
47. What are NuGet packages?

Brief summary: NuGet packages contain compiled code that someone else
created, that we can reuse in our projects. The tool used to install and manage
them is called NuGet Package Manager.

NuGet is a Microsoft-supported package manager, so a tool through which
developers can create, share, and consume useful code.

There are tons of libraries that other developers created, which we can use in our
own projects. NuGet Package Manager is the tool that allows us to access them.
Each package contains the dlls built from the code that someone else developed.

For instance, let’s add NUnit and Moq to a project. NUnit is one of the most
popular unit testing frameworks for C#, and Moq is a mocking library. Together
they are two essential tools that we can use to create unit tests for our code.

The easiest way to install a NuGet package is by right-clicking on the project and
selecting “Manage NuGet Packages”. On the screen that opens we can search for
the package that we want to install:

After selecting it, we can choose the version we want to install. Let’s select the
latest one.



After installing the package, we can start using it:

There is another, sometimes even more convenient way of installing NuGet
packages. We can simply start using the types from the package, and once Visual
Studio complains that it doesn’t know them, we can choose to install the package
from the context menu:



In this case, I’m trying to use Mock type from the Moq framework, which is not
currently installed. I can click on the suggestion button to see that Visual Studio
kindly offers to install this NuGet package for me:

After doing so, the code compiles correctly:



Let’s take a look at how the *.csproj file changed after installing those two
packages. To see the *.csproj file of the project we must first unload it. Right-click
on it and select “unload”. After, you can right-click on the unloaded project again
and select “Edit Project File”.

In the *.csproj file that will open we will see the entries that have been added by
NuGet:



The question is: where exactly did the packages get installed? Well, this evolved
with the versions of .NET, but in .NET 6 which we use in this course, it by default
gets installed in your Windows’s user folder, for example in a path like this:

C:\Users\Krystyna\.nuget\packages

And here we can see the nunit folder:

Don’t worry if for you it looks different. I have dozens of different coding projects
on my computer and overall 344 NuGet packages installed.

Thanks to the fact that the package gets installed in the user folder, it can be
reused between different projects. I have multiple projects using NUnit, but it only
exists in a single copy on my machine. Let’s take a look at what’s inside such a
NuGet package:

In the lib folder, we can find the actual dlls that get referenced from our project.

Now, I’ll do something mean. I will remove the entire nunit folder from the
.nuget\packages directory.



Let’s see if the project will build correctly. After all, the dlls it needs have been
deleted.

That’s a bit surprising. The build was successful. Let’s take a look into
.nuget\packages directory again.

It seems like the nunit folder has “magically” reappeared.

Actually, it’s no magic. The *.csproj file now clearly declares what packages it
needs. Visual Studio knows that if the package is missing from the packages folder,
it must simply reinstall it. This is quite convenient, especially if we share the code
via some kind of repository. We only commit the code and package references to
the repository, not the packages themselves. Once another programmer
downloads the code and builds it, the packages get installed on his or her machine
automatically.

One more thing. Sometimes Visual Studio messes something up and is not able to
restore the packages. If this happens, you can always run Tools-> NuGet Package
Manager -> Package Manager Console…

…and from this console, run “dotnet restore” command, which will restore all
packages referenced in the solution.



All right. We now know how to use the packages that someone else created. I
highly recommend you use this beautiful concept, and not reinvent the wheel each
time you need something done. In general, when you think of something not
specific to your project, but rather something that could likely be used by other
developers, there is a 99% chance there is a NuGet package that already does that.

If you have some nice ideas of your own, you can always create and publish your
own NuGet packages. Here is a series of articles about it:
https://docs.microsoft.com/en-us/nuget/create-packages/overview-and-workflow

https://docs.microsoft.com/en-us/nuget/create-packages/overview-and-workflow

