
Reversing Shared Objects

As we brie�y discussed in the Native Code section of Android Fundamentals, Android applications sometimes include native C++ code, typically

integrated through the Native Development Kit (NDK). Developers may use native code to improve performance, reduce latency, or add a layer of

complexity that makes reverse engineering more di�cult. When the application is compiled, any native code is packaged into shared object (.so) �les

within the APK.

These shared objects are susceptible to the same types of security issues we've already been investigating—such as hardcoded credentials,

obfuscation logic, or exploitable �aws—only now they may be buried deeper in compiled native code. Analyzing .so �les is therefore an important part

of the broader reverse engineering process and plays a key role in advanced app analysis and malware research, which we'll explore in more detail in

future modules.

While JADX is commonly used to analyze the Java code of an application, tools like Ghidra, IDA Pro and RADARE2 are preferred for examining shared

objects. In our upcoming example, we'll use Ghidra to analyze the native code.

Reading Strings Directly from SO Files

The following example features a weather forecast app that uses a private API key to fetch remote data and display it locally. As seen in several previous

labs, uncovering hardcoded or improperly stored API keys is a recurring issue in mobile application security. If a private API key falls into the wrong

hands, it can lead to a variety of damaging outcomes depending on the key’s privileges and intended use. An attacker could gain unauthorized access

to backend systems, incur �nancial costs by abusing paid services, ex�ltrate or manipulate data, disrupt service functionality, or impersonate legitimate

users. The screenshot below shows the application's main screen. The screenshot below shows the application's main screen.

The decompiled code in JADX reveals the following.

✎

https://academy.hackthebox.com/module/195/section/2182
https://academy.hackthebox.com/module/195/section/2182
https://ghidra-sre.org/
https://ghidra-sre.org/
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://rada.re/n/
https://rada.re/n/

Reading the Java code of the app, we can understand that the shared library called myapp is used, and the native method getAPIKey() is initialized. A

few lines below, we notice that there is an HTTP request to the URL http://api.weather.org/data/2.5/weather using the value retrieved from the

native method getAPIKey().

Let's check if we can retrieve the API key from the shared library. First, we'll extract the �les from the APK using either APKTool or unzip.

rl1k@htb[/htb]$ unzip myapp.apk

This will extract the �le lib/x86_64/libmyapp.so, which, as the name implies, is the name of the library (myapp) with the pre�x lib. Issuing the strings

command to search the �le for the API key and using grep to �lter the output (for the words api, key, or other possible combinations) unfortunately

does not reveal the API key. However, another approach is to use regular expressions to �lter the result.

rl1k@htb[/htb]$ strings lib/x86_64/libmyapp.so | grep -E "[a-zA-Z0-9_-]{60,}"

xmjPceil0E5ekn6QisfF1XLVSxq3n7HkfK9duVJxaqLPxZ4eB9EiYacvgswubvKZ
N12_GLOBAL__N_116itanium_demangle24ForwardTemplateReferenceE
N12_GLOBAL__N_116itanium_demangle26SyntheticTemplateParamNameE
N12_GLOBAL__N_116itanium_demangle24NonTypeTemplateParamDeclE
N12_GLOBAL__N_116itanium_demangle25TemplateTemplateParamDeclE
N12_GLOBAL__N_116itanium_demangle27ExpandedSpecialSubstitutionE

The above command will search for strings in the �le that are 60 characters or more. If there are no results, we can try lowering the character length

until we see some output. In this example, we extract the string xmjPceil0E5ekn6QisfF1XLVSxq3n7HkfK9duVJxaqLPxZ4eB9EiYacvgswubvKZ, a potential

API key we could use to examine the application's endpoints further.

