34. What is operator overloading?

Brief summary: Operator overloading is a mechanism that allows us to provide
custom behavior when objects of the type we defined are used as operands for
some operators. For example, we can define what will “obj1+obj2" do.

C# provides many operators, for example +, -, ++, ?: etc. The important thing to
understand about operators is that their behavior differs depending on what types
they are used with. For example, adding two numbers with the + operator will
simply calculate the sum of numbers, while adding two strings with the same
operator will concatenate those two strings.

When defining our own types, we would often like to provide a custom
implementation for some of the operators. Let’s consider a simple Point type:

}
}

X5
Y5

We would like to define the operation of adding two points - it should work by
adding their X and Y coordinates, for example adding (10,5) point to (3, -2) shall
give a new Point with coordinates (13, 3). We can achieve it by defining the Add
method in the Point record struct:

Point Add(Point other)

return Point(X + other.X, Y + other.Y);

This is correct, but it's a bit awkward to use. To add two Points we will need to
write something like this:

pointl Point(10, 5);
point2 Point(-3, 4);
result = pointl.Add(point2);

It would be more natural to perform the addition with the + operator: it is, after all,
the addition operator. Unfortunately, this doesn’'t work:

Point(1@, 5);
Point(-3, 4);
pointl + point2;
[& | variable) Point point2

50019: Operator '+’ cannot be applied to operands of type 'Point' and 'Point’

The compiler doesn’t know how to add two points yet. To enable the addition of
two objects of this type we must overload the addition operator:

Point +(Point pointl, Point point2) =>

Point(pointl.X + pointl.X, pointl.Y + point2.Y);

As you can see to overload the operator we must define a static method using the
“operator” keyword. We must define the parameters and the return type just like
in regular methods. In the case of an addition, there are two operands, so we have
two parameters. Remember - the operand is the thing to which the operator is
applied, for example when adding 3+5 we have two operands: 3 and 5.

Please note that they are operators taking less or more operands. For example, the
++ operator that increases the number by one only takes one operand.

On the other hand, the ternary conditional operator takes three operands: the
condition, value if true, and value if false:

25

text a > 1000 ? "big number"” : "small number”;

All right. We overloaded the addition operator for Point type, and now we can
safely write this:

Point(10, 5);
Point(-3, 4);

pointl + point2;

We can overload most of the C# operators, but not all of them. For example, we
can't overload lambda operator =>, member access operator (a dot, like in
obj.Property), or “new” operator. You can find the full list of overloadable
operators here, and at the bottom of the table all non-overloadable operators are
listed:
https://docs.microsoft.com/en-us/dotnet/csharp/lanquage-reference/operators/o
perator-overloading

| don’t want to show you the overloads for all operators because the code would
mostly be the same. But let me show you two interesting and commonly used
operators: the explicit and implicit conversion operators. First, let me show you
some examples of their usage for built-in types.

This code looks innocent, but there is more going on here than it seems. After all,
we assign an integer to a double. They are two different types, so how does it
work? Well, it works because implicit conversion happens. The “a" integer is
implicitly converted to a double. Now, let’s see the opposite assignment:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/operator-overloading
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/operator-overloading

[(local variable)

6: Cannot implicitly convert type 'double’ to 'int'. An explicit conversion exists (are you missing a cast?)

As you can see, this doesn’t work. You might be asking, why did it work when
assigning an int to a double, but it doesn’t work for the opposite operation? The
reason for that is simple: the conversion of an int to a double is lossless. The
double type can represent the value of 5 that was stored in an int variable. On the
other hand, the integer can’t represent the number 5.5. When converting 5.5 to int,
we will lose some accuracy of the data. The result will be trimmed to a full 5. That's
why we must perform such conversion explicitly, so there is no chance we will do it
by accident. When using explicit cast we say “I know what I'm doing and I'm aware
that the value might actually change during the conversion - I'm ready to take this
risk and handle it".

By adding “(int)” | performed the explicit conversion from 5.5 double to int. The
result will be 5.

It is quite a common use case that we want to overload the conversion operators.
Let's go back to the Point type example. Let's say that our application is getting
the points data from some external source and that the points are delivered to us
as tuples. We would like to be able to simply assign a tuple of two floats to a
variable of Point type, thus performing implicit conversion:

= SSJ 7);

& (field} int (int, int}.ltem1
(Gets the value of the current (T1, T2) instance's first element.

9: Cannot implicitly convert type '(int, int}' to 'Point’

Show potential fixes (Ctrl+.)

Well, it doesn't work. The compiler doesn't know how to cast a tuple of two
numbers to the Point type. We must implement our own implicit conversion
operator:

public static implicit operator Point((float, float) externalPoint) =>
ne

w Point(externalPoint.Iteml, externalPoint.Item2);

We can also overload the explicit conversion operator. If only the explicit
conversion operator is implemented, we will have to cast the tuple to Point
explicitly:

Point fromTuple = (Point)(5, 7);

To overload the explicit cast operator we must write this:

public static explicit operator Point((float, float) externalPoint) =»>

new Point(externalPoint.Iteml, externalPoint.Item2);

As you can see, for conversion operators overloading the “explicit” or “implicit”
keyword is needed.

Before we wrap up, let’'s think about when we should use the implicit, and when
the explicit casting operator overloading. We can safely use implicit casting when
the cast is lossless, so it won't change the underlying data - for example, it won't
change its precision. In all other cases, we should use explicit casting, so no
data-losing operations are executed behind the scenes, without the programmer’s
intention.

Let's summarize. We can provide custom behavior for operators use in our own
types by using operators overloading. We can overload most, but not all C#
operators. We can also overload the implicit and explicit conversion operators.

Bonus questions:

e "What is the purpose of the "operator" keyword?"
It is used when overloading an operator for a type.

e "What is the difference between explicit and implicit conversion?"
Implicit conversion happens when we assign a value of one type to a variable of
another type, without specifying the target type in the parenthesis. For
example, it happens when assigning an int to a double. Explicit conversion
requires specifying the type in parenthesis, for example when assigning a
double to an int.

