
What is the difference between Tuples and
ValueTuples?

Is it possible to have a tuple with more than 8
elements?

What is the difference between "is" and "as"
keywords?

What is the difference between regular casting
and casting with "as" keyword?

Why can we only use the "as" keyword to cast
objects to nullable types?

What is the use of the “using” keyword?

What are the global using directives? What is the purpose of the “dynamic”
keyword?

What is the difference between strongly-typed
and weakly-typed programming languages?

What is the difference between statically-typed
and dynamically-typed programming
languages?

What are COM objects? What are expression-bodied members?



The differences between tuples and ValueTuples
are that tuples are reference types and ValueTuples
are value types. Also, ValueTuples fields can be
named, while with tuples we are stuck with
properties named Item1, Item2, etc. Also, tuples
are immutable while ValueTuples are mutable.

Tuples are limited to hold up to 8 elements, but we
can bypass this by making the tuple nested. This is
awkward for tuples, but for ValueTuples we get
some help from the compiler - it allows us to use
the tuple like it really contained more than 8
elements, for example by using Item12 field. 

The "is" keyword checks if the object is of a given
type. It returns a boolean result. The "as" keyword
casts an object to a given type (it’s applicable only
to casting to reference types or nullable types).

When casting with "as" fails, it will return null.
When regular casting fails, an
InvalidCastException will be thrown.

Because if casting with "as" fails, null will be
returned. Null can only be assigned to nullable
types. 

The “using” keyword has two main uses: the using
directive, which allows using types from other
namespaces and to create aliases for namespaces,
and the using statement that defines the scope in
which the IDisposable object will be used, and that
will be disposed at the scope's end. 

When a type is imported in any file with the global
using directive, it is like it was imported in all files
in the project. This is convenient when some
namespace (like, for example, System.Linq) is
used in almost every file in the project.

The “dynamic” keyword allows us to bypass static
type checking that is done by default by the C#
compiler. We can call any operations on dynamic
variables and the code will still compile.

In weakly-typed languages, variables are
automatically converted from one type to another.
In strongly-typed languages, rhey are not. In C#,
which is a strongly-typed language, the “2”+8
expression will not compile, while in weakly-typed
Perl it will give 10 as a result.

In statically-typed languages, the type checks are
done at the compile time, while in dynamically-
typed languages they are done at runtime. For
example, in C# we can’t pass an integer to a
method expecting a string. In Python, which is
dynamically typed, we can, but the execution
could result in a runtime error.

COM means “Component Object Model” and it’s a
binary-interface standard for Windows software
components.A COM object is something that can
be understood by different Windows programs,
and for example, it can allow communication
between Excel and C# programs.

Expression-bodied members of a type are members
defined with expression body instead of the regular
body with braces. Using them allows us to shorten
the code significantly.



What is an expression? What is a statement? What are Funcs and lambda expressions?

What is the signature of a function that could
be assigned to the variable of type Func<int,
int, bool>?

What is an Action? What are delegates?

What is the difference between a Func and a
delegate?

What is a multicast delegate? How does the Garbage Collector decide which
objects can be removed from memory?

What is the Mark-and-sweep algorithm? How many stacks are there in a running .NET
application?

What two main algorithms of identifying used
and unused objects are implemented by tools
similar to .NET Garbage Collector?



An expression is a piece of code that evaluates to
some value. For example “2 + 5” evaluates to 7.

A statement is a piece of code that does something
but does not evaluate to a value. For example,
Console.Writeline(“abc”) is a statement. It does
not evaluate to any value, as the Console.Writeline
is a void method.

The Func and Action types allow us to represent
functions. Lambda expressions are a special way
of declaring anonymous functions. They allow us
to define functions in a concise way.

It would be a function that takes two integers as
parameters and returns a bool.

Action is a type used to represent void functions. It
works similarly to Func, but Func can only
represent non-void functions.

A delegate is a type whose instances hold a
reference to a method with a particular parameter
list and return type.

Func is a kind of delegate. To be more precise,
Func is a generic delegate used to represent any
function with given parameters and returned type.
A delegate is a broader concept than Func - we can
define any delegate we want, and it doesn’t need to
be generic at all.

It’s a delegate holding references to more than one
function.

Garbage collector removes those objects, to which
no references point. To decide whether a reference
pointing to some object exists, the Garbage
Collector builds a graph of all objects reachable
from root objects of the application.

