
/

Angular coding style guide

Looking for an opinionated guide to Angular syntax, conventions, and application structure? Step right in! This style

guide presents preferred conventions and, as importantly, explains why.

Style vocabulary

Each guideline describes either a good or bad practice, and all have a consistent presentation.

The wording of each guideline indicates how strong the recommendation is.

Do is one that should always be followed. Always might be a bit too strong of a word. Guidelines that literally should

always be followed are extremely rare. On the other hand, you need a really unusual case for breaking a Do guideline.

Consider guidelines should generally be followed. If you fully understand the meaning behind the guideline and have

a good reason to deviate, then do so. Please strive to be consistent.

Avoid indicates something you should almost never do. Code examples to avoid have an unmistakable red header.

Why? gives reasons for following the previous recommendations.

File structure conventions

Some code examples display a file that has one or more similarly named companion files. For example,

hero.component.ts and hero.component.html .

The guideline uses the shortcut hero.component.ts|html|css|spec to represent those various files. Using this

shortcut makes this guide's file structures easier to read and more terse.

Single responsibility

Apply the single responsibility principle (SRP) to all components, services, and other symbols. This helps make

the app cleaner, easier to read and maintain, and more testable.

Rule of One

Style 01-01

Do define one thing, such as a service or component, per file.

https://github.com/angular/angular/edit/master/aio/content/guide/styleguide.md?message=docs%3A%20describe%20your%20change...
https://wikipedia.org/wiki/Single_responsibility_principle

/

Consider limiting files to 400 lines of code.

Why? One component per file makes it far easier to read, maintain, and avoid collisions with teams in source control.

Why? One component per file avoids hidden bugs that often arise when combining components in a file where they

may share variables, create unwanted closures, or unwanted coupling with dependencies.

Why? A single component can be the default export for its file which facilitates lazy loading with the router.

The key is to make the code more reusable, easier to read, and less mistake prone.

The following negative example defines the AppComponent , bootstraps the app, defines the Hero model object, and

loads heroes from the server all in the same file. Don't do this.

/

app/heroes/hero.component.ts

/* avoid */

import { Component, NgModule, OnInit } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

interface Hero {

 id: number;

 name: string;

}

@Component({

 selector: 'app-root',

 template: `

 <h1>{{title}}</h1>

 <pre>{{heroes | json}}</pre>

 `,

 styleUrls: ['app/app.component.css']

})

class AppComponent implements OnInit {

 title = 'Tour of Heroes';

 heroes: Hero[] = [];

 ngOnInit() {

 getHeroes().then(heroes => (this.heroes = heroes));

 }

}

@NgModule({

 imports: [BrowserModule],

 declarations: [AppComponent],

 exports: [AppComponent],

 bootstrap: [AppComponent]

})

export class AppModule {}

platformBrowserDynamic().bootstrapModule(AppModule);

const HEROES: Hero[] = [

 { id: 1, name: 'Bombasto' },

https://angular.io/api/core/Component
https://angular.io/api/core/NgModule
https://angular.io/api/core/OnInit
https://angular.io/api/platform-browser/BrowserModule
https://angular.io/api/platform-browser-dynamic/platformBrowserDynamic
https://angular.io/api/core/Component
https://angular.io/api/common/JsonPipe
https://angular.io/api/core/OnInit
https://angular.io/api/core/NgModule
https://angular.io/api/platform-browser/BrowserModule
https://angular.io/api/platform-browser-dynamic/platformBrowserDynamic

/

It is a better practice to redistribute the component and its supporting classes into their own, dedicated files.

As the app grows, this rule becomes even more important. Back to top

Small functions

Style 01-02

Do define small functions

Consider limiting to no more than 75 lines.

Why? Small functions are easier to test, especially when they do one thing and serve one purpose.

Why? Small functions promote reuse.

Why? Small functions are easier to read.

Why? Small functions are easier to maintain.

Why? Small functions help avoid hidden bugs that come with large functions that share variables with external

scope, create unwanted closures, or unwanted coupling with dependencies.

Back to top

Naming

 { id: 2, name: 'Tornado' },

 { id: 3, name: 'Magneta' }

];

function getHeroes(): Promise<Hero[]> {

 return Promise.resolve(HEROES); // TODO: get hero data from the server;

}

main.ts app/app.module.ts app/app.component.ts app/heroes/heroes.com

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc
https://angular.io/api/platform-browser-dynamic/platformBrowserDynamic
https://angular.io/api/platform-browser-dynamic/platformBrowserDynamic

/

Naming conventions are hugely important to maintainability and readability. This guide recommends naming

conventions for the file name and the symbol name.

General Naming Guidelines

Style 02-01

Do use consistent names for all symbols.

Do follow a pattern that describes the symbol's feature then its type. The recommended pattern is

feature.type.ts .

Why? Naming conventions help provide a consistent way to find content at a glance. Consistency within the project

is vital. Consistency with a team is important. Consistency across a company provides tremendous efficiency.

Why? The naming conventions should simply help find desired code faster and make it easier to understand.

Why? Names of folders and files should clearly convey their intent. For example, app/heroes/hero-

list.component.ts may contain a component that manages a list of heroes.

Back to top

Separate �le names with dots and dashes

Style 02-02

Do use dashes to separate words in the descriptive name.

Do use dots to separate the descriptive name from the type.

Do use consistent type names for all components following a pattern that describes the component's feature then

its type. A recommended pattern is feature.type.ts .

Do use conventional type names including .service , .component , .pipe , .module , and .directive . Invent

additional type names if you must but take care not to create too many.

Why? Type names provide a consistent way to quickly identify what is in the file.

Why? Type names make it easy to find a specific file type using an editor or IDE's fuzzy search techniques.

Why? Unabbreviated type names such as .service are descriptive and unambiguous. Abbreviations such as .srv ,

.svc , and .serv can be confusing.

Why? Type names provide pattern matching for any automated tasks.

