
12. What is deconstruction?

Brief summary: Deconstruction is a mechanism that allows breaking a tuple or a
positional record into individual variables. It is also possible to define how
deconstruction should work for user-defined types by implementing the
Deconstruct method.

Deconstruction is a mechanism that allows breaking a tuple or a positional record
into individual variables. It is also possible to define how deconstruction should
work for user-defined types by implementing the Deconstruct method.

Deconstruction was first introduced with C# 7.

First, let’s see some code.

This method takes a collection of integers and returns the sum, count, and
average as a three-element tuple. For simplicity, I skipped handling empty
collections. Now let’s see how this method could be used:



Since we use each of the tuple’s elements quite often, let’s store them in variables:



This works, but it’s a bit cumbersome. It would be better if we could create those
three variables in the same line the AnalyzeNumbers method is executed. And
that’s exactly what deconstruction is for. Let’s see this in code:

In the second line, we declared three variables and assigned the first element of
the tuple to the first one, the second to the second one, and the third to the third
one. The count of variables must be equal to the count of tuple elements. Because
of that, the following code will not compile:

But we don’t need to declare every variable if we don’t want to. Let’s say that for
some reason I don’t care about the second tuple’s element, which is the sum. I can
skip it by using the discard:

Discard is a special, write-only variable, and we can’t use it after it’s assigned. Its
only purpose is to be a placeholder for ignored elements of a tuple:

It is also possible to deconstruct tuples into variables that we already have. In this
case, we just need to skip the “var” keyword:



We can also mix using the existing variables with declaring new ones:

All right. So far we’ve been deconstructing ValueTuples. We can also deconstruct
ordinary tuples…

…as well as positional records:

Let’s define a new class:

Classes, by default, do not support being deconstructed:



But we can provide our own Deconstruct method to enable it. Such a method must
be void, and it must have one out parameter for each variable that will be created
as the result. Let’s add the Deconstruct method to the Pet class:

Now we can deconstruct the Pet object into three variables:

We can define as many Deconstruct methods in a class as we want. We can also add
the Deconstruct method to structs, records, and interfaces.

Even if we did not create some class and we don’t have access to its source code,
we can still “add” the Deconstruct method to it using extension methods. Let’s
see this in practice. Let’s say I wished I could deconstruct a DateTime object:



Unfortunately, this doesn’t work, because DateTime does not have the
Deconstruct method implemented. Let’s fix it by defining the Deconstruct
extension method:

Now the deconstruction works as expected:



Bonus questions:

● "What is the difference between the destructor and the Deconstruct
method?"
The destructor is a method that’s called on an object when this object is being
removed from memory by the Garbage Collector. The Deconstruct method
allows the object to be deconstructed into single variables. It is by default
generated for tuples, ValueTuples, and positional records, but we can also
define it in custom types.

● "How can we define deconstruction for types that we did not create and
we don’t have access to their source code?"
We can define the Deconstruct method as an extension method for this type.