It’s the algorithm that the Garbage Collector
implements. According to this algorithm, the GC
first marks objects that can be removed (mark
phase) and then actually removes them (sweep
phase).

As many as threads. Each thread has its own stack.First is reference counting, which associates a
count of references pointing to an object with each
object. An example of a language using it is Swift.
Another algorithm is tracing (this one is used in
.NET) which builds a graph of reachability starting
from the application roots. 

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/reference-types


What are generations? What is the Large Objects Heap? What does it mean that the object is pinned?

What is the difference between Dispose and
Finalize methods?

What is the difference between a destructor, a
finalizer, and the Finalize method?

Does the Garbage Collector call the Dispose
method?

When should we write our own destructors? What are managed and unmanaged resources? What are default implementations in
interfaces?

What can be the reason for using default
implementations in interfaces?

What is deconstruction? What is the difference between the destructor
and the Deconstruct method?



The Garbage Collector divides objects into three
generations - 0, 1, and 2 - depending on their
longevity. The Garbage Collector collects objects
from generation 0 most often, and from generation
2 least often. This feature is introduced in order to
improve Garbage Collector’s performance. 

It’s a special area of the heap reserved for objects
larger than 85 000 bytes. Such objects logically
belong to generation 2 from the very beginning of
their existence and are pinned. 

It means it will not be moved during the memory
defragmentation that the Garbage Collector is
executing. It is an optimization, as large objects are
expensive to move, and it’s hard to find a chunk of
memory large enough for them.

The Dispose method is used to free unmanaged
resources. The Finalize method is the same thing
as the destructor, so it’s the method that is called
on an object when it is being cleaned up by the
Garbage Collector.

There is no difference, as they are the same thing.
During the compilation, the destructor gets
changed to the Finalize method which is
commonly called a finalizer.

No. The Garbage Collector is not aware of this
method. We must call it ourselves, usually by
using the using statement.

The safest answer is “almost never”. Destructors
are very tricky and we don’t even have a guarantee
that they will run. Use IDisposable instead.

The managed resources are managed by the
Common Language Runtime. Any objects we
create with C# are managed resources. Unmanaged
resources are beyond the realm of the CLR.
Examples of unmanaged resources are database
connections, file handlers, COM objects, opened
network connections, etc.

Starting with C# 8, we can provide methods
implementations in interfaces. This feature was
mostly designed to make it easier to add new
methods to existing interfaces without breaking the
existing code.

Default implementations in interfaces are mostly
designed to make it easier to add new methods to
existing interfaces without breaking the existing
code. Without it, if we add a method to an interface
we release it as a public library, we will force
everyone who updates this library to provide the
implementation immediately.

Deconstruction is a mechanism that allows
breaking a tuple or a positional record into
individual variables. It is also possible to define
how deconstruction should work for user-defined
types by implementing the Deconstruct method.

The destructor is a method that’s called on an
object when it's being removed from memory by
the Garbage Collector. The Deconstruct method
allows objects to be deconstructed into single
variables. It is by default generated for tuples,
ValueTuples, and positional records, but we can
also define it in custom types.



How can we define deconstruction for types
that we did not create and we don’t have access
to their source code?

Why is “catch(Exception)” almost always a bad
idea (and when it is not?)?

What are the acceptable cases of catching any
type of exception?

What is the global catch block? What is the difference between “throw” and
“throw ex”?

What is the stack trace?

Should we use “throw” or “throw ex”, and
why?

What is the difference between typeof and
GetType?

What is the purpose of the GetType method?

Where is the GetType method defined? What is reflection? What are the downsides of using reflection?



We can define the Deconstruct method as an
extension method for this type.

Using “catch(Exception)” should be avoided,
because it catches every kind of exception. When
we decide to catch an exception, we should know
how to handle it, and it’s not feasible if the
exception’s type is unknown.

The acceptable use cases for catching any type of
exceptions are: 1) The global catch block that is
catching all exceptions not handled elsewhere, and
shows them to the user. 2) Any catch block in
which we rethrow an exception without handling
it.

The global catch block is the catch block defined
at the upper-most level of the application, that is
supposed to catch any exceptions that hadn’t been
handled elsewhere. It usually logs the exception
and shows some information to the user, before
stopping the application.

“throw” preserves the stack trace (the stack trace
will point to the method that caused the exception
in the first place) while ”throw ex” does not
preserve the stack trace (we will lose the
information about the method that caused the
exception in the first place.)

