
25. What is an ArrayList?

Brief summary: An ArrayList is a collection that can store elements of any type,
as it considers them all instances of the System.Object. ArrayLists were widely
used in older versions of C#, where the generics were not yet available.
Nowadays they should not be used, as their performance is impacted by the fact
that they need to box value types.

Let me take you on a journey back in time. A long, long time ago (before 2006)
.NET was still at version 1. It was still a pretty new framework (its initial release was
in 2002). The C# language itself did not look much as it does now.

At this version of .NET, there was no such thing as generics. If you wanted to have
a collection of numbers and a collection of strings, arrays were your best choice.
You couldn’t count on things like the generic List<T> that can hold any type of
items.

But as we learned in the lecture “What is an Array?”, arrays can be pretty awkward.
They have fixed sizes, they also don’t provide any convenient methods like Add or
Remove. In other words, with arrays only, creating a complete, efficient application
that met some real business needs could have been a pain in the neck.

Luckily, there was another way than using plain arrays. The ArrayList type. An
ArrayList is dynamic a collection, so a collection we can resize, that can hold any
type of items. And just to be clear - at the same time. Single ArrayList can hold ints,
strings, objects, DateTimes, and anything we want.

In statically typed languages like C# this is at least weird. But how does it work?
Well, the ArrayList simply treats everything it holds as instances of System.Object
type. After all, everything in C# can be considered an Object, because every type is
derived from the Object class. But there is a problem: if the item we want to store
in ArrayList is of a value type, it must be boxed to be treated as Object, which is a
reference type. Boxing is not a cheap operation - it requires moving the value from
the stack to the heap and creating a reference for it. Also, at some point, we will
need to unbox this item to access the underlying value.



We will talk more about the performance of the Array list later in this lecture.

Since ArrayList can hold any type of elements, we don’t really know what they are
and how can we use them. If I have a List<int>, I know I can, for example, calculate
the sum of them. If I have a List<string> I know I can concatenate them. But what
can I do with elements of an ArrayList?

The truth is, ArrayList was almost never used like this:

In most practical cases, it was holding elements of the same type.

That looks “almost” like generic Lists, which again, were not present in .NET before
version 2. But those variables are very problematic. Let’s say I want to create a
method that calculates the sum of elements in a collection of numbers:

This doesn’t compile. Each element of the ArrayList is an Object, so I can’t simply
add it to the result. I must first cast it and hope that it will succeed:



Just to be sure, let’s handle the InvalidCastException in this method:

As you can see, we were forced to create a lot of code that would not be needed if
we knew what types exactly do we deal with. In other words, if we were given a
List<int> instead of an ArrayList.

So we know the first big disadvantage of ArrayList - we don’t know what is stored
inside, so we must be ready for a lot of casting and error handling. The other
disadvantage is the performance that I mentioned before - when storing value
types in ArrayList, they must all be boxed which can impact the performance very
much.



So in this case, the natural question is “When to use ArrayLists over Lists?”. Well,
the answer is - never. Unless for some reason you must work in applications written
in .NET 1, but I honestly hope that you don’t. Even if you do, consider upgrading the
version of .NET rather than working in this ancient technology.

You may then ask, why do we learn about this, if it’s not a big deal since 2006. First
of all, the questions about ArrayLists are quite liked by interviewers, as they can be
a prelude to a discussion about static and dynamic typing, which we learned more
about in the lecture about the “dynamic” keyword.

Secondly, as much as I hope you don’t need to work with ArrayLists, it may turn out
that you’ll have to work with some legacy code that still uses them, and then it’s
important that you know what you are dealing with. Also, only recently (in 2022)
I’ve been working on a brand-new application where someone was using ArrayLists
for reasons they couldn’t explain, and as it turned out, it was mostly storing value
types. Changing them to Lists not only made the development process much
easier, as the neverending casts and error handling could be omitted, but it also
made the application over 25% faster.

There is one more case when using ArrayLists may seem tempting - when you
actually need to store elements of different types in a single collection. But even
then, it’s better to use a List<object> as it provides more functionality than
ArrayList and will most likely be more consistent with the rest of the application.

Bonus questions:

● "What is the difference between an array, a List, and an ArrayList?"
An array is a basic collection of fixed size that can store any declared type of
elements. The List is a dynamic collection (it means, its size can change over
time) that is generic, so it can also store any declared type of elements. An
ArrayList is a dynamic collection that can store various types of elements at the
same time, as it treats everything it stores as instances of the System.Object
type.

● "When to use ArrayList over a generic List<T>?"
Never, unless you work with a very old version of C#, which did not support
generics. Even if you do, you should rather upgrade .NET to a higher version
than work with ArrayLists.


