
41. What is the Decorator design pattern?

Brief summary: Decorator is a design pattern that dynamically adds extra
functionality to an existing object, without affecting the behavior of other
objects from the same class.

Decorator is a design pattern that dynamically adds extra functionality to an
existing object, without affecting the behavior of other objects from the same
class.

Let’s start with something simple. We have a class that reads information about
people from some data source:

This class is nice, simple, and focused. For now.

At some point, we are asked to add an optional feature of logging how many
elements have been read. Let’s add this feature to the class:



Ouch. It was such a pretty class, and now it grew large and ugly. Well, never mind…
at least it does what it’s supposed to.

Soon after that change, we are asked to add one more optional feature: to be able
to limit data to some given count of People. Let’s try to add this:





This code is terrible. This class has big chunks of logic which will or will not be
executed depending on the flags. Its logic, so simple before, is now messy and
complex. It takes more parameters than it may need (we don’t need a logger if
logging is not enabled, and we don’t need countLimit if limiting is not enabled). It
will be a nightmare to test it.

As more and more extra features are required to be added to this class, it will keep
growing, becoming an unmanageable mess that no one wants to work with.

It’s time to introduce the Decorator design pattern. This pattern allows adding
some behavior to an object dynamically, without touching its code. If you know the
Open-Closed Principle from SOLID, you know this is a good thing. It also allows us
to keep the Single Responsibility Principle happy.

First, let’s revert this class to how it was before changes:

Beautiful in its simplicity. Now, let’s add LoggingDecorator class. It will “decorate”
the PeopleDataReader with the ability of logging.

Implementing the Decorator design pattern boils down to two steps:
● making the Decorator implement the same interface as the decorated

object
● making the Decorator own an object implementing this interface. It will be

the decorated class itself or another Decorator, which allows us to compose
many Decorators together



Let’s see how it looks in code:

As you can see, the Decorator owns an object that it wants to decorate. It
implements the same interface. In the Read method that comes from the interface,
it calls whatever implementation is provided, but it adds a little something from
itself - in this case, it writes to a log.

Remember that the _decoratedReader doesn’t need to be the plain
PeopleDataReader object - it can be anything implementing the
IPeopleDataReader interface, including another Decorator. Of course, at some
point one of the Decorators in this structure must own the basic decorated object
of PeopleDataReader type.

Let’s now add the Decorator that will be limiting the count of returned Person
objects:



Great. We can now compose those Decorators to our liking. Let’s create an object
that reads people data, logs the original count, and then limits it:

Here the real magic happens. Each Decorator takes any object implementing the
IPeopleDataReader interface as a parameter but also implements this interface
itself. It means, we can pass a Decorator as a parameter to other Decorator,
stacking their functionalities. That’s why the final object will be able to both log
and limit the count of elements:



Please be aware that the order of the Decorators creation matters. If we change
this code to this…

…the result will be different because the limiting Decorator’s Read method will be
executed before the logging Decorator’s Read method. From the point of view of
the LoggingDecorator the count of data will be 3, not 5.

The features of logging and limiting are optional, but with the Decorator pattern,
it’s easy to choose what we need. Let’s create a PeopleDataReader that only logs
some information, but does not limit the count:



In the result we will see all 5 elements:

And now, let’s create an object that does not log, but it does limit the data:

As you can see, there is no “[LOG]” string in this result.

All right. As you can see the Decorator pattern allows us to easily add functionality
to objects, without touching the original classes, so it’s very much in line with the
Open-Closed Principle. It allows us to keep classes simple. It also helps us to be in
line with the Single Responsibility Principle, as each class now has a very focused
responsibility. They would be easy to test, maintain, and generally pleasant to
works with.



Bonus questions:

● "What are the benefits of using the Decorator design pattern?"
The Decorator pattern allows us to easily add functionality to objects, without
touching the original classes, so it’s very much in line with the Open-Closed
Principle. It allows us to keep classes simple. It makes it easy to stack
functionalities together, building complex objects from simple classes. It also
helps us to be in line with the Single Responsibility Principle, as each class now
has a very focused responsibility. They would be easy to test, maintain, and
generally pleasant to works with.