The stack trace is a trace of all methods that have
been called, that lead to the current moment of the
execution.  At the top of the stack trace we have
the method that has been called most recently, and
at the bottom - the one that has been called first.

We should use “throw” as it preserves the stack
trace and helps us find the original source of the
problem.

Both  are used to get the information about some
type. Typeof takes the name of the type we want
to inspect, and is is resolved at compile time.
GetType is a method executed on an object.
Because of that, it is resolved at runtime. It comes
from the System.Object base class, so it is
available in any object in C#.

This method returns the Type object which holds
all information about the type of the object it was
called on. For example, it contains the type name,
list of the constructors, attributes, the base type,
etc. 

It is defined in the System.Object type, which is a
base type for all types in C#. This is why we can
call the GetType method on objects of any type.

Reflection is a mechanism that allows us to write
code that can inspect types used in the application.
For example, using reflection, we can list all fields
and their values belonging to a given object, even
if at compile time we don’t know what type it is
exactly.

Using reflection has a relatively big impact on
performance. Also, it makes the code hard to
understand and maintain. It may also tempt some
programmers to “hack” some code, for example, to
access private fields at runtime, which may lead to
unexpected results and hard-to-understand bugs.



What are attributes? What is metadata? How to define a custom attribute?

What is serialization? What are the uses of serialization? What does the Serializable attribute do?

What is deserialization? What is pattern matching? How can we check if an object is of a given type,
and cast to it this type in the same statement?

How does the binary number system work? What is the decimal representation of number
101?

Why arithmetic operations in programming can
give unexpected results, like for example adding
two large integers can give a negative number?



Attributes add metadata to a type. In other words,
they are a way to add information about a type or
method to the metadata which describes that type
or method. 

Metadata is data providing information about other
data. For example, when working with databases,
the data stored inside the database is the actual
data, while the structure of tables and relations
between them is metadata. In programming,
metadata describes types used in an application. 

To define a custom attribute we must define a class
that is derived from the Attribute base class.

Serialization is the process of converting an object
into a format that can be stored in memory or
transmitted over a network. For example, the
object can be converted into a text file containing
JSON or XML, or a binary file.

It can be used to send objects over a network, or to
store objects in a file for later reconstruction, or
even to store them in a database - for example to
save a "snapshot" of an object every time a user
makes some changes to it, so we can log the
history of the changes.

This attribute indicates that instances of a class can
be serialized with BinaryFormatter or
SoapFormatter. It is not required for XML or
JSON serialization.

Deserialization is the opposite of serialization: it’s
using the content of a file to recreate objects.

Pattern matching is a technique where you test an
expression to determine if it has certain
characteristics.

We can use pattern matching for that. For example,
we could write “if obj is string text”. This way, we
will cast the object to the string variable called
text, but only if this object is of type string.

The binary number system is used to represent
numbers using only two digits - 0 and 1. For
example, the number 13 (in the decimal number
system) is 1101 in the binary number system. All
data in a computer’s memory is stored as
sequences of bits, and so are all numbers.

It’s 5 because it’s 2 to the power of zero plus two
to the power of 2, which gives 1 + 4 = 5.

Because there is a limited number of bits reserved
for each numeric type, for example for integer it’s
32 bits. If the result of the arithmetic operation is
so large that it doesn’t fit on this amount of bits,
some of the bits of the result will be trimmed,
giving an unexpected result that is not valid. 



What is the purpose of the “checked” keyword? What is the purpose of the "unchecked"
keyword?

What is a silent failure?

What is the BigInteger type? What is the difference between double and
decimal?

What is the difference between double and
float?

What is the NaN? What numeric type should we use to represent
money?

What is an Array?

What is a jagged array? What are the advantages of using arrays? What are the disadvantages of using arrays?



The “checked” keyword is used to define a scope
in which arithmetic operations will be checked for
overflow.

This keyword defines a scope in which check of
arithmetic overflow is disabled. It makes sense to
use it in projects in which the checking for
overflow is enabled for an entire project (can be
set on the project level settings).

It’s a kind of failure that happens without any
notification to the users or developers - they are
not informed that something went wrong, and the
application moves on, possibly in an invalid state. 

It’s a numeric type that can represent an integer of
any size - it is limited only by the application’s
memory. It should be used to represent gigantic
numbers (remember that max long is over 16
quantillions, so BigInteger should be used instead
of long only to represent unthinkably large
numbers).

