
44. What is Inversion of Control?

Brief summary: Inversion of Control is the design approach according to which
the control flow of a program is inverted: instead of the programmer controlling
the flow of a program, the external sources (framework, services, other
components) take control of it.

Inversion of Control is the design approach according to which the control flow of a
program is inverted: instead of the programmer controlling the flow of a program,
the external sources (framework, services, other components) take control of it.

Let’s consider two simple examples. First is a simple console application interacting
with the user.

In this program, the code is in control - it decides when the user answers the
questions shown in the console. Here is the implementation of this program:



Now, let’s see a different approach:

In this application, the code doesn't control when exactly the user will fill in the
form, and when the final message will be printed. The action of the user (clicking
on the Submit button) will trigger an event that will handle printing the output:



The control flow of the program is inverted compared to the “traditional” flow,
where the code decides when exactly some action happens. Here, the framework
(in this case, Windows Forms) is in charge, and it executes particular pieces of code
based on the user actions that trigger events.

Inversion of Control is sometimes referred to as “the Hollywood Principle” which
says “don’t call us, we will call you”. In this case, we don’t call a method. The
framework calls us, letting us know via an event that some code needs to be
executed.

According to Martin Fowler (author of the great book “Refactoring” and in general
authority in topics of software development, design, etc.) the Inversion of Control
is what makes the difference between a framework and library:

“A library is essentially a set of functions that you can call, these days
usually organized into classes. Each call does some work and returns
control to the client.

A framework embodies some abstract design, with more behavior built
in. In order to use it, you need to insert your behavior into various
places in the framework either by subclassing or by plugging in your
own classes. The framework's code then calls your code at these points.“

There are many ways in which the control can be inverted. In the example we’ve
seen, this was implemented by using events. Events were triggered by the user’s
actions on the GUI, thus executing some particular methods in code.

Speaking more generally, the Inversion of Control happens whenever some kind of
a callback is defined. A callback is an executable code (a method in C#) that gets
passed as an argument to some other code. Let’s consider this simple example:



The ReadLineByLine method uses a callback - an Action passed as a parameter.
Once the entire input has been read, the callback will be executed. In real-life
projects it often happens that after some data is read (from a database, API, or
anything else that takes time to execute) a callback is invoked, informing some
other piece of the code that it can start its work, as the data it requires is ready to
be used.

Another example of Inversion of Control could be the Template Method. In the
lecture about it, we mentioned the example of SetUp and TearDown methods from
NUnit framework. It’s another case when the framework calls the methods we
defined. The template is defined in NUnit itself, where it is decided that first the
SetUp must be called, then the actual test, and then the TearDown. But the actual
implementation of those steps is defined by the programmer.

Dependency Injection is another example of Inversion of Control. The code that
some class needs to execute is injected from the outside. We don’t have control
over what method exactly will be called. This decision is made for us by someone
who provides the concrete type as the constructor parameter. We only declare that
we need some dependency.

Using an interface is similar to having a callback. After all, an interface is like a
bundle of methods. It would actually be possible to have Dependency Injection
without interfaces, but by simply providing a class with Funcs that will be executed,
similarly as the Action that we saw in an example above.



Let’s summarize. Inversion of Control is the design approach according to which
the control flow of a program is inverted: instead of the programmer controlling
the flow of a program, the external sources (framework, services, other
components) take control of it.

Bonus questions:

● "What is a callback?"
A callback is an executable code (a method in C#) that gets passed as an
argument to some other code.

● "What is the difference between a framework and a library?"
According to Martin Fowler: “A library is essentially a set of functions that you
can call, these days usually organized into classes. Each call does some work
and returns control to the client. A framework embodies some abstract design,
with more behavior built in. In order to use it, you need to insert your behavior
into various places in the framework either by subclassing or by plugging in
your own classes. The framework's code then calls your code at these points.”
So in short, the framework relies on Inversion of Control, but the library does
not.


