
10. What is the difference between
Dispose and Finalize methods?

Brief summary: The Dispose method is used to free unmanaged resources. The
Finalize method is the same thing as the destructor, so it’s the method that is
called on an object when it is being cleaned up by the Garbage Collector.

The Dispose method is used to free unmanaged resources. The Finalize method is
the same thing as the destructor, so it’s the method that is called on an object
when it is being cleaned up by the Garbage Collector.

First, let’s focus on the Dispose method. This method comes from the IDisposable
interface and it is used to free up any unmanaged resources used by an object
when its work is finished.

First of all, let’s understand what managed and unmanaged resources are.

Managed resources, as their name suggests, are managed by the Common
Language Runtime. Any objects we create with C# are managed resources. The
Garbage Collector is aware of their existence, and once they are no longer needed
it will free up the memory they occupy. That means we don’t need to worry about
managed resources cleanup as it is done automatically for us.

Unmanaged resources are beyond the realm of the CLR. The Garbage Collector
doesn’t know about them, so it will not perform any cleanup on them. Examples of
unmanaged resources are database connections, file handlers, COM objects,
opened network connections, etc. We as developers are responsible to perform
the cleanup after we are done with those objects. If we don’t, bad things may
happen. For example, if we open a file to read it and we don’t close it, the next
attempt to open the same file will fail with an error saying that the file is currently
in use.

If we have a class that uses some unmanaged resources, it should implement the
IDisposable interface and provide an implementation of the Dispose method. The
Dispose method should contain the code that cleans the unmanaged resource, for
example, closes a file. Let’s see a simple class that does so:



This class is simply providing a way to read a file line-by-line. Please note that this
implementation is simplified for example’s sake so it doesn’t contain any error
handling. This class implements the IDisposable interface, and because of that, it is
forced to provide the implementation of the Dispose method. In this method, we
clean up any unmanaged resources. In this case, we simply call the Dispose method
of the StreamReader. This is a very common practice when implementing the
Dispose method because it rarely happens that we need to access unmanaged
resources that do not have any C# class meant to use them provided. Calling
Dispose method from a dependency of a class (or methods, if we have more
IDisposable dependencies) in the Dispose method o this class is called a cascade
Dispose.

All right. Let’s use the FileReader class:



At the first glance, it may seem ok - line1 and line2 are set to values coming from
the input.txt file. The problem here is that we do not actually call the Dispose
method, and the StreamReader is never closed. Let’s fix that. We could call the
Dispose method manually:

…but this is a bit awkward and easy to forget, not to mention that if the exception
will be thrown in this code, the Dispose method may never be called. It’s better to
use the using statement:

Starting with C# 8 we can use the following syntax without braces:

Remember, the using statement is just syntactic sugar for this:



The “finally” block is used to ensure that the Dispose method will be called no
matter if the exception will be thrown or not.

All right. One more thing before we move on to the Finalize method. Remember
that the Garbage Collector does not call the Dispose method. We must call it
ourselves, and the best way to do it is by using the using statement, which ensures
that the Dispose method will be called.

Now, let’s move to the Finalize method. This method is called on an object when it
is being cleaned up by the Garbage Collector. That means it can only be added to
reference types, so a struct or a record struct can’t have a finalizer defined. Please
notice that in C# the destructor, the finalizer, and the Finalize method are the same
things. We can’t even define the Finalize method in a class - we must do so by
defining a destructor. Let’s see this in practice.



I defined a Person class that contains a destructor. When an object of this class will
be cleaned up by the Garbage Collector this method will be executed. In my Main
method, I run the following code:

john object lives in the scope of SomeMethod, and after this method finishes it is
no longer needed. By running GC.Collect command I ask the Garbage Collector to
do its work. And this is the result of the program:

We said before that the Finalize method and the destructor are the same things. To
prove it, let me show you how the Person class looks after being compiled into the
Common Intermediate Language. I will use ildasm to read the dll.