Back to top

Symbols and �le names

https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc

/

Style 02-03

Do use consistent names for all assets named after what they represent.

Do use upper camel case for class names.

Do match the name of the symbol to the name of the file.

Do append the symbol name with the conventional suffix (such as Component , Directive , Module , Pipe , or

Service) for a thing of that type.

Do give the filename the conventional suffix (such as .component.ts , .directive.ts , .module.ts , .pipe.ts , or

.service.ts) for a file of that type.

Why? Consistent conventions make it easy to quickly identify and reference assets of different types.

https://angular.io/api/core/Component
https://angular.io/api/core/Directive
https://angular.io/api/core/Pipe

/

Symbol Name File Name

app.component.ts

heroes.component.ts

hero-list.component.ts

hero-detail.component.ts

validation.directive.ts

app.module.ts

init-caps.pipe.ts

user-profile.service.ts

Back to top

Service names

Style 02-04

Do use consistent names for all services named after their feature.

Do suffix a service class name with Service . For example, something that gets data or heroes should be called a

DataService or a HeroService .

@Component({ ... })

export class AppComponent { }

@Component({ ... })

export class HeroesComponent { }

@Component({ ... })

export class HeroListComponent { }

@Component({ ... })

export class HeroDetailComponent { }

@Directive({ ... })

export class ValidationDirective { }

@NgModule({ ... })

export class AppModule

@Pipe({ name: 'initCaps' })

export class InitCapsPipe implements

PipeTransform { }

@Injectable()

export class UserProfileService { }

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Directive
https://angular.io/api/core/NgModule
https://angular.io/api/core/Pipe
https://angular.io/api/core/PipeTransform
https://angular.io/api/core/Injectable

/

A few terms are unambiguously services. They typically indicate agency by ending in "-er". You may prefer to name a

service that logs messages Logger rather than LoggerService . Decide if this exception is agreeable in your project.

As always, strive for consistency.

Why? Provides a consistent way to quickly identify and reference services.

Why? Clear service names such as Logger do not require a suffix.

Why? Service names such as Credit are nouns and require a suffix and should be named with a suffix when it is not

obvious if it is a service or something else.

Symbol Name File Name

hero-data.service.ts

credit.service.ts

logger.service.ts

Back to top

Bootstrapping

Style 02-05

Do put bootstrapping and platform logic for the app in a file named main.ts .

Do include error handling in the bootstrapping logic.

Avoid putting app logic in main.ts . Instead, consider placing it in a component or service.

Why? Follows a consistent convention for the startup logic of an app.

Why? Follows a familiar convention from other technology platforms.

@Injectable()

export class HeroDataService { }

@Injectable()

export class CreditService { }

@Injectable()

export class Logger { }

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Injectable
https://angular.io/api/core/Injectable
https://angular.io/api/core/Injectable

/

main.ts

Back to top

Component selectors

Style 05-02

Do use dashed-case or kebab-case for naming the element selectors of components.

Why? Keeps the element names consistent with the specification for Custom Elements .

app/heroes/shared/hero-button/hero-button.component.ts

Back to top

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';

platformBrowserDynamic().bootstrapModule(AppModule)

 .then(success => console.log(`Bootstrap success`))

 .catch(err => console.error(err));

/* avoid */

@Component({

 selector: 'tohHeroButton',

 templateUrl: './hero-button.component.html'

})

export class HeroButtonComponent {}

app/heroes/shared/hero-button/hero-button.component.ts app/app.component.html

@Component({

 selector: 'toh-hero-button',

 templateUrl: './hero-button.component.html'

})

export class HeroButtonComponent {}

https://angular.io/guide/styleguide#toc
https://www.w3.org/TR/custom-elements/
https://angular.io/guide/styleguide#toc
https://angular.io/api/platform-browser-dynamic/platformBrowserDynamic
https://angular.io/api/platform-browser-dynamic/platformBrowserDynamic
https://angular.io/api/core/Component
https://angular.io/api/core/Component

/

Component custom pre�x

Style 02-07

Do use a hyphenated, lowercase element selector value; for example, admin-users .

Do use a custom prefix for a component selector. For example, the prefix toh represents Tour of Heroes and the

prefix admin represents an admin feature area.

Do use a prefix that identifies the feature area or the app itself.

Why? Prevents element name collisions with components in other apps and with native HTML elements.

Why? Makes it easier to promote and share the component in other apps.

Why? Components are easy to identify in the DOM.

app/heroes/hero.component.ts

app/users/users.component.ts

/* avoid */

// HeroComponent is in the Tour of Heroes feature

@Component({

 selector: 'hero'

})

export class HeroComponent {}

/* avoid */

// UsersComponent is in an Admin feature

@Component({

 selector: 'users'

})

export class UsersComponent {}

https://angular.io/api/core/Component
https://angular.io/api/core/Component

/

app/heroes/hero.component.ts

app/users/users.component.ts

Back to top

Directive selectors

Style 02-06

Do Use lower camel case for naming the selectors of directives.

Why? Keeps the names of the properties defined in the directives that are bound to the view consistent with the

attribute names.

Why? The Angular HTML parser is case sensitive and recognizes lower camel case.

Back to top

Directive custom pre�x

Style 02-08

Do use a custom prefix for the selector of directives (e.g, the prefix toh from Tour of Heroes).

Do spell non-element selectors in lower camel case unless the selector is meant to match a native HTML attribute.

Why? Prevents name collisions.

Why? Directives are easily identified.

@Component({

 selector: 'toh-hero'

})

export class HeroComponent {}

@Component({

 selector: 'admin-users'

})

export class UsersComponent {}

https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Component
https://angular.io/api/core/Component

/

app/shared/validate.directive.ts

app/shared/validate.directive.ts

Back to top

Pipe names

Style 02-09

Do use consistent names for all pipes, named after their feature. The pipe class name should use UpperCamelCase

(the general convention for class names), and the corresponding name string should use lowerCamelCase. The name

string cannot use hyphens ("dash-case" or "kebab-case").

