19. What is pattern matching?

Brief summary: Pattern matching is a technique where you test an expression to
determine if it has certain characteristics.

Pattern matching is a technique where you test an expression to determine if it has
certain characteristics.

The easiest way to understand pattern matching is with an example. Let’s say |
want to run some code if some value is null, and other if it isn’t:

)

"Object is null!";

"Object is null not null: " + obj.ToString();

This code is pretty straightforward. There is only one problem - if | wouldn’t know
exactly what type the obj variable is, it might turn out that it has the == operator
overloaded and that it actually does something else than simply checking if the
value is null. To avoid this problem we can use null check pattern matching.

return "Object is null!";




All right. So far pattern matching seems very simple. It allowed us to check if an
object is null. But it can give us many, many more abilities. Let's walk through some
examples.

One of the most commonly used patterns is the type test. | want to run some code
if a variable is of some type. Moreover, if it is, | want to cast it to this type. Without
pattern matching, | would need to write something like this:

if(obj.GetType() == ))
{

asString = obj 5

Console.WritelLine("String is:

+ asString);

}

else

{

Console.WritelLine("0Obj is not a string");

obj)
asString)

+ asString);

Console.WriteLine("String is:

Console.WritelLine("Obj is not a string");

This is quite convenient. Please note that the asString variable will be available
only if the obj is a string, so | would not be able to use it anywhere else than inside
the if statement.



We can also check some particular properties of the checked object:

return "It must be a whale shark!";

¥
if(obj Pet)

{

}
return "It's definitely not a pet.";

return "It's some kind of pet.";

Here we checked if an object is a Pet with Weight larger than 10000 and PetType
equal to Fish.

All right. The next type of pattern matching is comparing discrete values. This is
very similar to using a plain old switch statement. Let’s say | have a method taking a
string that should represent a number, and another string saying what type of
number it is (int, decimal, or float). Depending on the second parameter | want to
convert the First parameter to the given type:

number,

return type switch

{

"int" => .Parse(number),

"decimal" => .Parse(number),
"float" => .Parse(number),
=> throw ArgumentException($"{type} type is not supported"),

" on

Please notice the special “_" case. This is a discard pattern and it works similarly as
default in the switch statement. It will be executed if the type parameter is not
equal to any of the specified values.

Let's get to more complex types of pattern matching. The next one is a relational
pattern. It allows us to check how a given value compares to constants:



age)

{

(> 20) (< 60) => "middle-aged"”,

< 20 => "teenager”,
> 60 => "senior”,

}s

The cool thing about pattern matching is that it has very good IDE and compiler
support, and we get an error when we do something silly. For example, let me add
some more cases here:

age)

{
(> 20) (< 60) => "middle-aged",
< 20 => "teenager”,

> 60 => "senior",
<11 => "child",
18 => "just an andult, at least in some countries”,

This code doesn’t compile, because the last two cases are unreachable. The cases
are executed from top to bottom, so when the age parameter is 10, we will hit the
“less than 20" case. We will never reach the “less than 11" case. Let's fix the order
of the cases:



age

=> "just become adult, at least in some countries"”,
plz) (< 60) => "middle-aged”,

< 11 => "child",
< 20 => "teenager",
> 60 => "senior",

Great. Now, this should work as expected. This code actually demonstrates one
more pattern - a logical pattern. We used it when we checked if the age is less
than 20 and more than 60.

We can also use pattern matching with deconstruction. Check out the “What is
deconstruction?” lecture to learn more.

Deconstruction(Pet pet)

return pet switch
{
(_, TypeOfPet: PetType.Dog, Weight: 10) => "Small dog of any name",
(Name: "Hannibal", TypeOfPet: PetType.Fish, ) => "Fish called Hannibal",
=> "Unknown!"

We could omit the parameter names (but personally | would rather leave them for
readability).

return pet switch

{

(_, PetType.Dog, 10) => "Small dog of any name",
("Hannibal", PetType.Fish, ) => "Fish called Hannibal",
=> "Unknown!"

We can also mix deconstruction with checking particular properties:



Deconstruction(Pet pet)

return pet switch
{
(_, TypeOfPet: PetType.Dog, Weight: 18) => "Small dog of any name",
(Name: "Hannibal", TypeOfPet: PetType.Fish, ) => "Fish called Hannibal",
Pet { Weight: >100 } => "Heavy pet",
=> "Unknown!"

All right. We learned some of the most basic usages of pattern matching. There is
also a question when to use them, and when to use plain old if and switch
statements. In my opinion, you should simply use those that you find more
readable. You can mix both to get what's best in any of them.

To summarize: pattern matching is a technique where you test an expression to
determine if it has certain characteristics.

Bonus questions:

e "How can we check if an object is of a given type, and cast to it this type
in the same statement?"
We can use pattern matching for that. For example, we could write “if obj is
string text”. This way, we will cast the object to the string variable called text,
but only if this object is of type string.



