
26. What is the purpose of the
GetHashCode method?

Brief summary: The GetHashCode method generates an integer for an object,
based on this object’s fields and properties. This integer, called hash, is most
often used in hashed collections like HashSet or Dictionary.

We are not yet quite done with collections. In the next lecture, we will discuss
Dictionaries. But to understand Dictionaries we must first understand the
GetHashCode method, so let’s do it in this lecture.

GetHashCode is one of the few methods that belong to the System.Object type. In
other words, we can call it on any object in C#. Before we understand what it does,
let’s see it in action:

For now, those values look enigmatic, but hopefully, we will understand them
better later in the lecture.

The GetHashCode method is a hash function implementation for an object. Let’s
see the definition of a hash function:

“A hash function is a one-way cryptographic algorithm that maps an input of any
size to a unique output of a fixed length of bits. “

At least for me this sounds completely vague. First, let’s understand what the
result of this hash function is. In C# is an integer. In simple terms, hash is a number



calculated for some object from its components. Here is an object of Person class
and some hash calculated for it.

We will take a closer look at how hash is actually calculated a bit later, but for now,
let’s just say that it’s a function of the values of fields and properties belonging to
the object. In this case, we could for example associate each letter with some
number, which would allow us to translate words “John” and “Smith” to integers.
Then, we would somehow combine those integers with the integer representing
the year of birth, and as a result, we would have the hash code of the person.
According to that, if we created another object of the Person class with name John,
LastName Smith, and YearOfBirth 1987, the hash should be the same. On the other
hand, if this other object had a different year of birth, its hash would be different.

Also, if we calculate the hash for the second time, the result should be the same as
it was for the first time, assuming the object was not modified. Also, if we have two
objects that are different instances, but we consider them equal (for example, two
instances of the Point class, both having X=10 and Y=20) the hash code for both of
them should be the same.



At this point you probably wonder “okay, but what is the use for hash codes?”.
Well, their main use is that they work as keys in hashed collections. This may
sound cryptic by now but don’t worry - we will soon learn about one of the most
useful C#’s hashed collections - the Dictionary. If you used Dictionaries before you
know that each value is stored under a key. The key can be any object, even a
complex one, but the Dicionary needs to be able to translate it to an integer, and
that’s exactly where the GetHashCode method comes in handy. We will learn more
about it in the lecture about the Dictionaries.

Back to the hash functions, that “map” complex objects into integers. The very
important trait of the hash function is that it should uniformly distribute its
values. That means, if I call GetHashCode methods for 100000 different objects of
the Point type, I should get very little or no duplicated hashcodes.

But it is possible to have duplicated hash codes. This situation is called “hash
code conflict” and it’s perfectly normal. Many people consider hash codes the be
the “identifiers” of objects and think that two different objects of the same type
can’t have the same hashcodes. But this is not true, and it cannot be. Let me prove
it to you.

Consider a Point type. It contains two fields: X and Y. Both X and Y are ints, so each
of them can have a value between int.MinValue to int.MaxValue, so in other words
- the range of the integer. For simplicity, let’s say that the minimal value of the
integer is -2 000 000 000 and maximal is 2 000 000 000. This means, we can have 4
billion different X coordinates and 4 billion Y coordinates, which in total gives 4
billion*4 billion different Points, which is 16 quintillions! On the other hand, the
hash itself is an integer, so we can only have 4 billion different values, so much,
much less than different Points. So when creating different Points, we will sooner
or later simply run out of different hashes. It’s sometimes referred to as the “balls
into bins problem”. If we have more balls than bins, and each ball is stored in some
bin, it must mean that in some bins there is more than one ball.

Let’s summarize the hash function. If I have two different objects of some type,
ideally their hash codes should be different. If I have plenty of different objects of
the same type, there should be as few duplicated hash codes as possible. Finally, if
I have two objects I consider equal, their hash code should be the same.

Let’s see some implementations of the GetHashCode method for some types. Here
is the implementation for the int type:



For integers, the implementation is as simple as it can ever be. The integer value
itself is a perfect hashcode. It will be the same for two equal integers, and it will be
different for two different integers. There will be no duplicates at all because for
each integer possible the hash code will be different.

