
Root Detection Bypass

Root detection in Android applications is a common security measure used by developers to help preserve the integrity of their apps. It's purpose is to

detect whether a device has been rooted—a state in which users gain privileged access to the operating system. While rooting allows for deeper

customization, it also introduces signi�cant security risks. Rooted devices are more vulnerable to malicious attacks, as root access can bypass many of

Android's built-in security protections. This poses a particular threat to applications that handle sensitive information, such as banking apps.

There are many methods developers can use to implement root detection checks in an application. Simple checks might include searching for common

rooting apps, looking for the presence of a su binary, checking for common open-source libraries, and others. When an application detects a rooted

device, it might restrict access, limit certain features, or display a warning message to the user. However, malicious users—and sometimes even

regular users—may attempt to bypass these checks using evasion techniques. There are several reasons someone might want to circumvent root

detection: root access allows users to modify the device beyond manufacturer limitations, such as uninstalling system apps or running apps that

require elevated privileges. If an application blocks usage on rooted devices, a user may wish to bypass this restriction in order to retain both

functionality and the bene�ts of rooting. In this section, we'll explore how to bypass root detection by patching the application.

For this hands-on exercise, we suggest you use an AVD emulator, although another emulator or physical device will work as well. Once your emulator is

running, connect to the device via ADB and install the application:

rl1k@htb[/htb]$ adb connect
rl1k@htb[/htb]$ adb install myapp.apk

Performing Streamed Install
Success

The following scenario features a bank application with root detection, used to prevent the app from running on rooted devices.

Third-Party Libraries

As we can see in the above image, the bank application detected a rooted device, and the message Rooted device detected is displayed. Let's open

the APK �le using JADX and read its source code.

Root Detection Bypass

Root Detection Bypass

✎

rl1k@htb[/htb]$ jadx-gui myapp.apk

The above snippet reveals the method d16r45(), which includes the line if (this.rootBeer.isRooted()). If the isRooted() method is true, the

string return from the method hd87et() will be printed. The imported package com.scottyab.rootbeer.RootBeer tells us the app is using a library

called rootbeer to check if the device is rooted. Using APKTool, we can edit the Smali code and bypass the root detection check by reversing the if

condition, as demonstrated in the previous section.

First, we'll disassemble the APK �le and open its smali source code with a text editor.

rl1k@htb[/htb]$ apktool d myapp.apk
rl1k@htb[/htb]$ vim myapp/smali/com/hackthebox/myapp/MainActivity.smali

Changing the line if-eqz v0, :cons_0 to if-nez v0, :cons_0 will reverse the condition and bypass the root detection check. Before recompiling and

signing the app, let's review the source code for any additional root detection mechanisms.

Build Tags

In this example, root detection is implemented by checking the build tags of the device’s operating system. Build tags are part of the system's build

properties and indicate how the OS was compiled. On non-rooted devices, the build tag is typically set to something like release-keys, whereas rooted

devices (or those running custom ROMs) often use tags like test-keys or dev-keys. Let’s open the APK with JADX and see how this check is

implemented.

rl1k@htb[/htb]$ jadx-gui myapp.apk

Root Detection Bypass

Root Detection Bypass

✎

https://github.com/scottyab/rootbeer
https://github.com/scottyab/rootbeer

The code snipped reveals another method called v55n21(). The line String str = Build.TAGS; stores the string returned from the �eld Build.TAGS

in the str variable. If the substring test-keys is found within this string, the app considers the device as rooted. To bypass this check, we can modify

the Smali code using APKTool by changing the condition if (str != null && str.contains("test-keys")).

rl1k@htb[/htb]$ vim myapp/smali/com/hackthebox/myapp/MainActivity.smali

Changing the line if-eqz v0, :cons_0 to if-nez v0, :cons_0 will reverse the condition and the root detection check. Again, let's hold o� on

recompiling and signing the app for now, and move on to another example.

Root Management Apps

In this scenario, root management applications are installed on the device. These allow users to manage root permissions on rooted Android systems,

controlling which apps are granted superuser access.

rl1k@htb[/htb]$ jadx-gui myapp.apk

The method h27n99() checks whether the condition if (this.apn.isRootManagementAppInstalled(getPackageManager())) returns true. To

understand how this check is performed, double-click on isRootManagementAppInstalled() to view its contents.