Reading Hardcoded Strings With Ghidra

Now, let's assume that the output was too big, or that there was was no way to tell which string was the API key. In such cases, we would need an

alternative way to retrieve it. Fortunately, this can be done with Ghidra. In Debian-based Linux, Ghidra can be installed as follows.

rl1k@htb[/htb]$ apt install ghidra

Once it's done installing, we can launch it from the command line.

rl1k@htb[/htb]$ ghidra

When Ghidra is done launching, click on File -> New Project -> Non-Shared Project -> Next. Then, give a Project Name and click Next again. Once

the project is created, click on File -> Import File, navigate to the libmyapp.so �le, click Select File To Import and click OK to the following pop-up

windows. Next, double-click on the imported �le, click Yes and Analyze on the next pop-up window. The following image shows Ghidra's layout after

Reversing Shared Objects

Reversing Shared Objects

Reversing Shared Objects

Reversing Shared Objects

✎

loading a shared library.

Below is a quick overview of the basic panes we'll be working with in Ghidra while reversing shared libraries.

Pane Description

Symbol
Tree

Found on the left side of the window, this presents the symbols within the binary being analyzed in a structured, hierarchical manner. Symbols represent the
entities of the program and include functions, variables, labels, and more. This helps to quickly navigate to and identify interesting parts of a binary.

Listing This pane displays the disassembled code of the binary by representing the low-level machine instructions in a human-readable assembly language. Alongside the
code, addresses, byte values of the instructions, and other relevant comments or annotations can also be found. This pane provides a granular view of the
program's operation at the instruction level.

Decompiler One of the most powerful tools in Ghidra, it can translate the assembly code from the Listing pane into a higher-level representation, making it easier for the user to
read and understand.

Checking the functions used in this �le under Symbol Tree at the left of the window reveals the function

Java_com_hackthebox_myapp_MainActivity_getAPIKey.

Let's click on it and check the decompiled code in the Decompile window on the right.

✎

The above table of characters reveals the string B9EiYacvgswubvKZ. Given the name of the function and the fact that this is its return value, we've found

a candidate for a possible API key.

Reading Code With Ghidra

In the previous example, we saw how to retrieve hardcoded strings from a shared library using Ghidra. In the following example, we will try to read and

understand the code in order to retrieve the API key. Looking at the Symbol Tree pane under the Functions, we can see the functions

Java_com_hackthebox_myapp_MainActivity_getAPIKey and deobfuscate.

Let's click on the �rst on the Java_com_hackthebox_myapp_MainActivity_getAPIKey and check the Decompiler pane.

The above snippet is the high-level representation of the assembly code of the shared object. As we can see, various local variables and memory

allocations are set up for the execution. Let's break them down so we can better understand what is happening. The local_18 is dynamically allocated

0x30 (48 bytes) bytes of memory, �lled with some hexadecimal values, likely representing the obfuscated API key. The deobfuscate(); function is

called with the address of local_40 as its argument. Although there is no direct connection between local_18 and deobfuscate(), we could still

assume that the value passed is eventually the hexadecimal values contained in the local_18 variable. A logical explanation for why this is not clear

could be that due to an oversight in the reverse-engineering process, there might have been a function that populates local_40 using the data from

local_18 before the deobfuscate() function is called, which is not shown. Let's double-click on the deobfuscate() to further examine its functionality.

✎

Inside the deobfuscate() function, we can see that the memory structure of the variable in_RSI is checked. We can assume that this is the obfuscated

API key since, in many calling conventions, the RSI register is used to pass the function's second argument. If its least signi�cant bit is 0, the string is

short and stored inline. Otherwise, the string is long and stored in dynamically allocated memory. The function then goes through each string character

and appends its bitwise negation to param_1. In simpler terms, it's �ipping the bits for each character. This is a really simple obfuscation method that

should not be used in production. The value param_1 is then returned to the Java_com_hackthebox_myapp_MainActivity_getAPIKey() function.

