
Return Types of Commonly Overload Operators in C++

Overloading operators in C++ gives you the ability to modify the behavior of certain operations

(like +, -, *, etc.) on user-defined types (like classes and structs). When you overload these

operators, you can choose to return values by value or by reference. Here's a simplified

explanation of when to use each.

Returning by Value

In most cases, you'll want to return by value, especially when the result of the operation is a new

object that doesn't exist before the operation. This is often the case with arithmetic operations,

where the result is a new value.

For example, let's say you're overloading the + operator for a Vector class:

class Vector {

 //...

 Vector operator+(const Vector& rhs) const {

 Vector result;

 //... calculate result ...

 return result;

 }

};

Here, the result of v1 + v2 is a new Vector that doesn't have a corresponding object before the

+ operation. Hence, it makes sense to return by value.

Another example is overloading the + operator in a Complex number class.Complex numbers are

numbers that consist of a real and an imaginary part.

Here's how you might define the class and overload the + operator:

class Complex {

public:

 Complex(double real, double imag) : real(real), imag(imag) {}

 double getReal() const { return real; }

 double getImag() const { return imag; }

 // Overload the '+' operator

 Complex operator+(const Complex& other) const {

 return Complex(real + other.real, imag + other.imag);

 }

private:

 double real, imag;

};

int main() {

 Complex c1(1.0, 2.0); // represents the complex number 1 + 2i

 Complex c2(2.0, 3.0); // represents the complex number 2 + 3i

 Complex c3 = c1 + c2; // uses the overloaded '+' operator

 // c3 now represents the complex number 3 + 5i

}

Note that it makes sense to return by value since we are returning a new Complex object.

Returning by Reference

Returning by reference is usually done when the object being returned already exists, and you

want to avoid the overhead of a copy. This is common with assignment operators and stream

insertion/extraction operators.

For instance, consider overloading the = operator for the same Vector class:

class Vector {

 //...

 Vector& operator=(const Vector& rhs) {

 if (this != &rhs) {

 //... assign values ...

 }

 return *this;

 }

};

Here, = is an assignment operator, and it modifies the existing object and returns it. It's common

to return by reference in this case to avoid unnecessary copying. Note that it returns a reference

to *this, i.e., the object it was called on.

In addition, for operators that are usually chained like = and <<, returning by reference allows the

chaining to work correctly.

Vector v1, v2, v3;

v1 = v2 = v3; // This works because operator= returns Vector&.

std::cout << v1 << v2 << v3; // This works because operator<< returns

std::ostream&.

Remember that returning by reference when you shouldn't can lead to dangling references if the

object being referred to is destroyed or falls out of scope, which can lead to undefined behavior.

Always ensure the lifetime of the object you're returning by reference extends beyond the scope

of the function call.

Here’s another example. Let's say we have a Person class and we want to be able to print out instances

of this class using std::cout with the << operator. In this case, we would return as reference to the

output stream.

#include <iostream>

#include <string>

class Person {

public:

 Person(const std::string& name, int age) : name(name), age(age) {}

 const std::string& getName() const { return name; }

 int getAge() const { return age; }

private:

 std::string name;

 int age;

};

std::ostream& operator<<(std::ostream& os, const Person& person) {

 os << "Name: " << person.getName() << ", Age: " << person.getAge();

 return os;

}

int main() {

 Person john("John Doe", 30);

 std::cout << john << std::endl;

}

Here, the << operator is overloaded to handle Person objects. It prints the person's name and age

to the std::ostream object (which might be std::cout, or a std::ofstream for outputting to

a file, etc.).

This function returns os by reference, so why does it make sense to return by reference here?

1. Chaining: Returning by reference allows for chaining of the << operator. This is why you

can write statements like std::cout << "Hello, " << name << "!" << std::endl;

in C++. Each << operation returns the stream, allowing the next << to operate on it.

2. Efficiency: Returning by reference avoids unnecessary copying. std::ostream objects

can potentially be quite large, so copying them could be expensive.

3. It doesn't make sense to return a copy: The << operator modifies the state of the stream

(by writing to it), and it doesn't make much sense to return a new stream object, because

we generally want further operations to affect the same stream.

Returning by reference is a common practice when overloading the << operator and >> operator

for custom types in C++. The returned reference must be to an object that continues to exist after

the function call, so it's typical to return the stream object passed into the function, as we're doing

here.

Here's a table showing common C++ operators and their canonical return types. Note that the

Type refers to the type of object for which the operator is being overloaded. You should try to

preserve the semantics of the operator as defined by C++ when you overload it yourself.

Operator Return Type Note

+, -, *, /, %, ^, &, |,

<<, >>, ==, !=, <, >,

<=, >=

Type

by value

Most arithmetic and comparison operators create new

values. Note that << and >> in this case are the binary

shift operators, not the stream operators.

+=, -=, *=, /=, %=,

^=, &=, |=, <<=,
>>=

Type&

(reference to Type)
These modify the existing object and should return a

reference to allow for chaining.

=, [], ()
Type&

(reference to Type)
The assignment, subscript, and function call operators

modify existing objects.

++ (prefix), --

(prefix)

Type&

(reference to Type)
Prefix increment/decrement modify the object and

return it.

++ (postfix), --

(postfix)

Type

by value
Postfix increment/decrement return a value

representing the object before modification.

<<, >> (stream

operators)
std::ostream& or
std::istream&

Stream operators should return a reference to the

stream to allow for chaining.

new, delete,

new[], delete[]

void* and void,

respectively

These operators are used for object allocation and

deallocation.

Remember that these are common practices and not hard rules. There might be valid reasons to

return by value when normally you'd return by reference and vice versa. However, it's best to

stick with these conventions unless you have a good reason to deviate, as they follow the

principle of least surprise and make your code easier to understand and use correctly.