This reveals the class AppPackageNames and the method isRootManagementAppInstalled(). The method lists the package names of installed

applications by way of the getInstalledPackages() method, which checks the strArr array for the existence of "com.noshufou.android.su",

"eu.chainfire.supersu", "com.topjohnwu.magisk", and "com.hackthebox.rootmanagerapp". These are the package names of several root

management applications. Subsequently, we can use APKTool to remove them from the array and see if the bypass is successful.

Root Detection Bypass

Root Detection Bypass
✎

Let's decompile the APK and edit the Smali code accordingly.

rl1k@htb[/htb]$ apktool d myapp.apk
rl1k@htb[/htb]$ grep -Rnw './myapp/smali' -e 'com.hackthebox.rootmanagerapp'
rl1k@htb[/htb]$ sed -i -e 's/com.noshufou.android.su//g' -e 's/eu.chainfire.supersu//g' -e 's/com.topjohnwu.magisk//g' -e 's/com.hackthebox.ro

Listing the contents of the �le ./myapp/smali/com/hackthebox/myapp/AppPackageNames.smali shows that the package names have been

successfully removed.

rl1k@htb[/htb]$ cat ./myapp/smali/com/hackthebox/myapp/AppPackageNames.smali

<SNIP>
 const-string v0, ""

 const-string v1, ""

 const-string v2, ""

 const-string v3, ""

 .line 13
 filled-new-array {v2, v3, v0, v1}, [Ljava/lang/String;

 move-result-object v0
 const/4 v1, 0x0
<SNIP>

At this point, we are ready to recompile, sign the app, and test.

SU Binary

In Java Code
In this example, the source code is obfuscated, and reading the method names or the hardcoded messages is not possible. Let's try to follow the

application �ow to see if we can �nd any root detection methods. Checking the source code of the app using JADX reveals the following snippet.

rl1k@htb[/htb]$ jadx-gui myapp.apk

Root Detection Bypass

Root Detection Bypass

Root Detection Bypass

✎

The application checks whether the su binary exists in speci�c directories—common locations where rooting tools typically install it. Detecting this �le

is a widely used method for determining if a device is rooted. As shown in the code snippet above, the methods f1718v.getClass() and

stringFromJNI() are only called if the variable z2 is false. For z2 to be false, the strArr array must not contain any of the known paths where the su

binary might reside. Since a rooted device could include this �le in one of those locations, we can bypass the check by patching the application with

APKTool. This involves either reversing the if condition or replacing the paths with empty strings, as demonstrated in previous examples.

Within Native Code
Implementing root detection in native code signi�cantly increases the di�culty of bypassing it, as native libraries are harder to reverse engineer than

Java code. The following example features an app that performs root checks within native code. We'll start by analyzing the source using JADX:

rl1k@htb[/htb]$ jadx-gui myapp.apk

Reading the content of the method onCreate() reveals the method f1474h(). Further analysis of the MainActivity con�rms that it is a native method

inside the library myapp.

Let's use APKTool to extract the library from the APK.

rl1k@htb[/htb]$ apktool d myapp.apk
rl1k@htb[/htb]$ ls -l myapp/lib/x86_64

total 576
-rw-r--r-- 1 bertolis bertolis 294320 Nov 17 16:31 libmyapp.so

Then, can open the extracted library using Ghidra.

rl1k@htb[/htb]$ ghidra

When Gihdra starts, click on File -> New Project -> Non-Shared Project -> Next, enter a Project Name, and click Finish. Once the project is created,

Root Detection Bypass

Root Detection Bypass

Root Detection Bypass

✎

click on File -> Import File, navigate to the libmyapp.so �le, click Select File To Import, and click OK at eacg if the following pop-up windows.

Next, double-click on the imported �le, click Yes and Analyze on the next pop-up window. An inspection of the functions included in this library (under

Symbol Tree at the left of the window) reveals the function Java_com_hackthebox_myapp_MainActivity_f1474h.

Let's click on it and view the library's source code in the Decompile pane at the left of the window.

✎

This function performs several checks for rooted status, such as verifying the presence of �les like /system/bin/su. It uses the same detection

technique mentioned earlier but executes it within native code. Since this function solely handles root detection, we can bypass it by removing the call

to f1474h() from the onCreate() method in the Smali code.

