47. What are NuGet packages?

Brief summary: NuGet packages contain compiled code that someone else
created, that we can reuse in our projects. The tool used to install and manage
them is called NuGet Package Manager.

NuGet is a Microsoft-supported package manager, so a tool through which
developers can create, share, and consume useful code.

There are tons of libraries that other developers created, which we can use in our
own projects. NuGet Package Manager is the tool that allows us to access them.
Each package contains the dlls built from the code that someone else developed.

For instance, let's add NUnit and Moq to a project. NUnit is one of the most
popular unit testing frameworks for C#, and Moq is a mocking library. Together
they are two essential tools that we can use to create unit tests for our code.

The easiest way to install a NuGet package is by right-clicking on the project and
selecting “Manage NuGet Packages”. On the screen that opens we can search for
the package that we want to install:

NuGet: NuGet = X Program.cs

Browse Installed Updates

nunit X = |:| Include prerelease

NUnit & by Charlie Pocle, Rob Prouse, 154M downloads
MUnit is a unit-testing framework for all MET languages with a strong TDD focus.

After selecting it, we can choose the version we want to install. Let's select the
latest one.

@ NUnNit 'I?.J = nuget.org

Version: Latest stable 3.13.2 Install
1 V Options

Description

MUnit features a fluent assert syntax, parameterized, generic and theory tests and is user-
extensible.

This package includes the NUnit 3 frarnework assembly, which is referenced by y

You will need to install version the nunit sole program or a third-party runner
that supports MUnit 3 in order to 5 wnners intended for use with MUnit 2.
will not run MUnit 3 tests correctly.

After installing the package, we can start using it:

NUnit.Framework;

[TestFixture]

Tests

There is another, sometimes even more convenient way of installing NuGet
packages. We can simply start using the types from the package, and once Visual
Studio complains that it doesn’t know them, we can choose to install the package
from the context menu:

IFlyable

Fly();
}

[TestFixture]

Tests

{
Mock<IFlyable> flyableMock;

} namespace name 'Mock<>" could not be found (are you missing a using directive or an assembly reference?)

< (Ctrl+.)

In this case, I'm trying to use Mock type from the Moq framework, which is not
currently installed. | can click on the suggestion button to see that Visual Studio
kindly offers to install this NuGet package for me:

Mock<IFlyable> flya
&
Generate class 'Mock' in new file III
Generate class ‘Mock'
Generate nested class '‘Mock’

Generate new type...

@ Install package 'Mog'

After doing so, the code compiles correctly:

Moq;
NUnit.Framework;

IFlyable

Fly();

[TestFixture]

Tests

{
}

Let's take a look at how the *.csproj file changed after installing those two
packages. To see the *.csproj file of the project we must first unload it. Right-click
on it and select “unload”. After, you can right-click on the unloaded project again
and select “Edit Project File".

[MuGet (unloaded)
Reload Project
Reload Project with Dependencies
Scope to This
Change View To
Mew Solution Explorer View
Edit Project File

,:' .:ill:u I'— Ut

Remove
[H Copy Full Path
Open Folder in File Explorer

In the *.csproj file that will open we will see the entries that have been added by
NuGet:

Include="Moq" Version="4.16.1

Include="NUnit"” Version="3.13.2

The question is: where exactly did the packages get installed? Well, this evolved
with the versions of .NET, but in .NET 6 which we use in this course, it by default
gets installed in your Windows's user folder, for example in a path like this:

C:\Users\Krystyna\.nuget\packages

And here we can see the nunit folder:

o [

nuget.commandline
nuget.frameworks
nunit
nunit3testadapter
owin

remoticn.ling

Don’t worry if For you it looks different. | have dozens of different coding projects
on my computer and overall 344 NuGet packages installed.

Thanks to the fact that the package gets installed in the user folder, it can be
reused between different projects. | have multiple projects using NUnit, but it only
exists in a single copy on my machine. Let's take a look at what's inside such a
NuGet package:

Mame Date modified Type
build 6/4/2021 9:14 AM File folder
lib 6/4/2021 9:14 AM File folder

| | .nupkg.metadata

| | .signature.pTs

| | CHANGES.md

|&] icon.png

|=| LICEMSE.txt

| NOTICES.txt

| | nunit.3.13.2.nupkyg

[]| nunit.3.13.2.nupkg.sha312

| | nunit.nuspec

B/4/2021 %14 AM
4/27/2021 2:23 PM
4/27/2021 911 PM
4/27/72021 %11 PM
4/27/2021 %11 PM
4/27/2021 %11 PM
6/4/2021 914 AM
B/4/2021 314 AM

4/27/2027 %19 PM

METADATA File
PELCS #7 Signature
MD File

PMG File

Text Document
Text Docurment
MUPKG File
SHA512 File
MUSPEC File

In the lib folder, we can find the actual dlls that get referenced from our project.

Now, I'll do something mean. | will remove the entire nunit folder from the

.nuget\packages directory.

Let's see if the project will build correctly. After all, the dlls it needs have been
deleted.

1*Done building project “"MuGet.csproj".

Rebuild All: 1 succeeded, @ failed, @ skipped

That's a bit surprising. The build was successful. Let's take a look into
.nuget\packages directory again.

IILIHEL-LUIIIIIII]IILIIII =
nuget.frameworks
nunit

nunit3testadapter

It seems like the nunit folder has “magically” reappeared.

Actually, it's no magic. The *.csproj file now clearly declares what packages it
needs. Visual Studio knows that if the package is missing from the packages folder,
it must simply reinstall it. This is quite convenient, especially if we share the code
via some kind of repository. We only commit the code and package references to
the repository, not the packages themselves. Once another programmer
downloads the code and builds it, the packages get installed on his or her machine
automatically.

One more thing. Sometimes Visual Studio messes something up and is not able to
restore the packages. If this happens, you can always run Tools-> NuGet Package
Manager -> Package Manager Console...

Tools | Extensions Window Help Search S0lnterviewQuestionsMid

Get Tools and Features.., - |

Manage Preview Features
Connect to Database... _
Connect to Server... - | & _flyableMo
Code Snippets Manager... Ctrl+K, Ctrl+EB

Choose Toolbox ltems...

Package Manager Console Alt+/, Alt+,

Create GUID @ Manage NuGet Packages for Solution...

External Command 2 % Package Manager Settings

...and from this console, run “dotnet restore” command, which will restore all
packages referenced in the solution.

Package Manager Conscle

Package source: All - & Default project: Ew
Each package is licensed to you by its owner. NuGet is not
Follow the package source (feed) URL to determine any depeni

r Console Host Version 6.8.8.275

NuGet commands.

All right. We now know how to use the packages that someone else created. |
highly recommend you use this beautiful concept, and not reinvent the wheel each
time you need something done. In general, when you think of something not
specific to your project, but rather something that could likely be used by other
developers, there is a 99% chance there is a NuGet package that already does that.

If you have some nice ideas of your own, you can always create and publish your
own NuGet packages. Here is a series of articles about it:

https://docs.microsoft.com/en-us/nuget/create-packages/overview-and-workflow

https://docs.microsoft.com/en-us/nuget/create-packages/overview-and-workflow