Double is a floating-point binary number, while
decimal is a floating-point decimal number.
Double is optimized for performance, while
decimal is optimized for precision. Doubles are
much faster, they occupy less memory and they
have a larger range, but they are less precise than
decimals.

The only difference is that double occupies 64 bits
of memory while float occupies 32, giving double
a larger range. Except for that, they work exactly
the same.

NaN is a special value that double and float can be.
It means Not a Number, and it’s reserved for
representing results of undefined mathematical
operations, like dividing infinity by infinity.

When representing money we should always use
decimals.

Array is the basic collection type in C#, storing
elements in an indexed structure of fixed size.
Arrays can be single-dimensional, multi-
dimensional, or jagged.

A jagged array is an array of arrays, which can be
all of the different lengths.

They are fast when it comes to accessing an
element at the given index. They are basic and
easy to use and great for representing simple data
of size that is known upfront.

Arrays are of fixed size, so they can’t be resized;
they are not good for representing collections that
grow or shrink over time. If we want to allocate
the memory for all elements that may be stored, we
may allocate too much and waste it, or we can
allocate not enough.



How to resize an array? What is a List? Why it is a good idea to set the Capacity of the
List in the constructor if we know the expected
count of elements upfront?

What’s the time complexity of the Insert
method from the List class?

What is an ArrayList? What is the difference between an array, a List,
and an ArrayList?

When to use ArrayList over a generic List<T>? What is the purpose of the GetHashCode
method?

Can two objects of the same type, different by
value, have the same hash codes?

Why it may be a good idea to provide a custom
implementation of the GetHashCode method
for structs?

What is a Dictionary? What is a hash table?



It’s not possible. An array is a collection of a fixed
size and once created, it can’t be resized.

List<T> is a strongly-typed, generic collection of
objects. Lists are dynamic, which means we can
add or remove the elements from them. It uses an
array as the underlying collection type. As it
grows, it may copy the existing array of elements
to a new, larger array. 

Because this way we will avoid the performance-
costly operation of copying the underlying array
into a new, larger one, which happens when we
exceed the count of 4, 8, 16… elements.

This method needs to move some of the elements
of the underlying array forward, to make room for
the new element. In the worst-case scenario, when
we insert an element at the beginning, we will need
to move all existing elements, so the complexity of
this operation is O(N). 

It's a collection that can store elements of any type
(all as objects). They were widely used in old C#,
where the generics were not yet available.
Nowadays they should not be used, as their
performance is impacted by the fact that they need
to box value types.

An array is a basic collection of fixed size that can
store any declared type of elements. The List is
similar but its size can change. An ArrayList is a
dynamic collection that can store various types of
elements at the same time, as it treats everything it
stores as instances of the System.Object type.

Never, unless you work with a very old version of
C#, which did not support generics. Even if you
do, you should rather upgrade .NET to a higher
version than work with ArrayLists. 

The GetHashCode method generates an integer for
an object, based on this object’s fields and
properties. This integer, called hash, is most often
used in hashed collections like HashSet or
Dictionary. 

Yes. Hash code duplications (or “hash code
conflicts”) can happen, simply because the count
of distinct hash codes is equal to the range of the
integer, and there are many types that can have
much more distinct objects than this count.

Because the default implementation uses
reflection, and because of that is slow. A custom
implementation may be significantly faster, and if
we use this struct as a key in hashed collections
extensively, it may improve the performance very
much.

A Dictionary is a data structure representing a
collection of key-value pairs. Each key in the
Dictionary must be unique.

A hash table is a data structure that stores values in
an array of collections. The index in the array is
calculated using the hash code. It allows quick
retrieval of objects with given hashcode. A hash
table is the underlying data structure of 
Dictionary.



Will the Dictionary work correctly if we have
hash code conflict for two of its keys?

Why should we override the Equals method
when we override the GetHashCode method?

What are indexers?

Is it possible to have a class with an indexer
accepting a string as a parameter?

Can we have more than one indexer defined in
a class?

What is caching?

What are the benefits of using caching? What are the downsides of using caching? What are immutable types and what’s their
purpose?

What are pure functions? What are the benefits of using immutable
types?

What is the non-destructive mutation?



Yes. The Dictionary still can tell which key is
which using the Equals method, so it will not
mistake them only because they have the same
hash codes. 