Why? Provides a consistent way to quickly identify and reference pipes.

Symbol Name File Name

ellipsis.pipe.ts

init-caps.pipe.ts

Back to top

/* avoid */

@Directive({

 selector: '[validate]'

})

export class ValidateDirective {}

@Directive({

 selector: '[tohValidate]'

})

export class ValidateDirective {}

@Pipe({ name: 'ellipsis' })

export class EllipsisPipe implements

PipeTransform { }

@Pipe({ name: 'initCaps' })

export class InitCapsPipe implements

PipeTransform { }

https://angular.io/guide/styleguide#toc
https://angular.io/guide/glossary#case-types
https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Directive
https://angular.io/api/core/Directive
https://angular.io/api/core/Pipe
https://angular.io/api/core/PipeTransform
https://angular.io/api/core/Pipe
https://angular.io/api/core/PipeTransform

/

Unit test �le names

Style 02-10

Do name test specification files the same as the component they test.

Do name test specification files with a suffix of .spec .

Why? Provides a consistent way to quickly identify tests.

Why? Provides pattern matching for karma or other test runners.

Test Type File Names

Components heroes.component.spec.ts

hero-list.component.spec.ts

hero-detail.component.spec.ts

Services logger.service.spec.ts

hero.service.spec.ts

filter-text.service.spec.ts

Pipes ellipsis.pipe.spec.ts

init-caps.pipe.spec.ts

Back to top

End-to-End (E2E) test �le names

Style 02-11

Do name end-to-end test specification files after the feature they test with a suffix of .e2e-spec .

Why? Provides a consistent way to quickly identify end-to-end tests.

Why? Provides pattern matching for test runners and build automation.

https://karma-runner.github.io/
https://angular.io/guide/styleguide#toc

/

Test Type File Names

End-to-End Tests app.e2e-spec.ts

heroes.e2e-spec.ts

Back to top

Angular NgModule names

Style 02-12

Do append the symbol name with the suffix Module .

Do give the file name the .module.ts extension.

Do name the module after the feature and folder it resides in.

Why? Provides a consistent way to quickly identify and reference modules.

Why? Upper camel case is conventional for identifying objects that can be instantiated using a constructor.

Why? Easily identifies the module as the root of the same named feature.

Do suffix a RoutingModule class name with RoutingModule .

Do end the filename of a RoutingModule with -routing.module.ts .

Why? A RoutingModule is a module dedicated exclusively to configuring the Angular router. A consistent class and

file name convention make these modules easy to spot and verify.

https://angular.io/guide/styleguide#toc

/

Symbol Name File Name

app.module.ts

heroes.module.ts

villains.module.ts

app-routing.module.ts

heroes-routing.module.ts

Back to top

Application structure and NgModules

Have a near-term view of implementation and a long-term vision. Start small but keep in mind where the app is

heading down the road.

All of the app's code goes in a folder named src . All feature areas are in their own folder, with their own NgModule.

All content is one asset per file. Each component, service, and pipe is in its own file. All third party vendor scripts are

stored in another folder and not in the src folder. You didn't write them and you don't want them cluttering src . Use

the naming conventions for files in this guide. Back to top

LIFT

Style 04-01

Do structure the app such that you can Locate code quickly, Identify the code at a glance, keep the Flattest structure

you can, and Try to be DRY.

Do define the structure to follow these four basic guidelines, listed in order of importance.

@NgModule({ ... })

export class AppModule { }

@NgModule({ ... })

export class HeroesModule { }

@NgModule({ ... })

export class VillainsModule { }

@NgModule({ ... })

export class AppRoutingModule { }

@NgModule({ ... })

export class HeroesRoutingModule { }

https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule

/

Why? LIFT provides a consistent structure that scales well, is modular, and makes it easier to increase developer

efficiency by finding code quickly. To confirm your intuition about a particular structure, ask: can I quickly open and

start work in all of the related files for this feature?

Back to top

Locate

Style 04-02

Do make locating code intuitive, simple, and fast.

Why? To work efficiently you must be able to find files quickly, especially when you do not know (or do not

remember) the file names. Keeping related files near each other in an intuitive location saves time. A descriptive

folder structure makes a world of difference to you and the people who come after you.

Back to top

Identify

Style 04-03

Do name the file such that you instantly know what it contains and represents.

Do be descriptive with file names and keep the contents of the file to exactly one component.

Avoid files with multiple components, multiple services, or a mixture.

Why? Spend less time hunting and pecking for code, and become more efficient. Longer file names are far better

than short-but-obscure abbreviated names.

It may be advantageous to deviate from the one-thing-per-file rule when you have a set of small, closely-

related features that are better discovered and understood in a single file than as multiple files. Be wary

of this loophole.

Back to top

Flat

Style 04-04

Do keep a flat folder structure as long as possible.

Consider creating sub-folders when a folder reaches seven or more files.

https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc

/

Consider configuring the IDE to hide distracting, irrelevant files such as generated .js and .js.map files.

Why? No one wants to search for a file through seven levels of folders. A flat structure is easy to scan.

On the other hand, psychologists believe that humans start to struggle when the number of adjacent interesting

things exceeds nine. So when a folder has ten or more files, it may be time to create subfolders.

Base your decision on your comfort level. Use a flatter structure until there is an obvious value to creating a new

folder.

Back to top

T-DRY (Try to be DRY)

Style 04-05

Do be DRY (Don't Repeat Yourself).

Avoid being so DRY that you sacrifice readability.

Why? Being DRY is important, but not crucial if it sacrifices the other elements of LIFT. That's why it's called T-DRY.

For example, it's redundant to name a template hero-view.component.html because with the .html extension, it is

obviously a view. But if something is not obvious or departs from a convention, then spell it out.

Back to top

Overall structural guidelines

Style 04-06

Do start small but keep in mind where the app is heading down the road.

