
35. What are anonymous types?

Brief summary: Anonymous types are types without names. They provide a
convenient way of encapsulating a set of read-only properties into a single
object without having to explicitly define a type first.

Anonymous types are types without names. Anonymous types provide a
convenient way of encapsulating a set of read-only properties into a single object
without having to explicitly define a type first.

As you can see, to create an object of an anonymous type we simply use the “new”
keyword and then put any properties we want in the curly braces. Here we created
an anonymous type with three properties - Name of type string, City of type string,
and Age of type int.

The properties of anonymous types are read-only, so code modifying them will not
compile:

To understand better what may be the use case for anonymous types, let’s
consider a simple coding challenge. First, let’s define a collection of Pets:



Each Pet has a name, type, and weight. What we want to do is to build a collection
of strings that will contain data about each pet type and average weight for pets of
this type. The result should be sorted by weight ascending. In other words, it
should look like this:

We will use LINQ to do it. If you don’t know LINQ, check out my other course “LINQ
tutorial: Master the Key C# Library”. In the last lecture of this course, you can find a
discount coupon.

All right. We need to group those pets by type:

For each of the groups, I want to calculate the average weight:

This is what I want, but there is one problem. I only selected the average weights
of each group now, but I lost the information about the name of each of those



groups. I must change this code to not select floats (as the average weight is a
float) but pairs of PetTypes-floats.

But how should I represent those pairs? I could define a class, struct, or a record for
it:

…but this seems like a relatively big effort. I created a whole separate type for this
very specific piece of data. I will probably never use it in a different context. Not to
mention that its name is a bit awkward, but how else should we call it? There is
really no good name for this very specific set of data.

The solution is to use an anonymous type. An anonymous type is a type defined
right where it’s needed, without even giving it a name. It’s perfect for use cases like
ours - where the type is small and temporary, and we don’t intend to use it
anywhere else:

The final code would look like this:



Because the anonymous type we declared doesn’t even have a name, we will not
be able to use it anywhere else - because how could we refer to it if we don’t know
its name?

Actually, the compiler gives it a name that can be seen in the Common
Intermediate Language, but even if we use the decompiler to find it, it won’t be
possible to use it. Just to satisfy your curiosity, I checked how the compiler named
this particular type:

The name of the anonymous type is at the top. As you can see it’s not very
readable. Please note that from the perspective of Common Language Runtime
anonymous types are no different than any other types.

Let’s list the most important information about anonymous types:
● they contain only read-only properties
● no other kinds of class members, such as methods or events, are valid
● if no names are given to the properties of the anonymous type, the compiler

will use the name of the property that was used to set the value of the
anonymous type’s property. For example, if instead of this:

…we would have this:

…the name of the first property would be “Key”, the same as the name of
the property we assigned to it. When the value is not a property or a field, it



must be given a name. So in the case of WeightAverage, whose value is
calculated, we must give it a name - otherwise, it will not compile, which we
can see here:

● Anonymous types are class objects, derived directly from System.Object.
They can’t be cast to any other type.

● They override the Equals and GetHashCode methods to support value-based
equality. Two anonymous objects with the same values will have the same
hashcodes, and the Equals method will return true for them. Please note
that the == operator is not overloaded, so it will return false (because they
differ by reference).

● They support non-destructive mutation with the “with” keyword.
Remember: non-destructive mutation is not changing the original object,
but rather creating a new one with changed values.

Bonus questions:

● "Can we modify the value of an anonymous type property?"
No. All properties of anonymous types are read-only.

● "When should we, and when should we not use anonymous types?"
The best use case for anonymous types is when the type we want to use is
simple and local to some specific context and it will not be used anywhere else.
It’s very often used as a temporary object in complex LINQ queries. If the type is
complex or we want to reuse it, it should not be anonymous. Also, anonymous
types can only provide read-only properties; they can’t have methods, fields,
events, etc, so if we need any of those features the anonymous types will not
work for us.



● "Are anonymous types value or reference types?"
They are reference types since they are classes, but they support value-based
Equality with the Equals method. In other words, two anonymous objects with
the same values of properties will be considered equal by the Equals method
even if their references are different.


