
17. What are attributes?

Brief summary: Attributes add metadata to a type. In other words, they are a
way to add information about a type or method to the metadata which describes
that type or method.

Attributes add metadata to a type. In other words, they are a way to add
information about a type or method to the existing metadata which describes that
type or method, which we can read from the Type object.

First, let’s understand what metadata is. Generally speaking, metadata is data
providing information about other data. For example, when working with
databases, the data stored inside the database is the actual data, while the
structure of tables and relations between them is metadata.

In programming, metadata describes types used in an application.

First, let’s consider this simple class:



There is a lot of metadata describing this class. For example, the metadata contains
the information that this class is named “Person”, it is public, non-static,
non-sealed, etc. It contains two get-only public properties called Name and
YearOfBirth. It has one public constructor taking two string parameters, and one
taking one parameter. The actual data stored in an instance of this class would be
the string representing the name, and int representing the year of birth.

We can access all the class’s metadata at runtime using reflection, which we
learned about in the previous lecture.

Sometimes we want to add extra metadata to a type or member, and this is what
attributes are for.

Let’s consider the following example. We want to have a common way of validating
some data in the application. No matter the type, we want to be able to specify
that its members of the string type must have a certain length. This is how it would
look like:



I want the Validator class to be able to take objects of any class and check if for
any of their properties this validation is required. If so, it should check if the values
of those properties are valid.

All right. So what we want to do is to add some metadata to the Name properties
in both Person and Dog types defining their minimal and maximal lengths. This is
some “extra” metadata and to define it we must use a custom attribute. This is how
it should look like:



As you can see, to add an attribute to a member or type, we simply must write its
name in the brackets above the type or member we want to add it to. As you can
see, the attribute we have requires two parameters - minimal and maximal length.
Now, let’s define the StringLengthValidateAttribute class.

All attributes must derive from the Attribute base class. Also, typically their names
end with “Attribute”. As you saw before, this postfix is omitted when we actually
use the attribute:



One more thing. We can also define what the attribute can be applied to. In our
case we want it to be applied to properties. To enforce that, we must actually use a
built-in attribute called AttributeUsage:

Great. Now all left to do is to define the Validator class.

This class will simply contain Validate method which can take any object. For this
object, we will look for its properties with the StringLengthValidateAttribute
defined.

As you can see we selected the properties for which this attribute is defined using
the LINQ’s Where method along with Attribute.IsDefined method. Now, we can
iterate those properties and check if their lengths are correct. But first, we must
make sure that the property is a string. If not, we want to throw an exception,
because it means that a developer added this attribute to a different type by
mistake:



Otherwise, we can validate the value:



And this is the whole method:

All right. Let’s make sure it works:

Great! That’s what we wanted.

As you can see attributes can be quite powerful. They are widely used in native
.NET classes, as well as external libraries. For example, if you ever used NUnit, you
must have used some of its attributes:



Let’s summarize. Attributes add metadata to a type. In other words, are a way to
add information about a type or method to the metadata which describes that
type or method. To add an attribute to a member or type, we simply must write its
name in the brackets above the type or member we want to add it to. There are
plenty of built-in Attributes in C# standard library, but we can also create
attributes of our own, simply by creating classes derived from the Attribute base
class.

Bonus questions:

● "What is metadata?"
Generally speaking, metadata is data providing information about other data.
For example, when working with databases, the data stored inside the
database is the actual data, while the structure of tables and relations
between them is metadata. In programming, metadata describes types used in
an application. We can access it in the runtime using reflection, to get the
information about some type, for example, what methods or what constructors
it contains.

● "How to define a custom attribute?"
To define a custom attribute we must define a class that is derived from the
Attribute base class.