Do have a near term view of implementation and a long term vision.

Do put all of the app's code in a folder named src .

Consider creating a folder for a component when it has multiple accompanying files (.ts , .html , .css and .spec).

Why? Helps keep the app structure small and easy to maintain in the early stages, while being easy to evolve as the

app grows.

Why? Components often have four files (e.g. *.html , *.css , *.ts , and *.spec.ts) and can clutter a folder quickly.

Here is a compliant folder and file structure:

<project root>

src

https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc

/

app

core

exception.service.ts|spec.ts

user-profile.service.ts|spec.ts

heroes

hero

hero.component.ts|html|css|spec.ts

hero-list

hero-list.component.ts|html|css|spec.ts

shared

hero-button.component.ts|html|css|spec.ts

hero.model.ts

hero.service.ts|spec.ts

heroes.component.ts|html|css|spec.ts

heroes.module.ts

heroes-routing.module.ts

shared

shared.module.ts

init-caps.pipe.ts|spec.ts

filter-text.component.ts|spec.ts

filter-text.service.ts|spec.ts

villains

villain

...

villain-list

...

shared

...

villains.component.ts|html|css|spec.ts

villains.module.ts

villains-routing.module.ts

/

While components in dedicated folders are widely preferred, another option for small apps is to keep

components flat (not in a dedicated folder). This adds up to four files to the existing folder, but also

reduces the folder nesting. Whatever you choose, be consistent.

Back to top

Folders-by-feature structure

Style 04-07

Do create folders named for the feature area they represent.

Why? A developer can locate the code and identify what each file represents at a glance. The structure is as flat as it

can be and there are no repetitive or redundant names.

Why? The LIFT guidelines are all covered.

Why? Helps reduce the app from becoming cluttered through organizing the content and keeping them aligned with

the LIFT guidelines.

Why? When there are a lot of files, for example 10+, locating them is easier with a consistent folder structure and

more difficult in a flat structure.

Do create an NgModule for each feature area.

Why? NgModules make it easy to lazy load routable features.

Why? NgModules make it easier to isolate, test, and reuse features.

For more information, refer to this folder and file structure example.

Back to top

app.component.ts|html|css|spec.ts

app.module.ts

app-routing.module.ts

main.ts

index.html

...

node_modules/...

...

https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#file-tree
https://angular.io/guide/styleguide#toc

/

App root module

Style 04-08

Do create an NgModule in the app's root folder, for example, in /src/app .

Why? Every app requires at least one root NgModule.

Consider naming the root module app.module.ts .

Why? Makes it easier to locate and identify the root module.

app/app.module.ts

Back to top

Feature modules

Style 04-09

Do create an NgModule for all distinct features in an application; for example, a Heroes feature.

Do place the feature module in the same named folder as the feature area; for example, in app/heroes .

Do name the feature module file reflecting the name of the feature area and folder; for example,

app/heroes/heroes.module.ts .

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { HeroesComponent } from './heroes/heroes.component';

@NgModule({

 imports: [

 BrowserModule,

],

 declarations: [

 AppComponent,

 HeroesComponent

],

 exports: [AppComponent],

 entryComponents: [AppComponent]

})

export class AppModule {}

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/NgModule
https://angular.io/api/platform-browser/BrowserModule
https://angular.io/api/core/NgModule
https://angular.io/api/platform-browser/BrowserModule

/

Do name the feature module symbol reflecting the name of the feature area, folder, and file; for example,

app/heroes/heroes.module.ts defines HeroesModule .

Why? A feature module can expose or hide its implementation from other modules.

Why? A feature module identifies distinct sets of related components that comprise the feature area.

Why? A feature module can easily be routed to both eagerly and lazily.

Why? A feature module defines clear boundaries between specific functionality and other application features.

Why? A feature module helps clarify and make it easier to assign development responsibilities to different teams.

Why? A feature module can easily be isolated for testing.

Back to top

Shared feature module

Style 04-10

Do create a feature module named SharedModule in a shared folder; for example, app/shared/shared.module.ts

defines SharedModule .

Do declare components, directives, and pipes in a shared module when those items will be re-used and referenced

by the components declared in other feature modules.

Consider using the name SharedModule when the contents of a shared module are referenced across the entire

application.

Consider not providing services in shared modules. Services are usually singletons that are provided once for the

entire application or in a particular feature module. There are exceptions, however. For example, in the sample code

that follows, notice that the SharedModule provides FilterTextService . This is acceptable here because the

service is stateless;that is, the consumers of the service aren't impacted by new instances.

Do import all modules required by the assets in the SharedModule ; for example, CommonModule and FormsModule .

Why? SharedModule will contain components, directives and pipes that may need features from another common

module; for example, ngFor in CommonModule .

Do declare all components, directives, and pipes in the SharedModule .

Do export all symbols from the SharedModule that other feature modules need to use.

Why? SharedModule exists to make commonly used components, directives and pipes available for use in the

templates of components in many other modules.

Avoid specifying app-wide singleton providers in a SharedModule . Intentional singletons are OK. Take care.

https://angular.io/guide/styleguide#toc
https://angular.io/api/common/CommonModule
https://angular.io/api/forms/FormsModule
https://angular.io/api/common/NgForOf
https://angular.io/api/common/CommonModule

/

Why? A lazy loaded feature module that imports that shared module will make its own copy of the service and likely

have undesirable results.

Why? You don't want each module to have its own separate instance of singleton services. Yet there is a real danger

of that happening if the SharedModule provides a service.

src

...

app

shared

shared.module.ts

init-caps.pipe.ts|spec.ts

filter-text.component.ts|spec.ts

filter-text.service.ts|spec.ts

app.component.ts|html|css|spec.ts

app.module.ts

app-routing.module.ts

main.ts

index.html

app/shared/shared.module.ts app/shared/init-caps.pipe.ts app/shared/�lter-text/�lter-text.

