21. What is the purpose of the “checked”
keyword?

Brief summary: The “checked” keyword is used to define a scope in which
arithmetic operations will be checked for overflow.

The “checked” keyword is used to define a scope in which arithmetic operations
will be checked for overflow.

To understand this slightly mysterious sentence we must first understand how
arithmetic operations work in C# in general. In everyday programming, we don't
think too much about it, and perhaps we even assume the “programming
arithmetics” is exactly the same as arithmetics we learned about in school. For
example, we assume that the sum of two positive numbers must be a positive
number. This is perfectly valid in real life, but not necessarily in programming.

For example, if |1 add two billion to two billion in C#, | will not get four billion.
Instead, | will get this:

int twoBillion = 2000000000;

var result = twoBillion + twoBillion;

0 result -204967296 -0

The result is -294967296. | added two positive numbers, and | got a negative
number as a result.

To understand why this happened it is crucial to understand binary numbers, and
how are they represented in the computer's memory. Revisit the “How does the
binary number system work?” lecture to find out.

| assume that by now you know that every number we use when programming is
simply a sequence of bits. The important thing to realize is that on a limited
number of bits we can store a limited number (the same as in a decimal number
system - the biggest number represented with 3 digits is 999). For example, with 4
bits the largest number that can be represented is 15 (because if each bit is set to
one, then the numberis1+2 +4 + 8= 15.

If we want to represent a bigger number, we simply need more bits of memory.
Every basic numeric type in C# has a certain number of bits that it occupies in
memory. For example, for integer, it's 32 bits (which FYI is 4 bytes - one byte is 8
bits). This means, the largest number an integer can be is 2147483647, which is a
little more than two billion. So what happens when we add two billion to two
billion? In “real” mathematics it would give 4 billion, but such a huge number is
simply impossible to represent with integer type in C#. In this case, so-called
“number overflow” happens, resulting in an unexpected result. This number is not
random, and it's determined by how the addition of binary numbers works. You can
read more about it here:
https://www.sciencedirect.com/topics/computer-science/binary-addition#:~:text=
Addition%20is%20said%20to%200verflow,in%20the%20remaining%20four%20bi
ts.

It is crucial to understand that when number overflow happens no exception is
thrown - the program continues to work normally. You may be a bit surprised by it -
usually when we do something invalid, like accessing a nonexistent index in an
array or dividing by zero - an exception is thrown, informing us what happened.
Exceptions are a good thing, actually. It's better to be clearly informed that
something went wrong.

The number overflow is a “silent failure” - the program doesn’t work correctly, but
it continues to work without exception. This can have disastrous effects. Invalid
data may be stored in databases, overwriting old, valid data. Also, the program may
continue and allow Further invalid operations.

For example, imagine a banking system, which stores a sum of daily transactions
and blocks any further payments if some limit has been exceeded. Let's imagine a
very rich customer who is allowed to pay up to two billion of some currency daily. If
the sum of daily payments exceeds two billion, the next payments will be blocked.
Let's see a sample code:

https://www.sciencedirect.com/topics/computer-science/binary-addition#:~:text=Addition%20is%20said%20to%20overflow,in%20the%20remaining%20four%20bits
https://www.sciencedirect.com/topics/computer-science/binary-addition#:~:text=Addition%20is%20said%20to%20overflow,in%20the%20remaining%20four%20bits
https://www.sciencedirect.com/topics/computer-science/binary-addition#:~:text=Addition%20is%20said%20to%20overflow,in%20the%20remaining%20four%20bits

public void MakePaymentNotChecked(int amount)
{

var paymentsSumAfterPayment = _todaysPaymentsSum + amount;
if (paymentsSumAfterPayment < MaxDailyPaymentsSum)

{

_todaysPaymentsSum = paymentsSumAfterPayment;
Console.WriteLine($"[UNCHECKED] {amount} transferred! " +
$" (Payments sum for today: {_todaysPaymentsSum})");

}

else

{

Console.WriteLine($"Transaction limit of " +
$"{MaxDailyPaymentsSum} reached!");

Now let's say the client makes a payment of 1 900 000 000 (almost two billion), and
then tries to make the next one of 1 000 000 000 (one billion).

var accountl = new Account();
accountl.MakePaymentNotChecked(1900000000) ;
accountl.MakePaymentNotChecked(1000000000) ;

The second transaction should be blocked because the sum is over the limit of two
billion, but actually, it will be allowed, because a daily sum becomes a negative
number due to arithmetic overflow. And of course, any negative number is less
than two billion.