Let's open the �le myapp/smali/com/hackthebox/myapp/MainActivity.smali using a text editor and search for the method f1474h() within the

onCreate() method.

rl1k@htb[/htb]$ vim myapp/smali/com/hackthebox/myapp/MainActivity.smali

Code: smali

<SNIP>

 .line 52

 invoke-virtual {p0}, Lcom/hackthebox/myapp/MainActivity;->v55n21()V

 .line 54

 invoke-virtual {p0}, Lcom/hackthebox/myapp/MainActivity;->h27n99()V

 .line 56

 iget p1, p0, Lcom/hackthebox/myapp/MainActivity;->tvResults:I

 invoke-direct {p0, p1}, Lcom/hackthebox/myapp/MainActivity;->f1474h(I)V

 return-void

.end method

<SNIP>

Next, remove the following lines.

Code: smali

<SNIP>

 invoke-direct {p0, p1}, Lcom/hackthebox/myapp/MainActivity;->f1474h(I)V

<SNIP>

Then, we recompile, sign, and install the modi�ed application.

rl1k@htb[/htb]$ apktool b myapp
rl1k@htb[/htb]$ echo -e "password\npassword\njohn doe\ntest\ntest\ntest\ntest\ntest\nyes" > params.txt
rl1k@htb[/htb]$ cat params.txt | keytool -genkey -keystore key.keystore -validity 1000 -keyalg RSA -alias john
rl1k@htb[/htb]$ zipalign -p -f -v 4 myapp/dist/myapp.apk myapp_aligned.apk
rl1k@htb[/htb]$ echo password | apksigner sign --ks key.keystore myapp_aligned.apk
rl1k@htb[/htb]$ adb uninstall com.hackthebox.myapp
rl1k@htb[/htb]$ adb install myapp_aligned.apk

Performing Incremental Install
Serving...
All files should be loaded. Notifying the device.
Success
Install command complete in 381 ms

Finally, running the app on the device displays the message Root detection bypassed.

Root Detection Bypass

Root Detection Bypass

✎

It is not recommended to delete a function or remove the entire library without �rst understanding its role. Other parts of the application may rely on

functions within the library, and doing so could cause the app to crash. In many cases, root detection relies on a combination of multiple checks—both

in Java and native code—to increase robustness.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

Terminate Pwnbox to switch location

UK 31ms

Start Instance

 / 1 spawns left

Waiting to start...

Questions
Answer the question(s) below to complete this Section and earn cubes!

Cheat Sheet􏅜

Enable step-by-step solutions for all questions

✎

+ 6 Download and install both APK �les into the emulator. After successfully bypassing the root detection mechanism, what message is displayed

on the screen? (Note: The "SU Binary In Java Code" step is excluded from this task.)

+10 Streak pts Submit  myapp_detection_mechanisms.zip

􏆲

Submit your answer here...

􏄞

 Previous Next 

 Cheat Sheet

 Go to Questions

􏅜

?ဿ

Table of Contents

Extracting and Enumerating APK Files

 Introduction

 Disassembling the APK

Understanding Smali

Analyzing Application's Source Code

 Reading Hardcoded Strings

 Bad Cryptography Implementation

 Reversing Hybrid Apps

 Reading Obfuscated Code

 Deobfuscating Code

Analyzing Native Libraries

 Reversing Shared Objects

 Reversing DLL Files

Application Patching

 Authentication Bypass

 Modifying Game Apps

 License Veri�cation Bypass

 Root Detection Bypass

Skills Assessment

 Skills Assessment

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

􏆲

My Workstation

O F F L I N E

 Start Instance

 / 1 spawns left

􏅄

✎

https://academy.hackthebox.com/storage/modules/221/myapp_detection_mechanisms.zip
https://academy.hackthebox.com/storage/modules/221/myapp_detection_mechanisms.zip
https://academy.hackthebox.com/storage/modules/221/myapp_detection_mechanisms.zip
https://academy.hackthebox.com/storage/modules/221/myapp_detection_mechanisms.zip
https://academy.hackthebox.com/storage/modules/221/myapp_detection_mechanisms.zip
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953

✎

