40. What is the Template Method design
pattern?

Brief summary: Template Method is a design pattern that defines the skeleton
of an algorithm in the base class. Specific steps of this algorithm are
implemented in derived classes.

Template Method is a design pattern that defines the skeleton of an algorithm in
the base class. Specific steps of this algorithm are implemented in derived classes.

Let's consider the following example: we are developing a platform that allows
users to play board games online. The first board game we deliver is Settlers of
Catan. Here is the (slightly simplified) implementation:

SettlersOfCatan

Random _random = Random() ;

Play()

SetupBoard();
isFinished =
while (!isFinished)

{
}

SelectWinner();

isFinished = PlayTurn();

SetupBoard()

Console.WriteLine("Randomly placing hexagonal tiles.")

PlayTurn()

Console.WriteLine("Building, trading, etc.");
return _random.Next(5) >= 4;

SelectWinner()

Console.WritelLine(
"Winner is the one who first got 12 points");

All right. Soon after we are asked to implement another game - this time it's
Terraforming Mars:

TerraformingMars

Random _random = Random();

SetupBoard();
isFinished =
while (!isFinished)

{
}

SelectWinner();

isFinished = PlayTurn();

SetupBoard()

Console.WritelLine("Choosing from two available maps.");

PlayTurn()
Console.WriteLine(

"Raising oxygen level, placing oceans, etc.");
return _random.Next(5) >= 4;

SelectWinner()

Console.WritelLine(
"Winner is the one with most points at game's end.");

Huh. This is quite similar to the code we had before. After implementing couple
more board games, we come to a revelation: all bords games follow a similar
template! We first set up the board, then we play turns until the game is finished,
and finally, we select the winner.

Instead of repeating this logic in each class, we could define it once in the base
class, and ask the subclasses to only provide the details of the implementation of
each step. This way, if the template changes for some reason, we will only have one
place to fix.

Let's use the Template Method design pattern in this code. First, let’s define the
template itself. It will be done by using an abstract class:

BoardGame

Random Random = Random() ;

Play()

SetupBoard();
isFinished =
while (!isFinished)

{

isFinished = PlayTurn();

}

SelectWinner();

SetupBoard();
PlayTurn();

SelectWinner();

Now we can implement the concrete games:

iclass SettlersOfCatan : BoardGame

protected override void SetupBoard()

{
}

Console.WriteLine("Randomly placing hexagonal tiles.");

b?b%ected override bool PlayTurn()
{

Console.WritelLine("Building, trading, etc.");
return Random.Next(5) >= 4;

¥

protected override void SelectWinner()

{

Console.WritelLine(
"Winner is the one who first got 12 points”);

class TerraformingMars : BoardGame

{

private Random _random = new Random();

b?b%ected override void SetupBoard()

{
}

Console.WritelLine("Choosing from two available maps.");

protected override bool PlayTurn()
{
Console.WritelLine(
"Raising oxygen level, placing oceans, etc.");
return _random.Next(5) >= 4;

}

protected override void SelectWinner()

{

Console.WritelLine(
"Winner is the one with most points at game's end.");

Great. Now the thing that those classes had in common - so the general template
of each game - is enclosed in the base type. If this template changes, we will only
need to adjust the base class. The derived classes only define what makes each
board game special, and they don't replicate what they have in common.

The Template Method design pattern is useful everywhere where some base
algorithm is needed, but the specific parts of it vary. A practical example could be
the execution flow of tests in the unit tests framework. Typically such execution
looks like this:
Foreach test:

1) Run the SetUpMethod

2) Execute test

3) Run the TearDown method

This could easily be achieved with the Template Method design pattern. First, let's
define the base class for all test Fixtures:

TestFixture

Run()

failedTestsCount = 9;
foreach (test in GetTests())
{

SetUp();

if ('test())

{

failedTestsCount++;

}

TearDown();

}

return failedTestsCount == ©;

IEnumerable<Func< >> GetTests();
SetUp();

TearDown();

And now, let’s define some actual tests. We will be testing this super-complicated
class:

Calculator

Add(a,

return a + b;

CalculatorTests : TestFixture

Calculator _cut;

SetUp()

_cut = Calculator();
Console.WritelLine("SetUp of MyTests class");

IEnumerable<Func< >> GetTests()

return List<Func< >>()

{
0

{
Console.WriteLine("3 + 2 shall be 5");

return _cut.Add(3,2) == 5;
¥s

Console.WriteLine("10 + (-10) shall be 0")
return _cut.Add(10, -10) == @;

TearDown()

Console.WriteLine("TearDown of MyTests class");

When we run those tests, we will see that the SetUp and TearDown methods are
executed before and after each test, as expected:

var calculatorTests = new CalculatorTests();
Console.WritelLine(calculatorTests.Run() ? "Success!" : "Failure");

SetUp of MyTests class
3 + 2 shall be 5

TearDown of MyTests class
SetUp of MyTests class

10 + (-18) shall be ©
TearDown of MyTests class
Success!

All right! As you can see, the Template Method design pattern can be quite handy
everywhere where a generic algorithm shall be defined once, but the
implementations of the particular steps of this algorithm may vary.

Bonus questions:

e "What is the difference between the Template Method design pattern
and the Strategy design pattern?"
Both patterns allow specifying what concrete algorithm or a piece of the
algorithm will be used. The main difference is that with the Template Method,
it is selected at compile-time, as this pattern uses the inheritance. With the
Strategy pattern, the decision is made at runtime, as this pattern uses
composition.

