography Implementation

 Reversing Hybrid Apps

􏆲

􏆲

􏆲

􏆲

􏆲

Enable step-by-step solutions for all questions

✎

https://academy.hackthebox.com/storage/modules/221/myapp_dll.zip
https://academy.hackthebox.com/storage/modules/221/myapp_dll.zip
https://academy.hackthebox.com/storage/modules/221/myapp_dll.zip
https://academy.hackthebox.com/storage/modules/221/myapp_dll.zip
https://academy.hackthebox.com/storage/modules/221/myapp_dll.zip
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630

 Reading Obfuscated Code

 Deobfuscating Code

Analyzing Native Libraries

 Reversing Shared Objects

 Reversing DLL Files

Application Patching

 Authentication Bypass

 Modifying Game Apps

 License Veri�cation Bypass

 Root Detection Bypass

Skills Assessment

 Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953