As you can see the Finalize method is added. And this is how it looks in CIL:



As you can see it prints the same message as we defined in the destructor. In other
words, the destructor is changed into the Finalize method during the compilation.

If I tried to add the Finalize method manually, I would get an error “Do not override
object.Finalize. Instead, provide a destructor”:

All right. We now know how to define destructors, so it’s time to learn when to use
them.

Well, the answer is “almost never” and I’m quoting Eric Lippert, one of the
designers of C#. As we learned before, if a class is using some unmanaged
resources that must be cleaned up, it should implement the IDisposable interface.
Some people think that having a destructor that calls the Dispose method can be
an assurance that those resources will be cleaned up if someone forgets to call the
Dispose method manually or with the using statement. But this is solving an issue
that shouldn’t happen at all if developers know what they are doing, and in the
process, we may cause much more problems. Let me quote Mr. Lippert again:

“If you make a destructor be extremely careful and understand how the
garbage collector works. Destructors are really weird:

● They don't run on your thread; they run on their own thread.
Don't cause deadlocks!

● An unhandled exception thrown from a destructor is bad news.
It's on its own thread; who is going to catch it?

● A destructor may be called on an object after the constructor
starts but before the constructor finishes. A properly written



destructor will not rely on invariants established in the
constructor.

● A destructor can "resurrect" an object, making a dead object
alive again. That's really weird. Don't do it.

● A destructor might never run; you can't rely on the object ever
being scheduled for finalization. It probably will be, but that's
not a guarantee.

Almost nothing that is normally true is true in a destructor. Be really,
really careful.

Writing a correct destructor is very di�cult.”

Then, he also states that this was the only scenario when he needed to actually
write destructors:

“When testing the part of the compiler that handles destructors. I've
never needed to do so in production code.“

The quote comes from this thread on Stack Overflow:
https://stackoverflow.com/questions/4898733/when-should-i-create-a-destructor/
4899622

If you want to learn more about the tricky beasts that destructors are, make sure
to read this article by Eric Lippert:
https://ericlippert.com/2015/05/18/when-everything-you-know-is-wrong-part-one/

So the bottom line here is: do not write destructors. If your objects must clean up
some resources after they finish their work, make them implement the IDisposable
interface.

Let’s summarize. The Dispose method is used to free unmanaged resources. The
Finalize method is the same thing as the destructor, so it’s the method that is
called on an object when it is being cleaned up by the Garbage Collector.

https://stackoverflow.com/questions/4898733/when-should-i-create-a-destructor/4899622
https://stackoverflow.com/questions/4898733/when-should-i-create-a-destructor/4899622
https://ericlippert.com/2015/05/18/when-everything-you-know-is-wrong-part-one/


Bonus questions:

● "What is the difference between a destructor, a finalizer, and the
Finalize method?"
There is no difference, as they are the same thing. During the compilation, the
destructor gets changed to the Finalize method which is commonly called a
finalizer.

● "Does the Garbage Collector call the Dispose method?"
No. The Garbage Collector is not aware of this method. We must call it
ourselves, usually by using the using statement.

● "When should we write our own destructors?"
The safest answer is “almost never”. Destructors are very tricky and we don’t
even have a guarantee that they will run. Use IDisposable instead.

● "What are managed and unmanaged resources?"
The managed resources are managed by the Common Language Runtime. Any
objects we create with C# are managed resources. The Garbage Collector is
aware of their existence, and once they are no longer needed it will free up the
memory they occupy. That means we don’t need to worry about managed
resources cleanup as it is done automatically for us. Unmanaged resources are
beyond the realm of the CLR. The Garbage Collector doesn’t know about them,
so it will not perform any cleanup on them. Examples of unmanaged resources
are database connections, file handlers, COM objects, opened network
connections, etc. We as developers are responsible to perform the cleanup
after we are done with those objects.