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { FormsModule } from '@angular/forms';

import { FilterTextComponent } from './filter-text/filter-text.component';

import { FilterTextService } from './filter-text/filter-text.service';

import { InitCapsPipe } from './init-caps.pipe';

@NgModule({

 imports: [CommonModule, FormsModule],

 declarations: [

 FilterTextComponent,

 InitCapsPipe

],

 providers: [FilterTextService],

https://angular.io/api/core/NgModule
https://angular.io/api/common/CommonModule
https://angular.io/api/forms/FormsModule
https://angular.io/api/core/NgModule
https://angular.io/api/common/CommonModule
https://angular.io/api/forms/FormsModule

/

Back to top

Lazy Loaded folders

Style 04-11

A distinct application feature or workflow may be lazy loaded or loaded on demand rather than when the application

starts.

Do put the contents of lazy loaded features in a lazy loaded folder. A typical lazy loaded folder contains a routing

component, its child components, and their related assets and modules.

Why? The folder makes it easy to identify and isolate the feature content.

Back to top

Never directly import lazy loaded folders

Style 04-12

Avoid allowing modules in sibling and parent folders to directly import a module in a lazy loaded feature.

Why? Directly importing and using a module will load it immediately when the intention is to load it on demand.

Back to top

Components

Components as elements

Style 05-03

Consider giving components an element selector, as opposed to attribute or class selectors.

Why? Components have templates containing HTML and optional Angular template syntax. They display content.

Developers place components on the page as they would native HTML elements and web components.

 exports: [

 CommonModule,

 FormsModule,

 FilterTextComponent,

 InitCapsPipe

]

})

export class SharedModule { }

https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc
https://angular.io/api/common/CommonModule
https://angular.io/api/forms/FormsModule

/

Why? It is easier to recognize that a symbol is a component by looking at the template's html.

There are a few cases where you give a component an attribute, such as when you want to augment a

built-in element. For example, Material Design uses this technique with <button mat-button> .

However, you wouldn't use this technique on a custom element.

app/heroes/hero-button/hero-button.component.ts

app/app.component.html

Back to top

Extract templates and styles to their own �les

Style 05-04

Do extract templates and styles into a separate file, when more than 3 lines.

/* avoid */

@Component({

 selector: '[tohHeroButton]',

 templateUrl: './hero-button.component.html'

})

export class HeroButtonComponent {}

<!-- avoid -->

<div tohHeroButton></div>

app/heroes/shared/hero-button/hero-button.component.ts app/app.component.html

@Component({

 selector: 'toh-hero-button',

 templateUrl: './hero-button.component.html'

})

export class HeroButtonComponent {}

https://material.angular.io/components/button/overview
https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Component
https://angular.io/api/core/Component

/

Do name the template file [component-name].component.html , where [component-name] is the component name.

Do name the style file [component-name].component.css , where [component-name] is the component name.

Do specify component-relative URLs, prefixed with ./ .

Why? Large, inline templates and styles obscure the component's purpose and implementation, reducing readability

and maintainability.

Why? In most editors, syntax hints and code snippets aren't available when developing inline templates and styles.

The Angular TypeScript Language Service (forthcoming) promises to overcome this deficiency for HTML templates

in those editors that support it; it won't help with CSS styles.

Why? A component relative URL requires no change when you move the component files, as long as the files stay

together.

Why? The ./ prefix is standard syntax for relative URLs; don't depend on Angular's current ability to do without that

prefix.

/

app/heroes/heroes.component.ts

/* avoid */

@Component({

 selector: 'toh-heroes',

 template: `

 <div>

 <h2>My Heroes</h2>

 <ul class="heroes">

 <li *ngFor="let hero of heroes | async" (click)="selectedHero=hero">

 {{hero.id}} {{hero.name}}

 <div *ngIf="selectedHero">

 <h2>{{selectedHero.name | uppercase}} is my hero</h2>

 </div>

 </div>

 `,

 styles: [`

 .heroes {

 margin: 0 0 2em 0;

 list-style-type: none;

 padding: 0;

 width: 15em;

 }

 .heroes li {

 cursor: pointer;

 position: relative;

 left: 0;

 background-color: #EEE;

 margin: .5em;

 padding: .3em 0;

 height: 1.6em;

 border-radius: 4px;

 }

 .heroes .badge {

 display: inline-block;

 font-size: small;

 color: white;

 padding: 0.8em 0.7em 0 0.7em;

 background-color: #607D8B;

https://angular.io/api/core/Component
https://angular.io/api/common/NgForOf
https://angular.io/api/common/AsyncPipe
https://angular.io/api/common/NgIf
https://angular.io/api/common/UpperCasePipe

/

Back to top

 line-height: 1em;

 position: relative;

 left: -1px;

 top: -4px;

 height: 1.8em;

 margin-right: .8em;

 border-radius: 4px 0 0 4px;

 }

 `]

})

export class HeroesComponent implements OnInit {

 heroes: Observable<Hero[]>;

 selectedHero: Hero;

 constructor(private heroService: HeroService) { }

 ngOnInit() {

 this.heroes = this.heroService.getHeroes();

 }

}

app/heroes/heroes.component.ts app/heroes/heroes.component.html app/heroes/heroes.component.

@Component({

 selector: 'toh-heroes',

 templateUrl: './heroes.component.html',

 styleUrls: ['./heroes.component.css']

})

export class HeroesComponent implements OnInit {

 heroes: Observable<Hero[]>;

 selectedHero: Hero;

 constructor(private heroService: HeroService) { }

 ngOnInit() {

 this.heroes = this.heroService.getHeroes();

 }

}

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/OnInit
https://angular.io/api/core/Component
https://angular.io/api/core/OnInit

/

Decorate input and output properties

Style 05-12

Do use the @Input() and @Output() class decorators instead of the inputs and outputs properties of the

@Directive and @Component metadata:

Consider placing @Input() or @Output() on the same line as the property it decorates.