UNCHECKED] 19c@oeeeeee transferred! (Paymen um for today: 1988888888)
um for today: -1394967296)

+c <
L
+c <
L

UNCHECKED] 1ecoeeeeee transferred! (Paymen

We will allow the client to make more and more payments. And what if those
payments are actually done by someone who hacked the client’s account? Now the
client may lose all the money instead of some limited sum.

| hope | convinced you that arithmetic overflows are dangerous. So how to deal
with them? Well, this is where the “checked” keyword comes in handy. The
“checked” keyword defines a scope in which arithmetic operations will be checked
for overflow. If it happens, an exception will be thrown.

var paymentsSumAfterPayment = _todaysPaymentsSum + amount;
if (paymentsSumAfterPayment < MaxDailyPaymentsSum)

{

_todaysPaymentsSum = paymentsSumAfterPayment;
Console.WriteLine($"[CHECKED] {amount} transferred! " +
$" (Payments sum for today: {_todaysPaymentsSum})");

}

else
{
Console.WriteLine($"Transaction limit of " +
$"{MaxDailyPaymentsSum} reached!");

}
}

catch (OverflowException)

{

Console.WriteLine($"Overflow exception happened!");

}

In this scope, any overflow will throw an exception instead of failing silently.

You may wonder “why isn't this done by default?” Well, the reason is simple - it’s
performance. Computers are very good at doing arithmetic operations and they
do them extremely fast. On the other hand, checking for overflow is actually a
relatively complex operation, and it takes some time. If we have a lot of arithmetic
operations in the application, the performance impact may be noticeable.

I've created a quick little program that measures the performance difference for
checked and unchecked operations. You can find it in the repository attached to
the course. In short, this loop is executed and measured in both checked and
unchecked context:

(int 1 = 9; i < setSize; i++)

i+ b+ a;
1;

On my computer, for setSize set to one billion, it takes on average 3257
milliseconds for checked context and 2431 for unchecked. That means the
checked operations took 33% more time. As you can see the difference is not
huge, but it is noticeable.

All right. We now have the basics of theory about the checked keyword. Let’s think
about how to apply it in practice. Here is a couple of tips:

e be aware of the limitations of the types you are using.

e choose proper numeric types for given usages. Do you need a counter of
elements the user selected from the list that by design shows no more than
100 elements? Feel free to use byte - it's tiny, but the limitation to 255 is
enough. On the other hand, what if you need a number representing the
total number of Ffinancial transactions ever made in your banking
application? Int sounds good, but what if your application becomes a roaring
success and soon the number slightly over two billion is not enough? In this
case, long may be a better choice - its max value is over 4 billion times larger
than the max value of int.

e in case your number must be unlimited (for example you are an astronomer
and you want to measure the galaxy size in millimeters) don’t forget about
BigInteger type. Bigintiger is only limited by the size of the memory of your
computer, so you can represent gigantic numbers with it.

e remember that an overflow is not always a problem. For example, they are
perfectly fine to happen when calculating a hash code of some object.

e if you have even the slightest concern that an undesired overflow may
happen, you have two choices:
o put this code in the checked context so an exception is thrown in case
of an overflow
o check for overflow before an actual operation, for example like this:

a, b)

if ((da * ()b > .MaxValue)
throw InvalidOperationException(

"The multiplication will result in int overflow");
return a * b;

In my test application, it turned out that checking the overflow like
this is actually better from the performance point of view than using
the checked keyword (the test took 3257 milliseconds for checked
scope and 3017 for manual checking for overflow). Please note that
which one is performance-wise better depends a lot on a particular
situation. If you are in doubt, it's best to run some benchmarks on
your own.

e if you really need to, you can set the project setting to check arithmetic
operations by default. In this case, if you want some code to be unchecked,
you can use the “unchecked” keyword to define a scope in which the
arithmetic operations are not checked.

Before we move on, there is an important caveat you must know about: the

overflow check only applies to the immediate code block, not to any function calls
inside the block. To understand this, let’s consider the following code:

Add(int a, b)

return a + b;

SomeMethodWithCheckedScopeInside()

= Add(twoBillion, twoBillion);

What do you think will happen? At the first glance, you might think that the
OverflowException will be thrown. After all, we call the Add method in the checked
scope, so adding two billion to two billion shall cause an overflow.

Well, actually it's not true. The “checked” keyword doesn't affect any methods that are
called within it. If we want this code to actually be checked, we must add the “checked”
keyword inside the Add method.

Let's summarize. The “checked” keyword is used to define a scope in which
arithmetic operations will be checked for overflow. If this keyword will not be used
(or overflow checking will not be enabled on the project level) the arithmetic
overflow will not cause an exception, but will simply result in an invalid value.

Bonus questions:

e "What is the purpose of the "unchecked" keyword?"
This keyword defines a scope in which check of arithmetic overflow is disabled.
It makes sense to use it in projects in which the checking for overflow is
enabled for an entire project (can be set on the project level settings).

e "What is a silent failure?"
It's a kind of failure that happens without any notification to the users or
developers - they are not informed that something went wrong, and the
application moves on, possibly in an invalid state.

e "What is the Biginteger type?"
It's a numeric type that can represent an integer of any size - it is limited only
by the application’s memory. It should be used to represent gigantic numbers
(remember that max long is over 4 billion times larger than max int, which is a
bit more than two billion, so Biginteger should be used instead of long only to
represent unthinkably large numbers).