Now, let’s consider the Point type:

Before we think of our own implementation of the GetHashCode method, let’s see
what is the default. As we said, the GetHashCode method is defined in the
System.Object class, so I can call it on any object even if I did not override it. Let’s
see some Points:

As you can see point1 and point2 are the same, so I would like them to have the
same hash code. point3 is different, so it should have a different hash code. Let’s
see the result:



Well, that’s not what we wanted. The two first hash codes should be the same. To
understand why is that so, we must understand what’s the default implementation
of the GetHashCode method:

● for reference types, it bases on the reference itself, so the “address” of the
object in memory

● for value types it is calculated based on the values stored in the object

That explains why two Points, even with the same X and Y, have different hash
codes. We declared the Point as a class, so a reference type. point1 and point2 are
two different objects with two different references. The hash code is built based
on the reference, so it’s different for both of them.

So if we want to have the same hashcodes for the Points with the same X and Y, we
can simply change the Point class to a struct:

And now, we can re-run the application:

Now we have what we wanted - the first two Points have the same hash codes.

But let’s change it back to a class, and let’s try to implement the GetHashCode
method ourselves:



Most of the base types in C# already provide a good implementation of the
GetHashCode method. Those methods are usually strongly based on pure math
and also pretty low-level, and because of that, I don’t want to get into details on
how they work. Just so you have an idea, here is a fragment of the GetHashCode
implementation for string:



As you can see this is pretty low-level stuff. Luckily for us, the hard work has
already been done by others. When defining custom types, we can simply combine
the hashcodes of the values stored in the object into a single hashcode. For the
Point class, it would look like this:

HashCode.Combine takes any objects as parameters, so for example for a person
class we could easily use it like this:



Also remember, that we do not always need to combine all properties and fields of
a type to get a valid hash code. For example, if we had SocialSecurityNumber in the
Person class, which by definition identifies a person, it would be perfectly fine to
use it as the only component of the hash code. We always consider two Person
objects equal if they have the same social security number, and we can ignore
other fields (if they were different, it would most likely mean there is some error in
data itself, as two different people should never have the same social security
number).

We know how to implement the GetHashCode method now, but the question that
we need to answer is this: when should do it?

The answer is simple - if the type is going to be used as a key of any hashed
collection, like a Dictionary or the Hashtable, and the default implementation is
not working for us.

For reference types, we usually don’t want the default GetHashCode, as it
compares objects by reference. As with the Point class - we had two Point objects
with the same X and Y, yet their hash codes were different, so when used as keys in
the Dictionary, they would be considered two different keys. In this case, we
usually want to override the GetHashCode method and HashCode.Combine can be
a great help (of course, in some situations hashes based on the reference itself are
fine. It all depends on the context).

Later in the course, we will learn about records. Records are reference types that
provide their own, value-based GetHashCode method.

For value types, it is a bit tricky. There is a default implementation that works fine
and uses the values stored in the fields or properties of the type to calculate the
hash code. The problem is that this default implementation uses reflection, and as
we learned in the “What is reflection?” lecture, it’s painfully slow. Because of that,
it’s a good idea to provide a custom implementation of the GetHashCode method



in value types we create, especially if they are going to be used as hashed
collection keys a lot.

When overriding the GetHashCode method it is important to also override the
Equals method. We will explain the reason for that in the lecture about the
Dictionaries.

Let’s summarize. The GetHashCode method generates an integer for an object,
based on this object’s fields and properties. This integer, called hash, is most often
used in hashed collections like HashSet or Dictionary.

Bonus questions:

● "Can two objects of the same type, different by value, have the same
hash codes?"
Yes. Hash code duplications (or “hash code conflicts”) can happen, simply
because the count of distinct hash codes is equal to the range of the integer,
and there are many types that can have much more distinct objects than this
count.

● "Why it may be a good idea to provide a custom implementation of the
GetHashCode method for structs?"
Because the default implementation uses reflection, and because of that is
slow. A custom implementation may be significantly faster, and if we use this
struct as a key in hashed collections extensively, it may improve the
performance very much.


