46. What are mocks?

Brief summary: Mocks are objects that can be used to substitute real
dependencies for testing purposes. For example, we don’t want to use a real
database connection in unit tests. Instead, we will replace the object connecting
to a database with a mock that provides the same interface, but returns test
data. We can set up what will be the results of the methods called on mocks, as
well as verify if a particular method has been called. Mocks are an essential part
of unit testing, and it's nearly impossible to test a real-life application without
them.

Mocks are objects that “pretend” to be other objects and are used mostly for
testing purposes. For example, we don’t want to use a real database connection in
unit tests, and we will explain why in a minute. Instead, we will replace the object
connecting to a database with a mock that provides the same interface, but returns
test data.

Let's say we want to unit test this class:

ss PersonalDataFormatter

public string Format()
{
var people = ReadPeople();
return string.Join("\n",
people.Select(p => $"{p.Name} born in" +
$" {p.Country} on {p.YearOfBirth}"));

Console.WritelLine("Reading from real database");
return new List<Person>

{

w Person("John", 1982, "USA"),
w Person("Aja", 1992, "India"),
w Person("Tom", 1954, "Australia"),

Imagine the ReadPeople method connects to a real database, performing all
necessary steps like opening the database connection, executing some SQL
queries, etc.

The tests of the PersonalDataFormatter class could look like this:

[TestFixture]

bﬂbiic class PersonalDataFormatterTests

{

private PersonalDataFormatter cut = new PersonalDataFormatter();

oo

pugi££ void ShallFormatPersonalDataCorrectly()

{

var result = cut.Format();
var expectedResult = @"John born in USA on 1982

Aja borniin India on 1992
Tom born:in Australia on 1954";

Assert.AreEqual (expectedResult, result);
}

This may even work under some circumstances, but there are numerous problems
with this approach:

A test that connects to a database is not a unit test. A unit test should test
only one piece of functionality. Here we test the class, the database
connection, and the database itself.

Also, unit tests should be fast, and connecting to a database takes time.
This test only reads from the database, but what if other tests would also
write to it? If some other test would add a new person to the database, this
test would start to fail, as the result would contain one more line. As tests
would run, the database state would change constantly, affecting the
results. Because of that, we would be forced to reset the database to some
desired state before each test, which would again take significant time.
What if the database is not set up on the computer of another developer?
This test may work for us, but it may not work for others.

What if the database contains millions of entries? Then the expected value
in this test would be an enormous string, which would obviously be
problematic, especially if the test fFailed and in this huge string we would try
to find the exact part that doesn’t match the expected result.

To solve all those issues, we need a mechanism that will allow us to mock the
database connection. Instead of using an object connecting to a real database, we
will use a fake one, that will return a predefined set of data used for testing
purposes only.

But first, we must refactor this code to use Dependency Injection, so we are not
tightly coupled with the implementation that connects to a real database:

PersonalDataFormatter

IPeopleDataReader _peopleDataReader;

PersonalDataFormatter(
IPeopleDataReader peopleDataReader)

_peopleDataReader = peopleDataReader;

Format()

people = _peopleDataReader.ReadPeople();

return .Join(Environment.NewLine,
people.Select(p => $"{p.Name} born in" +
$" {p.Country} on {p.YearOfBirth}"));

IPeopleDataReader

eferences | @ 1/1 passing

IEnumerable<Person> ReadPeople();

DatabasePeopleDataReader : IPeopleDataReader

erences | @ 1

IEnumerable<Person> ReadPeople()

Console.WriteLine("Reading from real database");

return List<Person>

{
Person("John", 1982, "USA"),
Person("Aja", 1992, "India"),
Person("Tom", 1954, "Australia"),

Great. Now, in the production code, we can inject the implementation that
connects to a real database:

Program

Main(

personalDataFormatter = PersonalDataFormatter(
DatabasePeopleDataReader());

Console.WritelLine(personalDataFormatter.Format());

But for unit tests, we will use a mock. | will be using the Moq library for that, which
is one of the most popular mocking libraries for C#. To create a mock of some
interface, we can simply use the Mock<T> class:

[TestFixture]

PersonalDataFormatterTests

{

LSetup]

SetUp()
{
_peopleDataReaderMock = Mock<IPeopleDataReader>();
_cut = PersonalDataFormatter(
_peopleDataReaderMock.Object);

As you can see | moved the creation of the _cut object to the SetUp method. This is
because | want a brand-new mock for each test, which is a good practice since the
mocks have their own state (they can track what methods had been called upon
them, which is used for validating mock behavior. We will talk more about it later in
the lecture).

