
39. What is the Dependency Injection
design pattern?

Brief summary: Dependency Injection is providing the objects some class needs
(its dependencies) from the outside, instead of having it construct them itself.

Dependency Injection means providing the objects that some class needs (its
dependencies) from the outside, instead of having it construct them itself.

Let’s see this in practice. First, the code that does not use the Dependency
Injection:

The PersonalDataFormatter needs to use the PepleDataReader - it means, the
PeopleDataReader is its dependency. In this code, the PersonalDataFormatter
creates the PepleDataReader object itself using the new operator.

There are a couple of issues with this design:
● PersonalDataFormatter depends on a very particular implementation of

people’s data reading logic. What if we wanted to use a different data
source? We would not have any way of doing this, as this class commits to
using the specific PeopleDataReader object by creating it with the new
operator. Now those two classes are tightly coupled.

● This is particularly problematic when we want to unit test this code. Let’s
assume the PeopleDataReader connects to a real database and sources

people's information from there. If we created the PersonalDataFormatter
in tests, it would instantiate the PeopleDataReader, which would try to
access the database. This is not acceptable in unit tests. We must have a way
of providing a mock implementation instead. With the current design, it’s
not possible. We will learn more about mocks in the “What are mocks?”
lecture.

● We are breaking the Single Responsibility Principle here. The
PersonalDataFormatter should only be responsible for formatting personal
data, but now it is also responsible for creating a PeopleDataReader object.
In this simple code this may not seem like an issue, but keep in mind that in
real-life applications it’s often much more complicated to create an object,
as it may have many dependencies of its own.

All right. Let’s refactor this code to use Dependency Injection. First of all, let’s
make the PeopleDataReader implement an interface:

And now, let’s inject this dependency to the PersonalDataFormatter, instead of
creating it right in it:

This solves all problems mentioned before:
● The classes are now loosely coupled. We can easily switch the object we

pass to the PersonalDataFormatter’s constructor to any other object
implementing IPeopleDataReader interface. We can also do it at runtime.
PersonalDataFormatter doesn’t know anything about the concrete
PeopleDataReader class. All it cares about is that it’s being provided a
dependency that can retrieve people’s data - it doesn’t care how it is done
exactly.

● Because of that, we can easily provide a mock of the IPeopleDataReader in
tests, to avoid connecting to a real database.

● The PersonalDataFormatter is no longer responsible for creating
PeopleDataReader object. The creation of this object and using it are
separated. The Single Responsiblilty Principle is not broken and we maintain
the separation of concerns.

As you can see, the Dependency Injection is a straightforward pattern, yet it solves
a lot of problems.

In C#, we most typically use the constructor injection - so the dependency is
injected to a class via its constructor. It is also possible to inject dependency via a
setter, but this is much less popular (as, in general, having a public setter is a risky
business):

Before we mentioned that classes should not be responsible for creating their
dependencies. Well, who should be responsible for it, then? Most typically we have
two places where we construct objects, depending on our needs:

● if we need objects that can be constructed right at the program start (for
example a logger that will be reused throughout the application) we can
create them at the entry point of the application, like the Main method, and
then pass them down to whatever class that need them:

Please notice that in many real-life projects the creation of objects is not
done manually, but with Dependency Injection frameworks. They are
mechanisms that automatically create dependencies and inject them into
objects that need them. Dependency Injection frameworks are configurable,
so we can decide what concrete types will be injected into objects. They can
also be configured to reuse one instance of some type or to create separate

instances for each object that needs them. Some of the popular
Dependency Injection frameworks in C# are Autofac or Ninject.

● If we are not sure what objects exactly we need (a concrete type may
depend on some parameter or configuration provided at runtime), or
whether we will need them at all, we can use a factory. Let’s say that in
PersonalDataFormatter we can either use the default formatting or
formatting provided from the outside. The decision which one will be used is
done at runtime, and it depends on the value of a parameter of the Format
method:

If the isDefaultFormatting parameter is set to true, we don’t need to create
a Formatter object at all. In other words, the action of creating an object
must happen right in this class, so this object can’t be injected. But we don’t
want to lose the benefits of dependency injection.

A factory allows us to achieve this. Please note that the factory returns an
interface, so for testing purposes, we can provide a mock of the factory, that
will create a mock of an actual Formatter.

This way we don’t need to create the Formatter object upfront. Maybe it will
not be created at all if the Format method is never called with the
isDefaultFormatting parameter set to false. Of course, in this sample code it
wouldn’t matter that much, but again: in a real-life application the creation
of an object might be more complicated and performance-costly.

All right. We learned that Dependency Injection is a design pattern, according to
which we should provide the dependencies that an object needs instead of having
it construct them itself.

Dependency Injection is a specific kind of Inversion of Control, which we will learn
about in the next lecture.

Bonus questions:

● "What are Dependency Injection frameworks?"
Dependency Injection frameworks are mechanisms that automatically create
dependencies and inject them into objects that need them. They are
configurable, so we can decide what concrete types will be injected into objects
depending on some abstractions. They can also be configured to reuse one
instance of some type or to create separate instances for each object that
needs them. Some of the popular Dependency Injection frameworks in C# are
Autofac or Ninject.

● "What are the benefits of using Dependency Injection?"
Dependency Injection decouples a class from its dependencies. The class
doesn’t make the decision of what concrete type it will use, it only declares in
the constructor what interfaces it will need. Thanks to that, we can easily
switch the dependencies according to our needs, which is particularly useful
when injecting mock implementations for testing purposes.