Because the Equals method is needed for the
Dictionary to distinguish two keys in case of the
hash code conflict, so its implementation should be
in line with the implementation of the
GetHashCode method. For example, if
GetHashCode returns the ID for a Person object,
then the Equals method should also only compare
the IDs

Indexers allow instances of a type to be indexed
just like arrays. In this way, they resemble
properties except that they take parameters. For
example, a Dictionary<string, int> has an indexer
that allows calling “dictionaryVariable[“some
key”]” to access the value under some key.

Yes. We can define indexers with any parameters.
An example of such a class can be a
Dictionary<string, int> as we access its elements
like “dict[“abc”]”.

Yes. Just like with method overloading, we can
have as many indexers as we want, as long as they
differ by the type, count, or order of parameters.

Caching is a mechanism that allows storing some
data in memory, so next time it is needed, it can be
served faster. 

Caching can give us a performance boost if we
repeatedly retrieve data identified by the same key.
It can help not only with data retrieved from an
external data source but even calculated locally if
the calculation itself is heavy (for example some
complex mathematical operations).

Cache occupies memory. It may grow over time,
so some kind of cleanup mechanism should be
introduced (usually it baes on the expiration time
of the data). The data in the cache may become
stale (not up-to-date). Because of that, caching is
most useful when retrieving data that doesn’t
change often.

Immutability of a type means that once an object
of this type is created none of its fields of
properties can be updated. Using immutable types
over mutable ones gives a lot of benefits, like
making the code simpler to understand, maintain
and test, as well making it thread-safe.

Pure functions are functions whose results only
depend on the input parameters, and they do not
have any side effects like changing the state of the
class they belong to or modifying the objects
passed as an input.

The code using them is simple to understand. They
make it easy to create pure functions and to work
with multithreaded applications, as there is no risk
that one thread will modify a value that the other
thread is using. Immutable objects retain their
identity and validity. 

It is an operation of creating a new object based on
another immutable object. The immutable object
won’t be modified, but the result of “modification”
will become a new object. For example adding 7
days to a date of January the 1st will not change
this date, but it will produce a new date of January
the 8th. 



What are records and record structs? What is the purpose of the "with" keyword? What are positional records?

Why does string behave like a value type even
though it is a reference type?

What is interning of strings? What is the size of the stack in megabytes?

What is the underlying data structure for
strings?

What is the difference between string and
StringBuilder?

What does it mean that strings are immutable?

What is operator overloading? What is the purpose of the "operator"
keyword?

What is the difference between explicit and
implicit conversion?



Records and record structs are new types
introduced in C# 9 and 10. They are mostly used to
define simple types representing data. They
support value-based equality. They make it easy to
create immutable types.

The “with” keyword is used to create a copy of a
record object with some properties set to new
values. In other words, it’s used to perform a non-
destructive mutation of records.

They are records with no bodies. The compiler
generates properties, constructor, and the
Deconstruct method for them. They are a shorter
way of defining records, but we can’t add custom
methods or writable properties to a positional
record.

String is a reference type with the value type
semantics. String has value-type semantics as this
is more convenient for developers, but it can’t be a
value type because string objects can be large, and
value types are stored on the stack which has a
limited size. All strings are immutable.

Interning means that if multiple strings are known
to be equal, the runtime can just use a single string,
thereby saving memory. This optimization
wouldn’t work if strings were mutable, because
then changing one string would have unpredictable
results on other strings.

It’s 1 MB for 32-bit processes and 4 MB for 64-bit
processes.

It’s an array of chars. Arrays by definition have
fixed size, which is a reason why strings are
immutable - we couldn’t modify a string by adding
new characters to it, because they wouldn’t fit in
the underlying array.

String is a type used for representing textual data.
StringBuilder is a utility class created for optimal
concatenation of strings.

It means once a string is created, it can’t be
modified. When we modify a string, actually a
brand-new string is created and the variable that
stored it simply has a new reference to this new
object.

Operator overloading is a mechanism that allows
us to provide custom behavior when objects of the
type we defined are used as operands for some
operators. For example, we can define what will
“obj1+obj2” do.

It is used when overloading an operator for a type.Implicit conversion happens when we assign a
value of one type to a variable of another type,
without specifying the target type in the
parenthesis. For example, when assigning an int to
a double. Explicit conversion requires specifying
the type in parenthesis, for example when
assigning a double to an int. 