Let’s now use the mock in the test. | will set it up to return some predefined People
objects when the ReadPeople method is called:

[Test]

ShallFormatPersonalDataCorrectly()
{
_peopleDataReaderMock.Setup(mock => mock.ReadPeople())
.Returns(List<Person>

{
Person("Personl”, 1982, "Countryl"),
Person("Person2”, 1992, "Country2"),
Person("Person3”, 1954, "Country3"),

1)

result = _cut.Format();
expectedResult = @"Personl born in Countryl on 1982
Person2 born:in Country2 on 1992
Person3 born:in Country3 on 1954";
Assert.AreEqual (expectedResult, result);

}

Great. Now when the _cut object uses the ReadPeople method from the
IPeopleDataReader interface that is its dependency, the mock will be used. It will
return the predefined collection of people.

This solves all problems mentioned before:

e This test is now a real unit test. It tests the PersonalDataFormatter class in
isolation.
It is Fast because it doesn’t connect to a database.
It has no way of affecting other tests, as it doesn’t modify any shared state
(with the test not using mocks, if the test would write to a database, it
would modify its content for all other tests).

e The test will work on any machine, no matter if some database is present on
it or not.

e We have full control over the data. We can define a small set of people that
is enough for testing the PersonalDataFormatter. We won't be affected by
the fact that there are millions of people in the database.

All right. Please notice that mocks have one more powerful ability - we can verify if
some methods have been called upon them as part of the test verification. Let's
consider this class.

public class EnthusiasticGreeter

{

bﬁﬁiic void PrintHelloNTimes(int n)

{

for(int i = 0; 1 < n; i++)

{

Console.WriteLine("Hello!");

This class is quite simple, but unfortunately, it is not easy to test. The
PrintHelloNTimes method is void, so there is no result to be compared with the
expected result.

The test that validates this class should basically have a way of checking if the
“Hello!"” was printed to the console given count of times. It could possibly be done
by actually running the program (which would make this test non-unit) and

somehow intercepting the output printed to the console. But this would be
complex, tricky, and non-unitary. After all, we would be testing the Console class as
much as the EnthusiasticGreeter class.

The solution is again, to use mock. But what to mock here, exactly? Well, ideally it
would be to mock the Console class, but this is impossible since it's static. In most
frameworks, including Mog, the mocking mechanism is based on inheritance or
interface implementations, so a mock object is basically a derived type from the
type we want to mock or it implements the mocked interface. We can't have
classes derived from static classes. Again, we will need to use Dependency
Injection:

EnthusiasticGreeter

Action< > _printToConsole;

EnthusiasticGreeter(Action< > printToConsole)

_printToConsole = printToConsole;

PrintHelloNTimes (n)

for(i=0; i< n; i++)

{
}

_printToConsole("Hello!");

In the production code, we will simply inject an action that uses Console.Writeline:

enthusiasticGreeter = EnthusiasticGreeter(
message => Console.WritelLine(message));

enthusiasticGreeter.PrintHelloNTimes(5);

But for testing purposes, we will use a mock of the Action object:

[TestFixture]

pﬂEiic class EnthusiasticGreeterTests

void SetUp()

_printToConsoleMock = new Mock<Action<string>>();
_cut = new EnthusiasticGreeter(
_printToConsoleMock.Object);

We can now write a test that checks that “Hello!” has been printed as many times
as the number provided with the parameter:

pULllC void ShallPrintHello5Times_WhenCalledPrintHello5Times()
{

_cut.PrintHelloNTimes(5);
_printToConsoleMock.Verify(
mock => mock("Hello!"), Times.Exactly(5));

As you can see, using mocks allowed us to test code that doesn’t return a value.
Instead, we tested that a specific method was called with a given parameter and a
given number of times.

Let's summarize. Mocks are objects that can be used to substitute real
dependencies for testing purposes. For example, we don’t want to use a real
database connection in unit tests. Instead, we will replace the object connecting to
a database with a mock that provides the same interface, but returns test data. We
can set up what will be the results of the methods called on mocks, as well as verify
if a particular method has been called. Mocks are an essential part of unit testing,
and it's nearly impossible to test a real-life application without them.

Bonus questions:
e "Whatis Moq?"

Mogq is a popular mocking library for C#. It allows us to easily create mocks of
interfaces, classes, Funcs, or Actions. It gives us the ability to decide what result

will be returned from the mocked functions, as well as validate if some
function has been called, how many times, and with what parameters.

"What is the relation between mocking and Dependency Injection?"
Mocking is hard to implement without the Dependency Injection. Dependency
Injection allows us to inject some dependencies to a class, so we can choose
whether we inject real implementations or mocks. If the dependency of the
class would not be injected but rather created right in the class, we could not
switch it to a mock implementation for testing purposes.