Why? It is easier and more readable to identify which properties in a class are inputs or outputs.

Why? If you ever need to rename the property or event name associated with @Input() or @Output() , you can

modify it in a single place.

Why? The metadata declaration attached to the directive is shorter and thus more readable.

Why? Placing the decorator on the same line usually makes for shorter code and still easily identifies the property as

an input or output. Put it on the line above when doing so is clearly more readable.

app/heroes/shared/hero-button/hero-button.component.ts

/* avoid */

@Component({

 selector: 'toh-hero-button',

 template: `<button></button>`,

 inputs: [

 'label'

],

 outputs: [

 'heroChange'

]

})

export class HeroButtonComponent {

 heroChange = new EventEmitter<any>();

 label: string;

}

https://angular.io/api/core/Input
https://angular.io/api/core/Output
https://angular.io/api/core/Directive
https://angular.io/api/core/Component
https://angular.io/api/core/Input
https://angular.io/api/core/Output
https://angular.io/api/core/Input
https://angular.io/api/core/Output
https://angular.io/api/core/Component
https://angular.io/api/core/EventEmitter

/

app/heroes/shared/hero-button/hero-button.component.ts

Back to top

Avoid aliasing inputs and outputs

Style 05-13

Avoid input and output aliases except when it serves an important purpose.

Why? Two names for the same property (one private, one public) is inherently confusing.

Why? You should use an alias when the directive name is also an input property, and the directive name doesn't

describe the property.

app/heroes/shared/hero-button/hero-button.component.ts

@Component({

 selector: 'toh-hero-button',

 template: `<button>{{label}}</button>`

})

export class HeroButtonComponent {

 @Output() heroChange = new EventEmitter<any>();

 @Input() label: string;

}

/* avoid pointless aliasing */

@Component({

 selector: 'toh-hero-button',

 template: `<button>{{label}}</button>`

})

export class HeroButtonComponent {

 // Pointless aliases

 @Output('heroChangeEvent') heroChange = new EventEmitter<any>();

 @Input('labelAttribute') label: string;

}

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Component
https://angular.io/api/core/Output
https://angular.io/api/core/EventEmitter
https://angular.io/api/core/Input
https://angular.io/api/core/Component
https://angular.io/api/core/Output
https://angular.io/api/core/EventEmitter
https://angular.io/api/core/Input

/

app/app.component.html

Back to top

Member sequence

Style 05-14

Do place properties up top followed by methods.

Do place private members after public members, alphabetized.

Why? Placing members in a consistent sequence makes it easy to read and helps instantly identify which members

of the component serve which purpose.

<!-- avoid -->

<toh-hero-button labelAttribute="OK" (changeEvent)="doSomething()">

</toh-hero-button>

app/heroes/shared/hero-button/hero-button.component.ts app/heroes/shared/hero-button/hero-highlight.dire

@Component({

 selector: 'toh-hero-button',

 template: `<button>{{label}}</button>`

})

export class HeroButtonComponent {

 // No aliases

 @Output() heroChange = new EventEmitter<any>();

 @Input() label: string;

}

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Component
https://angular.io/api/core/Output
https://angular.io/api/core/EventEmitter
https://angular.io/api/core/Input

/

app/shared/toast/toast.component.ts

/* avoid */

export class ToastComponent implements OnInit {

 private defaults = {

 title: '',

 message: 'May the Force be with you'

 };

 message: string;

 title: string;

 private toastElement: any;

 ngOnInit() {

 this.toastElement = document.getElementById('toh-toast');

 }

 // private methods

 private hide() {

 this.toastElement.style.opacity = 0;

 window.setTimeout(() => this.toastElement.style.zIndex = 0, 400);

 }

 activate(message = this.defaults.message, title = this.defaults.title) {

 this.title = title;

 this.message = message;

 this.show();

 }

 private show() {

 console.log(this.message);

 this.toastElement.style.opacity = 1;

 this.toastElement.style.zIndex = 9999;

 window.setTimeout(() => this.hide(), 2500);

 }

}

https://angular.io/api/core/OnInit

/

app/shared/toast/toast.component.ts

Back to top

export class ToastComponent implements OnInit {

 // public properties

 message: string;

 title: string;

 // private fields

 private defaults = {

 title: '',

 message: 'May the Force be with you'

 };

 private toastElement: any;

 // public methods

 activate(message = this.defaults.message, title = this.defaults.title) {

 this.title = title;

 this.message = message;

 this.show();

 }

 ngOnInit() {

 this.toastElement = document.getElementById('toh-toast');

 }

 // private methods

 private hide() {

 this.toastElement.style.opacity = 0;

 window.setTimeout(() => this.toastElement.style.zIndex = 0, 400);

 }

 private show() {

 console.log(this.message);

 this.toastElement.style.opacity = 1;

 this.toastElement.style.zIndex = 9999;

 window.setTimeout(() => this.hide(), 2500);

 }

}

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/OnInit

/

Delegate complex component logic to services

Style 05-15

Do limit logic in a component to only that required for the view. All other logic should be delegated to services.

Do move reusable logic to services and keep components simple and focused on their intended purpose.

Why? Logic may be reused by multiple components when placed within a service and exposed via a function.

Why? Logic in a service can more easily be isolated in a unit test, while the calling logic in the component can be

easily mocked.

Why? Removes dependencies and hides implementation details from the component.

Why? Keeps the component slim, trim, and focused.