What are anonymous types? Can we modify the value of an anonymous type
property?

When should we, and when should we not use
anonymous types?

Are anonymous types value or reference types? What is cohesion? Is following the Single Responsibility Principle
and keeping high cohesion the same thing?

What   is   coupling? How to recognize strongly couples types? Which of the SOLID principles allow us to
reduce coupling?

What is the Strategy design pattern? What are the benefits of using the Strategy
design pattern?

What is the Dependency Injection design
pattern?



Anonymous types are types without names. They
provide a convenient way of encapsulating a set of
read-only properties into a single object without
having to explicitly define a type first.

No. All properties of anonymous types are read-
only.

We should use them when the type we want to use
is simple and local to some specific context and it
will not be used anywhere else. Also, anonymous
types can only provide read-only properties; they
can’t have methods, fields, events, etc, so we
sshouldn't use them if we need any of those
features.

They are reference types since they are classes, but
they support value-based Equality with the Equals
method. In other words, two anonymous objects
with the same values of properties will be
considered equal by the Equals method even if
their references are different.

Cohesion is the degree to which elements of a
module belong together. In simpler words, it
measures how strong the relationship is between
members of a class. High cohesion is a desirable
trait of the classes and modules.

No, but it’s common that a highly cohesive class
meets the SRP and vice versa. If following only
the SRP, we could keep splitting classes into
smaller pieces until every class would have only
one public method. Each of them would meet the
SRP, but they wouldn’t be cohesive, as those
methods should belong together.

Coupling is the degree to which one module
depends on another module. In other words, it’s a
level of “intimacy” between modules. If a module
is very close to another, knows a lot about its
details, and will be affected if the other changes, it
means they are strongly coupled.

One type uses another type directly, without
having any abstraction in between. We often
recognize strong coupling the hard way: when we
see that even a small change in a class leads to a
cascade of changes all around the project. It proves
that the types are not independent.

The Dependency Inversion Principle, which says
that classes shouldn’t depend on concrete
implementations, but rather on abstractions. When
following this principle we remove the direct way
of communication between classes, making them
more independent from each other.

The Strategy Design pattern is a pattern that allows
us to define a family of algorithms to perform
some tasks. The concrete strategy can be chosen at
runtime. 

It helps to reduce code duplications, makes the
code cleaner and more easily testable. It separates
the code that needs to be changed often (the
particular strategy) from the code that doesn’t
change that much (the code using the strategy).

Dependency Injection is providing the objects
some class needs (its dependencies) from the
outside, instead of having it construct them itself.



What are Dependency Injection frameworks? What are the benefits of using Dependency
Injection?

What is the Template Method design pattern?

What is the difference between the Template
Method design pattern and the Strategy design
pattern?

What is the Decorator design pattern? What are the benefits of using the Decorator
design pattern?

What is the Observer design pattern? In the Observer design pattern, what is the
Observable and what is the Observer?

What are events?

What is the difference between an event and a
field of the delegate type?

Why is it a good practice to unsubscribe from
events when a subscribed object is no longer
needed?

What is Inversion of Control?



They are mechanisms that automatically create
dependencies and inject them into objects that
need them. They are configurable, so we can
decide what concrete types will be injected into
objects depending on some abstractions. Some of
the popular Dependency Injection frameworks in
C# are Autofac or Ninject.

It decouples a class from its dependencies. The
class doesn’t decide what concrete type it will use,
it only declares in the constructor what interfaces it
will need. Thanks to that, we can easily switch the
dependencies according to our needs, for example
to inject a mock in unit tests.

Template Method is a design pattern that defines
the skeleton of an algorithm in the base class.
Specific steps of this algorithm are implemented in
derived classes.

Both allow specifying what concrete algorithm or
a piece of the algorithm will be used. The
difference is that with the Template Method, it is
selected at compile-time, as this pattern uses the
inheritance. With the Strategy pattern, the decision
is made at runtime, as this pattern uses
composition. 

Decorator is a design pattern that dynamically adds
extra functionality to an existing object, without
affecting the behavior of other objects from the
same class.

This pattern allows us to easily add functionality to
objects, without touching the original classes, so
it’s in line with the Open-Closed Principle. It
makes it easy to stack functionalities together. It
also helps us to be in line with the Single
Responsibility Principle, as each class now has a
very focused responsibility. 

