
18. What is serialization?

Brief summary: Serialization is the process of converting an object into a format
that can be stored in memory or transmitted over a network. For example, the
object can be converted into a text file containing JSON or XML, or a binary file.

Serialization is the process of converting an object into a format that can be
stored in memory or transmitted over a network. For example, the object can be
converted into a text file containing JSON or XML, or a binary file.

Deserialization is the opposite process - using the content of a file to recreate
objects.

Let's write a program that reads personal data from the console, and then
serializes it as an XML file. If the user restarts the program, this data can be
reconstructed using the XML file stored in the computer's memory. Also, we could
transfer this file to another computer, where it could also be used to recreate the
object containing personal data. Let's see this in the code:



For brevity, I skipped the code that does actual serialization and file writing. I used
the built-in XmlSerializer class for serialization. Full code can be found in the
solution published to Github.

I've run this code and entered some personal data. The file that was produced
looks as follows:

As you can see, all the information that was stored in the Person object is saved to
the XML file. We should now be able to read it in the program. Let's change the
code so if the "personalData.xml" file exists, it reads its content instead of asking
the user to enter the data.

The code checks if the file already exists - if so, it reads its content and deserializes
it to recreate the Person object.

Not only XML can be used as the format to store objects. One of the most common
formats is JSON. The name comes from JavaScript Object Notation because it
derives from JavaScript objects format. JSON is typically used for communication
over a network. For example, when you fill a form on a website, most likely the
data from the form is wrapped in JSON format and sent to the server, which then
reads it and (in the case of the C# backend) translates it to C# objects.



This is how the data showed previously as XML would look in JSON format:

Probably the most popular library used for JSON serialization and deserialization is
JSON.Net developed by Newtonsoft. It allows us to serialize and deserialize
objects to/from JSON format very easily:

One more thing that we should mention on this topic. The interviewer can ask you
“What does the Serializable attribute do?”.

This attribute indicates that instances of a class can be serialized with
BinaryFormatter or SoapFormatter. It is not required for XML or JSON serialization.
The BinaryFormatter serializes objects to a binary format (so, simply speaking, a
chain of zeros and ones) and the SoapFormatter to the SOAP format, which is a
little similar to XML. If you are curious, check out this article:
https://pl.wikipedia.org/wiki/SOAP

Let’s summarize. Serialization is a process of translating objects and other data
structures into a format that can be stored as a file or binary data, and potentially
transmitted over a network. Serialized objects can later be reconstructed.

Bonus questions:

● "What are the uses of serialization?"
It can be used to send objects over a network, or to store objects in a file for
later reconstruction, or even to store them in a database - for example to save
a "snapshot" of an object every time a user makes some changes to it, so we
can log the history of the changes.

https://pl.wikipedia.org/wiki/SOAP


● "What does the Serializable attribute do?"
This attribute indicates that instances of a class can be serialized with
BinaryFormatter or SoapFormatter. It is not required for XML or JSON
serialization.

● "What is deserialization?"
Deserialization is the opposite of serialization: it’s using the content of a file to
recreate objects.