/

app/heroes/hero-list/hero-list.component.ts

/* avoid */

import { OnInit } from '@angular/core';

import { HttpClient } from '@angular/common/http';

import { Observable } from 'rxjs';

import { catchError, finalize } from 'rxjs/operators';

import { Hero } from '../shared/hero.model';

const heroesUrl = 'http://angular.io';

export class HeroListComponent implements OnInit {

 heroes: Hero[];

 constructor(private http: HttpClient) {}

 getHeroes() {

 this.heroes = [];

 this.http.get(heroesUrl).pipe(

 catchError(this.catchBadResponse),

 finalize(() => this.hideSpinner())

).subscribe((heroes: Hero[]) => this.heroes = heroes);

 }

 ngOnInit() {

 this.getHeroes();

 }

 private catchBadResponse(err: any, source: Observable<any>) {

 // log and handle the exception

 return new Observable();

 }

 private hideSpinner() {

 // hide the spinner

 }

}

https://angular.io/api/core/OnInit
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http
https://angular.io/api/core/OnInit
https://angular.io/api/common/http
https://angular.io/api/common/http/HttpClient

/

app/heroes/hero-list/hero-list.component.ts

Back to top

Don't pre�x output properties

Style 05-16

Do name events without the prefix on .

Do name event handler methods with the prefix on followed by the event name.

Why? This is consistent with built-in events such as button clicks.

Why? Angular allows for an alternative syntax on-* . If the event itself was prefixed with on this would result in an

on-onEvent binding expression.

import { Component, OnInit } from '@angular/core';

import { Hero, HeroService } from '../shared';

@Component({

 selector: 'toh-hero-list',

 template: `...`

})

export class HeroListComponent implements OnInit {

 heroes: Hero[];

 constructor(private heroService: HeroService) {}

 getHeroes() {

 this.heroes = [];

 this.heroService.getHeroes()

 .subscribe(heroes => this.heroes = heroes);

 }

 ngOnInit() {

 this.getHeroes();

 }

}

https://angular.io/guide/styleguide#toc
https://angular.io/guide/binding-syntax
https://angular.io/api/core/Component
https://angular.io/api/core/OnInit
https://angular.io/api/core/Component
https://angular.io/api/core/OnInit

/

app/heroes/hero.component.ts

app/app.component.html

Back to top

Put presentation logic in the component class

Style 05-17

Do put presentation logic in the component class, and not in the template.

Why? Logic will be contained in one place (the component class) instead of being spread in two places.

Why? Keeping the component's presentation logic in the class instead of the template improves testability,

maintainability, and reusability.

/* avoid */

@Component({

 selector: 'toh-hero',

 template: `...`

})

export class HeroComponent {

 @Output() onSavedTheDay = new EventEmitter<boolean>();

}

<!-- avoid -->

<toh-hero (onSavedTheDay)="onSavedTheDay($event)"></toh-hero>

app/heroes/hero.component.ts app/app.component.html

export class HeroComponent {

 @Output() savedTheDay = new EventEmitter<boolean>();

}

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Component
https://angular.io/api/core/Output
https://angular.io/api/core/EventEmitter
https://angular.io/api/core/Output
https://angular.io/api/core/EventEmitter

/

app/heroes/hero-list/hero-list.component.ts

/* avoid */

@Component({

 selector: 'toh-hero-list',

 template: `

 <section>

 Our list of heroes:

 <toh-hero *ngFor="let hero of heroes" [hero]="hero">

 </toh-hero>

 Total powers: {{totalPowers}}

 Average power: {{totalPowers / heroes.length}}

 </section>

 `

})

export class HeroListComponent {

 heroes: Hero[];

 totalPowers: number;

}

https://angular.io/api/core/Component
https://angular.io/api/common/NgForOf

/

app/heroes/hero-list/hero-list.component.ts

Back to top

Directives

Use directives to enhance an element

Style 06-01

Do use attribute directives when you have presentation logic without a template.

Why? Attribute directives don't have an associated template.

Why? An element may have more than one attribute directive applied.

@Component({

 selector: 'toh-hero-list',

 template: `

 <section>

 Our list of heroes:

 <toh-hero *ngFor="let hero of heroes" [hero]="hero">

 </toh-hero>

 Total powers: {{totalPowers}}

 Average power: {{avgPower}}

 </section>

 `

})

export class HeroListComponent {

 heroes: Hero[];

 totalPowers: number;

 get avgPower() {

 return this.totalPowers / this.heroes.length;

 }

}

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Component
https://angular.io/api/common/NgForOf

/

app/shared/highlight.directive.ts

app/app.component.html

Back to top

HostListener/HostBinding decorators versus host metadata

Style 06-03

Consider preferring the @HostListener and @HostBinding to the host property of the @Directive and

@Component decorators.

Do be consistent in your choice.

Why? The property associated with @HostBinding or the method associated with @HostListener can be modified

only in a single place—in the directive's class. If you use the host metadata property, you must modify both the

property/method declaration in the directive's class and the metadata in the decorator associated with the directive.

@Directive({

 selector: '[tohHighlight]'

})

export class HighlightDirective {

 @HostListener('mouseover') onMouseEnter() {

 // do highlight work

 }

}

<div tohHighlight>Bombasta</div>

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/HostListener
https://angular.io/api/core/HostBinding
https://angular.io/api/core/Directive
https://angular.io/api/core/Component
https://angular.io/api/core/HostBinding
https://angular.io/api/core/HostListener
https://angular.io/api/core/Directive
https://angular.io/api/core/HostListener

/

app/shared/validator.directive.ts

Compare with the less preferred host metadata alternative.

Why? The host metadata is only one term to remember and doesn't require extra ES imports.

app/shared/validator2.directive.ts

Back to top

Services

Services are singletons

import { Directive, HostBinding, HostListener } from '@angular/core';

@Directive({

 selector: '[tohValidator]'

})

export class ValidatorDirective {

 @HostBinding('attr.role') role = 'button';

 @HostListener('mouseenter') onMouseEnter() {

 // do work

 }

}

import { Directive } from '@angular/core';

@Directive({

 selector: '[tohValidator2]',

 host: {

 '[attr.role]': 'role',

 '(mouseenter)': 'onMouseEnter()'

 }

})

export class Validator2Directive {

 role = 'button';

 onMouseEnter() {

 // do work

 }

}

https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Directive
https://angular.io/api/core/HostBinding
https://angular.io/api/core/HostListener
https://angular.io/api/core/Directive
https://angular.io/api/core/HostBinding
https://angular.io/api/core/HostListener
https://angular.io/api/core/Directive
https://angular.io/api/core/Directive

/

Style 07-01

Do use services as singletons within the same injector. Use them for sharing data and functionality.

