
42. What is the Observer design pattern?

Brief summary: The Observer design pattern allows objects to notify other
objects about changes in their state.

Observer design pattern allows objects to notify other objects about changes in
their state.

Let’s consider the following example. We have some class that is able to read the
current Bitcoin price. In a real-life application it would read it from some public API,
but for the example’s sake let’s make it return a random number from 0 to 50000
(looking at cryptocurrencies prices fluctuations, I would say it’s not that far away
from the truth).

Now, let’s say we want to create a couple of mechanisms that will notify the
application’s users if the price has grown over a certain threshold. Let’s say we
want to be able to send users emails and/or push notifications.



The class for sending push notifications would be almost the same, except that the
message would be different. Please notice that this is a simplification, and in a real
project, those classes would actually send emails or push notifications. We could
also implement more classes to perform other types of notifications.

All right, so here is the big picture: we have the BitcoinPriceReader that reads the
price, and two classes that wait to be notified about the price change -
EmailPriceChangeNotifier and PushPriceChangeNotifier. When the price is read
from the BitcoinPriceReader, we want it to execute the Update method from both
the classes that wait for the information about the new price:



Well.. this is awkward, at least. First of all, it tightly couples the
BitcoinPriceReader with the other two classes. Secondly, this way we will only
notify a single EmailPriceChangeNotifier object and a single
PushPriceChangeNotifier object. What if we wanted to notify a whole group of
them? Lastly, what if some of those objects will no longer be interested in listening
about the price changes (for example the user of the application decides to sell all
his or her crypto and move to live in the Bahamas?). We won’t have any control over
what objects we notify.

It’s time to introduce the Observer design pattern. Let’s do it step by step.

First of all, we want to decouple the BitcoinPriceReader (the Observable) from the
EmailPriceChangeNotifier and PushPriceChangeNotifier (the Observers). We will
need to define interfaces over which they can communicate. The first question we
need to ask is “what data will be sent from the Observable to the Observers?”. In
our case, it will be the current Bitcoin price, so a decimal, but let’s make the
interfaces generic, so they can work with any payload. First, let’s define the
IObserver interface, which will be implemented by EmailPriceChangeNotifier and
PushPriceChangeNotifier. This interface will contain a single Update method, which
will be called by the Observable to send the data to the Observers:



Let’s use this interface before we move on to IObservable:

In this case, the method was already implemented, so not much to do here. In
general, the Update method is the one that receives the notification from the
Observable and decides what to do about it. I also added the interface
implementation to the PushPriceChangeNotifier.

Let’s now define the IObservable interface.



The first two methods are used to attach (or “subscribe”) the observer to the
observable. This way we will have control over who is notified. We can detach (or
“unsubscribe”) the observers at any time if they are no longer interested in
receiving the notifications from the Observable.

The last method will be executed to send the notification to all subscribed
observers.

Let’s implement this interface in the BitcoinPriceReader class. First, we need to
define a collection of Observers:

The NotifyObservers method will simply iterate the List of Observers and execute
the Update method on them with the _currentBitcoinPrice:



The only thing left to do is to call the NotifyObservers method after the latest
Bitcoin price has been read:

As you can see the NotifyObservers method could be private, but I’ll leave it public
as this is the most typical implementation of the Observer design pattern.

All right, let’s put it all together. First, let’s create the Observers and attach them
to the Observable. Let’s say the email should be sent if the price exceeds 25000,
and push notification - when it exceeds 40000.

Now, let’s execute the ReadCurrentPrice method couple of times:



And here is the result:

It seems like one of the calls triggered both email and push notifications, and the
other did not trigger any of them (so the price must have been below 25000).

Now, let’s detach the PushPriceChangeNotifier:

And call the ReadCurrentPrice method again:

As you can see, after the push notifications have been unsubscribed, they are not
sent even if the price exceeded 40000.

Remember that this code bases on random numbers, so when you execute it, you
will have different results. Run it a couple of times and see what happens!

All right. We implemented the basic Observer design patterns.

Please note that there is an existing Microsoft’s implementation of this pattern,
but it’s a bit more complex. I wanted to show you custom implementation so you



see exactly what is going on. If you are curious about Microsoft’s implementation,
make sure to read this article:
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-patter
n

We will revisit the topic of the Observer design pattern in the next lecture, where
we will talk about events, as they have very much in common.

Bonus questions:

● "In the Observer design pattern, what is the Observable and what is the
Observer?"
The Observable is the object that’s being observed by Observers. The
Observable notifies the Observers about the change in its state.

https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern

