37. What is coupling?

Brief summary: Coupling is the degree to which one module depends on
another module. In other words, it's a level of “intimacy” between modules. If a
module is very close to another, knows a lot about its details, and will be
affected if the other changes, it means they are strongly coupled.

Coupling is the degree to which one module depends on another module. In other
words, it's a level of “intimacy” between modules. If a module is very close to
another, knows a lot about its details, and will be affected if the other changes, it
means they are strongly coupled.

Have you ever needed to introduce a small change in a class, but it actually forced
you to also introduce changes in many other classes? Well, it seems like those
classes were highly coupled with each other. It made them brittle - they got broken
and needed to be fixed when a change was introduced somewhere else.

The high (or “strong”) coupling means that one class knows too much about what is
going on under the hood of another class.

Low (or “loose”) coupling is a desirable trait of classes.

This illustration shows the strong coupling between two classes:

@
o N

..
-
o

i

...- .'....'w
\ 4
‘)

Those classes, although separate, know way too much about each other, and they
communicate directly between themselves. To reduce coupling, we should

introduce a simple, well-defined, and abstract interface, that will be the channel
through which they communicate.

/.\5

® >

This way, if something changes in one of the classes, the other will not be affected,
as long as the interface doesn’t change. And remember, the implementation
details change much more frequently than interfaces.

Let's see some strongly-coupled classes.

Subscriber(' IsPremium);

NewsletterSender(Subscribers subscribers)

_subscribers = subscribers;

SendTo(premiumSubscribersOnly)

for (i = 0; i < _subscribers.Items.Length; i++)

{

if(!premiumSubscribersOnly ||
_subscribers.Items[i].IsPremium)

{

Console.WriteLine(
$"Newsletter sent to " +
$"{ subscribers.Items[i].Email}");

At first glance, it may look all right. But notice how the SendTo method (and thus
the whole NewsletterSender class) depends on implementation details of the
Subscribers class. It is not only aware that it holds a very concrete type of
collection (an array) but it could even modify its elements. Let's see what would
happen if | wanted to change the collection that the Subscribers class use from an
array to HashSet:

Subscribers

HashSet<Subscriber> Items { S

Subscribers(HashSet<Subscriber> items) => Items = items;

The SendTo method breaks:
SendTo(premiumSubscribersOnly)

for (' @; i < _subscribers.Items.Length; i++)
{
if(!premiumSubscribersOnly ||
_subscribers.Items[i].IsPremium)

Console.WritelLine(
$"Newsletter sent to " +
$"{ subscribers.Items[i].Email}");

| changed an implementation detail in the Subscribers class and it shouldn't
affect any other classes. It did, which proves that our code is brittle.

Let's fix it. The Subscribers class should only expose an abstract collection of items
- let’s make it IEnumerable. The consumers of this class don't need to know

whether is an array, a HashSet, or anything else:

Subscribers

IEnumerable<Subscriber> Items => _items;

HashSet<Subscriber> items { i

Subscribers(HashSet<Subscriber> items) => _items = items;

Now, let’s adjust the code in the NewsletterSender class:

public void SendTo(bool premiumSubscribersOnly)

{

foreach(var subscriber in _subscribers.Items.Where(s =>
IpremiumSubscribersOnly || s.IsPremium))

{

Console.WritelLine(
$"Newsletter sent to " +
$"{subscriber.Email}");

Great. Now the NewsletterSender class is not aware of any implementation details
of other classes. As far as it's concerned, the Subscribers class only provides a
collection that can be enumerated. Whether it's an array, a List, or anything else is
irrelevant, and can change without the NewsletterSender class even knowing.

You can recognize high coupling by observing the following:

e One type uses another type directly, without having any abstraction in
between.

e Even a small change in a class leads to a cascade of changes all around the
project.

e Classes are not independent. To make some object work, we need to set up
some state in other objects. This is particularly visible in testing - when
setting up a test, you must do a lot of work on other objects than the one
that you actually want to test.

The question is, what can we do when we observe that our code is tightly coupled?
The best solution is to simply reduce the direct connections between concrete
types.

Let me illustrate it like this: let's say | want to go for a trip by the sea. If | am tightly
coupled with the Car class and | only accept it as the mean of transportation. It may
mean that my weekend will be ruined if my car breaks down or, for example, my
driving license expires. On the other hand, if | would only depend on some
IMeanOfTransport service, it would mean that | am not coupled with any concrete
type implementing it, and | could easily switch whatever | use to a plane or a train.
And my weekend would be saved. | wouldn't depend on the technical details of the
mean of transport. | would only need to be provided with something | can use to
travel, and what it is or how it works under the hood, | don't really care as long as it
takes me to the beach.

As you can see, to reduce coupling we should have different types communicate
over interfaces, not directly. If you know the Dependency Inversion Principle from
the SOLID principles, you can see that its main purpose is reducing coupling:
according to this principle, types should not depend on concrete implementations,
but rather on abstractions. By following this principle, we remove the direct way of
communication between classes, making them more independent from each other.

The perfect classes and modules should be highly cohesive and loosely
coupled.

Let's summarize. Coupling is the degree to which one module depends on another
module. In other words, it's a level of “intimacy” between modules. If a module is
very close to another, knows a lot about its details, and will be affected if the other
changes, it means they are strongly coupled.

Bonus questions:

e "How to recognize strongly couples types?”
One type uses another type directly, without having any abstraction in
between. We often recognize strong coupling the hard way: when we see that
even a small change in a class leads to a cascade of changes all around the
project. It proves that the types are not independent.

e "Which of the SOLID principles allow us to reduce coupling?”
The Dependency Inversion Principle, which says that classes shouldn’t depend
on concrete implementations, but rather on abstractions. When following this
principle we remove the direct way of communication between classes, making
them more independent from each other.