Now that we know the code's functionality in the shared library, we can try to retrieve the initial API key. To shape the obfuscated string, we will need to

take the hexadecimal values stored in the variable local_18 and arrange them in the correct order. Before starting, however, we need to keep in mind

that the x86-64 system architecture uses the little-endian format. This means, for example, that the value 0xaf959287 will become 0x879295af. Reading

the content of the Java_com_hackthebox_myapp_MainActivity_getAPIKey() function reveals the following hexadecimal values.

Let's take the above values and place them in sequental order. Since the arrays start from 0 and not 1, our frst value will be *local_18 = 0xaf959287,

followed by local_18[1] = 0x93969a9c, etc. We will also apply big-endian formatting to reverse the existing little-endian formatting. Finally, we will

remove the x0 pre�x to produce the following hex sequence.

879295af 9c9a9693 cfbaca9a 9491c9ae 968c99b9 cea7b3a9 ac878ecc 91c8b794

Now, we can use the online calculator—or any other calculator with bitwise NOT operation—to get the initial string value of the API key. Before pasting

the above sequence to the calculator, make sure it's in the following format.

87 92 95 af 9c 9a 96 93 cf ba ca 9a 94 91 c9 ae 96 8c 99 b9 ce a7 b3 a9 ac 87 8e cc 91 c8 b7 94

Reversing Shared Objects

Reversing Shared Objects

✎

https://toolslick.com/math/bitwise/not-calculator
https://toolslick.com/math/bitwise/not-calculator

Then, press the blue Calculate button and check the Ascii Result section.

As we can see, the API key xmjPceil0E5ekn6QisfF1XLVSxq3n7Hk is now visible. Fortunately for us, it only took a few steps to retrieve it successfully.

However, other more complicated obfuscation methods can be used to make the process of reading the source code even more di�cult. We will

showcase examples of these in later in the module.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

UK 30ms

Start Instance

 / 1 spawns left

✎

Waiting to start...

+ 3 Analyze the APK �le found inside the attached "myapp_shared_libs_1.zip" archive. What is the API key value?

+10 Streak pts Submit  myapp_shared_libs_1.zip

+ 5 Analyze the APK �le found inside the attached "myapp_shared_libs_2.zip" archive. What is the API key value?

+10 Streak pts Submit  myapp_shared_libs_2.zip

Questions
Answer the question(s) below to complete this Section and earn cubes!

Cheat Sheet􏅜

􏆲

Submit your answer here...

􏄞

􏆲

Submit your answer here...

􏄞

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Extracting and Enumerating APK Files

 Introduction

 Disassembling the APK

Understanding Smali

Analyzing Application's Source Code

 Reading Hardcoded Strings

 Bad Cryptography Implementation

 Reversing Hybrid Apps

 Reading Obfuscated Code

 Deobfuscating Code

Analyzing Native Libraries

 Reversing Shared Objects

 Reversing DLL Files

Application Patching

 Authentication Bypass

 Modifying Game Apps

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

Enable step-by-step solutions for all questions

✎

https://academy.hackthebox.com/storage/modules/221/myapp_shared_libs_1.zip
https://academy.hackthebox.com/storage/modules/221/myapp_shared_libs_1.zip
https://academy.hackthebox.com/storage/modules/221/myapp_shared_libs_1.zip
https://academy.hackthebox.com/storage/modules/221/myapp_shared_libs_1.zip
https://academy.hackthebox.com/storage/modules/221/myapp_shared_libs_1.zip
https://academy.hackthebox.com/storage/modules/221/myapp_shared_libs_2.zip
https://academy.hackthebox.com/storage/modules/221/myapp_shared_libs_2.zip
https://academy.hackthebox.com/storage/modules/221/myapp_shared_libs_2.zip
https://academy.hackthebox.com/storage/modules/221/myapp_shared_libs_2.zip
https://academy.hackthebox.com/storage/modules/221/myapp_shared_libs_2.zip
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714

 License Veri�cation Bypass

 Root Detection Bypass

Skills Assessment

 Skills Assessment

􏆲

􏆲

􏆲

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953

