
16. What is reflection?

Brief summary: Reflection is a mechanism that allows us to write code that can
inspect types used in the application. For example, using reflection, we can list all
fields and their values belonging to a given object, even if at compile time we
don’t know what type it is exactly.

Reflection is a mechanism that allows us to write code that can inspect types used
in the application. For example, using reflection, we can list all fields and their
values belonging to a given object, even if at compile time we don’t know what
type it is exactly.

This all probably sounds a bit mysterious to you, so let’s consider the following use
case: we want to write a class that can take various objects and save them to a text
file. There are already mechanisms that do it, and store objects are JSON or XMLs,
but let’s say we want some custom format so we must implement it ourselves. We
want this class to be completely generic, so it can take any type of object.

Let’s consider two sample types this class could convert to text. For brevity,
defined them as records, which we will learn about later in the course.

If a Pet object is being converted, I would like the result to be for example:
“Name is Taiga, PetType is Dog, Weight is 30.0”
Similarly, for a House I would like to have:



“Address is 123 Maple Road, Berrytown, Area is 170.6, Floors is 2”.

The problem is that in the Convert method, we have no idea what type we deal
with. We can’t cast “obj” to anything concrete, as the types may vary. Also, to
implement what we want we will not only need the values of the properties (which
we could access if we only had more concrete type than System.Object) but we will
also need the need their names, which is not available at runtime. In other words,
when calling house.Floors we can get the number 2, but we can’t get the “Floors”
string.

Well, actually, we can, but only if we use reflection. Reflection allows us to access
information about some type at runtime. We can not only access the values of
some fields but also their names. Moreover, we could access information about
methods, constructors, access modifiers, and so on. Let’s see this in practice. First
of all, we will use the GetType method on the obj object. It will return a Type
object, which provides all information about a type:

Let’s see the type object in the debugger:



As you can see there is quite a lot of data in here. We have some information about
constructors, methods, base type, and also properties which I highlighted. We can
see all properties we declared in the House type, and also an extra
EqualityContract property which is is autogenerated for records. We will ignore it
when converting the object to string.

All right. Let’s use this data to achieve what we want. First, I want to read all
properties from the given object, except the EqualityContract:

This gives me an IEnumerable<PropertyInfo>. Now I want to build a string for each
PropertyInfos, accessing the property name as well as its value, and then join the
strings together. I will use LINQ to do it:



The Select method comes from LINQ, and it simply maps every property to a string.

All right. This is the final method:

Let’s make sure it works:

The result of this code is:



Great! Seems everything is working. We used reflection to access the information
about some type at runtime and read the values and names of its properties.

Reflection gives us much more abilities. Here are some of them:
● loading dlls at runtime and using them
● instantiating a new instance of some object of a specific type at runtime. For

example, we can create an object of a type defined in a dll we loaded
reading private fields or properties, executing private methods (don’t
overuse it!)

● finding all classes derived from a specific base type or implementing a
specific interface

● reading the attributes. This is for example what NUnit does when it runs the
tests. It finds all methods with the [Test] attribute and executes them. We
will learn more about attributes in the next lecture

● running a method by its name, for example, if the user of the application
selected if from some dropdown

● debugging. For example, sometimes it is necessary to find out the list of
currently loaded assemblies

● creating new types at runtime (System.Reflection.Emit namespace is used
for that)

● and many more

As you can see reflection is a powerful tool, but as such should be used with
caution. The code that heavily relies on reflection is usually hard to maintain and
understand. It’s also prone to errors. For example, when you call a method by its
name, but someone changes the name without your knowledge, the code will crash
the next time it’s run because no method with the name exists anymore.

Also, Using reflection has a relatively big impact on performance. At one of the
projects I worked on I was asked to improve the performance of some process. This
application was using reflection a lot, mostly to load some types and attributes
from dlls at runtime. It turned out that the results of those loads can be cached,
and only this improvement made the process work twice as fast as before. We will
learn more about this mechanism in the “What is caching?” lecture.

Use reflection with caution. If there is a convenient way of implementing the same
logic without it, go for it. If not, reflection may be a lifesaver but keep an eye on
the performance.

Let’s summarize. Reflection is a mechanism that allows us to write code that can
inspect types used in the application. For example call a method with the name
equal to a given string, or list all fields and their values belonging to a given object.



Bonus questions:

● "What are the downsides of using reflection?"
Using reflection has a relatively big impact on performance. Also, it makes the
code hard to understand and maintain. It may also tempt some programmers
to “hack” some code, for example, to access private fields at runtime, which
may lead to unexpected results and hard-to-understand bugs.