The Observer design pattern allows objects to
notify other objects about changes in their state.

The Observable is the object that’s being observed
by Observers. The Observable notifies the
Observers about the change in its state.

Events are the .NET way of implementing the
Observer design pattern. They are used to send a
notification from an object to all objects
subscribed.

A public field of a delegate type can be invoked
from anywhere in the code. Events can only be
invoked from the class they belong to. 

Because as long as it is subscribed, a hidden
reference between the observable and the observer
exists, and it will prevent the Garbage Collector
from removing the observer object from memory.

Inversion of Control is the design approach
according to which the control flow of a program
is inverted: instead of the programmer controlling
the flow of a program, the external sources
(framework, services, other components) take
control of it.



What is a callback? What is the difference between a framework
and a library?

What   is   the   “composition   over    inheritance” 
 principle? 

What is the problem with using composition
only?

What are forwarding methods? What are mocks?

What is Moq? What is the relation between mocking and
Dependency Injection?

What   are   NuGet   packages? 

What is the difference between Debug and
Release builds?

How can we execute some piece of code only in
the Debug, or only in the Release mode?

What   are   preprocessor   directives? 



A callback is an executable code (a method in C#)
that gets passed as an argument to some other
code. 

A library is a set of functions that you can call. A
framework embodies some abstract design, with
more behavior built in. In order to use it, you need
to insert your behavior into various places in the
framework either by subclassing or by plugging in
your own classes. The framework relies on
Inversion of Control, but the library does not.

“Composition over inheritance” is a design
principle stating that we should favor composition
over inheritance. In other words, we should reuse
the code by rather containing objects within other
objects, than inheriting one from another.

Without inheritance it's hard to define types that
are indeed in an “IS-A” relation. For example, a
Dog IS an Animal. When implementing such
hierarchy with the composition we create very
similar types that wrap other types only adding a
bit of new functionality, and they mostly contain
forwarding methods.

They are methods that don’t do anything else than
calling almost identical methods from some other
type. Forwarding methods indicate a very close
relationship between types, which may mean that
one type should be inherited from another.

They are objects that can be used to substitute real
dependencies for testing purposes. For example,
we don’t want to use a real database connection in
unit tests. Instead, we will replace the object
connecting to a database with a mock that provides
the same interface, but returns test data. 

Moq is a popular mocking library for C#. It allows
us to easily create mocks of interfaces, classes,
Funcs, or Actions. It gives us the ability to decide
what result will be returned from the mocked
functions, or validate if some function has been
called.

Mocking is hard to implement without the
Dependency Injection. DI allows us to inject some
dependencies to a class, so we can choose whether
we inject real implementations or mocks. If the
dependency of the class would not be injected but
rather created right in the class, it wouldn't be
possible to make it a mock.

NuGet packages contain compiled code that
someone else created, that we can reuse in our
projects. The tool used to install and manage them
is called NuGet Package Manager. 

During the Release build, the compiler applies
optimizations it finds appropriate. Because of that,
the result of the build is often smaller and it works
faster. On the other hand, it’s harder to debug
because the compiled result doesn’t match the
source code exactly. 

By placing it inside a #if DEBUG or #if
RELEASE conditional preprocessor directives.

They help us control the compilation process from
the level of the code itself. We can choose if some
part of the code will be compiled or not, we can
disable or enable some compilation warnings, or
we can even check for the .NET version and
execute different code depending on it. 



What is the preprocessor? How to disable selected warning in a file? What are nullable reference types?

What is the default value of non-nullable
reference types?

What is the purpose of the null-forgiving
operator?

Is it possible to enable or disable compiler
warnings related to nullable reference types on
the file level? If so, how to do it?



The preprocessor (also known as the
“precompiler”) is a program that runs before the
actual compiler, that can apply some operations on
code before it’s compiled. 

By using the #pragma warning disable
preprocessor directive. It takes the warning code as
the parameter, so for example to disable the “Don’t
use throw ex” warning we can do “#pragma
warning disable CA2200”. 

This feature enables explicit declaration of a
reference type as nullable or not. The compiler will
issue proper warnings for such types, for example
if we assign nul to a non-nullable type. This
feature doesn’t change the actual way of executing
C# code; it only changes the generated warnings. 

It is null.It allows us to suppress a compiler warning related
to nullability.

It is possible. We can do it by using #nullable
enable and #nullable disable preprocessor
directives.