Why? Services are ideal for sharing methods across a feature area or an app.

Why? Services are ideal for sharing stateful in-memory data.

app/heroes/shared/hero.service.ts

Back to top

Single responsibility

Style 07-02

Do create services with a single responsibility that is encapsulated by its context.

Do create a new service once the service begins to exceed that singular purpose.

Why? When a service has multiple responsibilities, it becomes difficult to test.

Why? When a service has multiple responsibilities, every component or service that injects it now carries the weight

of them all.

Back to top

Providing a service

Style 07-03

Do provide a service with the app root injector in the @Injectable decorator of the service.

Why? The Angular injector is hierarchical.

Why? When you provide the service to a root injector, that instance of the service is shared and available in every

class that needs the service. This is ideal when a service is sharing methods or state.

export class HeroService {

 constructor(private http: HttpClient) { }

 getHeroes() {

 return this.http.get<Hero[]>('api/heroes');

 }

}

https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Injectable
https://angular.io/api/common/http
https://angular.io/api/common/http/HttpClient

/

Why? When you register a service in the @Injectable decorator of the service, optimization tools such as those

used by the Angular CLI's production builds can perform tree shaking and remove services that aren't used by your

app.

Why? This is not ideal when two different components need different instances of a service. In this scenario it would

be better to provide the service at the component level that needs the new and separate instance.

src/app/treeshaking/service.ts

Back to top

Use the @Injectable() class decorator

Style 07-04

Do use the @Injectable() class decorator instead of the @Inject parameter decorator when using types as tokens

for the dependencies of a service.

Why? The Angular Dependency Injection (DI) mechanism resolves a service's own dependencies based on the

declared types of that service's constructor parameters.

Why? When a service accepts only dependencies associated with type tokens, the @Injectable() syntax is much

less verbose compared to using @Inject() on each individual constructor parameter.

app/heroes/shared/hero-arena.service.ts

@Injectable({

 providedIn: 'root',

})

export class Service {

}

/* avoid */

export class HeroArena {

 constructor(

 @Inject(HeroService) private heroService: HeroService,

 @Inject(HttpClient) private http: HttpClient) {}

}

https://angular.io/api/core/Injectable
https://angular.io/cli
https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Injectable
https://angular.io/api/core/Inject
https://angular.io/api/core/Injectable
https://angular.io/api/core/Inject
https://angular.io/api/core/Injectable
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http
https://angular.io/api/common/http/HttpClient

/

app/heroes/shared/hero-arena.service.ts

Back to top

Data Services

Talk to the server through a service

Style 08-01

Do refactor logic for making data operations and interacting with data to a service.

Do make data services responsible for XHR calls, local storage, stashing in memory, or any other data operations.

Why? The component's responsibility is for the presentation and gathering of information for the view. It should not

care how it gets the data, just that it knows who to ask for it. Separating the data services moves the logic on how to

get it to the data service, and lets the component be simpler and more focused on the view.

Why? This makes it easier to test (mock or real) the data calls when testing a component that uses a data service.

Why? The details of data management, such as headers, HTTP methods, caching, error handling, and retry logic, are

irrelevant to components and other data consumers.

A data service encapsulates these details. It's easier to evolve these details inside the service without affecting its

consumers. And it's easier to test the consumers with mock service implementations.

Back to top

Lifecycle hooks

Use Lifecycle hooks to tap into important events exposed by Angular.

Back to top

Implement lifecycle hook interfaces

Style 09-01

@Injectable()

export class HeroArena {

 constructor(

 private heroService: HeroService,

 private http: HttpClient) {}

}

https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Injectable
https://angular.io/api/common/http
https://angular.io/api/common/http/HttpClient

/

Do implement the lifecycle hook interfaces.

Why? Lifecycle interfaces prescribe typed method signatures. Use those signatures to flag spelling and syntax

mistakes.

app/heroes/shared/hero-button/hero-button.component.ts

app/heroes/shared/hero-button/hero-button.component.ts

Back to top

Appendix

Useful tools and tips for Angular.

Back to top

Codelyzer

/* avoid */

@Component({

 selector: 'toh-hero-button',

 template: `<button>OK<button>`

})

export class HeroButtonComponent {

 onInit() { // misspelled

 console.log('The component is initialized');

 }

}

@Component({

 selector: 'toh-hero-button',

 template: `<button>OK</button>`

})

export class HeroButtonComponent implements OnInit {

 ngOnInit() {

 console.log('The component is initialized');

 }

}

https://angular.io/guide/styleguide#toc
https://angular.io/guide/styleguide#toc
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/OnInit

/

Style A-01

Do use codelyzer to follow this guide.

Consider adjusting the rules in codelyzer to suit your needs.

Back to top

File templates and snippets

Style A-02

Do use file templates or snippets to help follow consistent styles and patterns. Here are templates and/or snippets

for some of the web development editors and IDEs.

Consider using snippets for Visual Studio Code that follow these styles and guidelines.

Consider using snippets for Atom that follow these styles and guidelines.

Consider using snippets for Sublime Text that follow these styles and guidelines.

Consider using snippets for Vim that follow these styles and guidelines.

Back to top

https://www.npmjs.com/package/codelyzer
https://angular.io/guide/styleguide#toc
https://marketplace.visualstudio.com/items?itemName=johnpapa.Angular2
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=johnpapa.Angular2
https://atom.io/packages/angular-2-typescript-snippets
https://atom.io/
https://github.com/orizens/sublime-angular2-snippets
https://www.sublimetext.com/
https://github.com/mhartington/vim-angular2-snippets
https://www.vim.org/
https://angular.io/guide/styleguide#toc

