

AVANZADO

DASSAULT

0

EJEMPLO 01: SIMULACIÓN DE FLUJO EN TUBERÍA CÓNICA

OBJETIVO

El objetivo principal del ejemplo es aprender a crear y configurar simulación de flujo de una tubería cónica con **Flow Simulation**.

PLANTEAMIENTO

En este ejemplo se creará un archivo de simulación de flujo usando un ensamblaje predefinido. Se cargará el entorno de simulación desde el archivo de ensamble y se evaluará velocidad de la salida del fluido.

DESARROLLO

Empezar abriendo el **ensamblaje** llamado E1_S5_AVA_ENS que está en los archivos.

Luego, ir a la pestaña Complementos de SolidWorks y dar clic en SolidWorks Flow Simulation para así activarlo.

Solidworks	" - 🔚 - 🚔 - 🖘 - 🕟 - 🛢 🗉 @ -	E1_S5_AVA_P1
CircuitWorks PhotoView ScanTo3D SOLIDW 360	VORKS SOLIDWORKS SOLIDWORKS TolAnalyst ion Routing Simulation Toolbox	SOLIDWORKS Flow Simulation
Operaciones Croquis Calcular DimXper ● � � � � � ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆	t Complementos de SOLIDWORKS SOLIDWORKS MBD	SOLIDWORKS Flow Simulation Carga o descarga el complemento SOLIDWORKS Flow Simulation.

A lo que abrirá una nueva pestaña llamada Flow Simulation, la cual contiene una serie de opciones para comenzar a realizar el cálculo.

3S SOL	.ID WOR	KS 🕨	·	论 - 🖫	• 🚔	• 🔊 • 🏷	- 8		⊕ -		
🤏 Wizard	1	General)≊ij]⊐: F Sim	Flow ulati	⊳ Run	© ≫© Load/Unioad	V 	$\stackrel{\otimes}{\diamond}$	Flow Simulation Results Features	iii (10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Flow Simulati
🖹 Clone Pr	oject <table-cell></table-cell>	Settings	20	-			•	۲	•	1	÷
Ensamblaje	Diseño	Croquis	Calcular	Complem	entos d	de SOLIDWORK	s soi	IDWO	RKS MBD	Simulatio	
🎕 🗉 7-	• [2]	⊕ €	>							æ	,¤ 4 Ø

Ahora, dar clic en Wizard en la pestaña de Flow Simulation.

A lo que aparecerá un cuadro de diálogo. En **Project name** colocar Simulación 1 para luego dar clic en Next.

	Configuration to add the project Configuration: Use Current	
Heat Sources Porous Media Goals Local Initial Meshes Results Mesh Cut Plots Surface Plots Surfaces Flow Trajectories	Configuration name: Predeterminado	

Seleccionar las unidades en el sistema internacional y hacer clic en Next.

	2	Unit system:				
11	m	System	Path	Cor	nment	
K		CGS (cm-g-s)	Pre-Defin	ed CG	S (cm-g-s)	
	C	FPS (ft-lb-s)	Pre-Defin	ed FPS	6 (ft-lb-s)	
		IPS (in-lb-s)	Pre-Defin	ed IPS	(in-lb-s)	_
		(NMM (mm-g-s))	Pre-Defin	ed NM	M (mm-g-s)	
m/s		SI (m-kg-s)	Pre-Defin	ed SI(m-kg-s)	
~	i tt	USA	Pre-Defin	ed US.	A	
13 A.						
		Create new	Name:	NMM (mm-g-s) (mod	lified)	
	mile/h	Parameter	Unit	Decimals in resul	ts 1 SI unit	^
gal	1 R BORN	🖃 Main				
	STR.	Pressure & stress	MPa	.123456	1e-006	
A BROOM	2	Velocity	mm/s	None	1000	
	lun ×	Mass	kg	.123	1	
1-4	cm	Length	mm	None	1000	
ka	C100	Temperature	°C	.12	-273.15	
ny	V Cm	Physical time	s	.123	1	
111 1		Percentane	%	12	1	\sim

Ahora desactivar la opción **excluir cavidades sin condiciones de flujo** (**exclude cavities whitout flow conditions**). Además, la opción tipo de análisis debe estar marcado en **interno**. Luego de ello, dar clic en **Next**.

Analysis type Considered Consider	ler closed cavilies	- »
Physical Features Heat conduction in solids Radiation Time-dependent Gravity Rotation	Value	

zard - Default Fluid				?
	Fluids	Path	^	New
	+ Gases			
	🕞 Liquids			
	Pre-Defined			
	Acetone	Pre-Defined		
	Ammonia	Pre-Defined		
	Argon	Pre-Defined		
	Ethane	Pre-Defined		
	Ethanol	Pre-Defined		
	Ethylene	Pre-Defined		
	Methane	Pre-Defined	Υ.	Add
	Project Fluids	Default Fluid		Remove
	Flow Characteristic	Value	_	
Contraction of the second	Flow type	Laminar and Turbulent	\sim	
C				

En el siguiente cuadro de diálogo, expandir la categoría Liquids.

Seleccionar Water, para seguidamente dar clic en Add.

Wizard - Default Fluid				?	×
	Fluids Propane R123 R134a R22 RC318 Water Non-Newtonian Liquids Compressible Liquids Real Gases Steam Project Fluids	Path Pre-Defined Pre-Defined Pre-Defined Pre-Defined Pre-Defined Pre-Defined	~	New Add Remove	0
	Flow Characteristic Flow type	Value Laminar and Turbulent	~		0
	< Back	Next > Canc	el	Help	

Una vez definido todo, dar clic en **Next.**

Wizard - Default Fluid			? ×
	Fluids Oxygen Vropane R123 R134a R22 RC318 Non-Newtonian Liquids Real Gases	Path Pre-Defined Pre-Defined Pre-Defined Pre-Defined Pre-Defined	New (>)
	Project Fluids Water (Liquids) Flow Characteristic	Default Fluid	Remove
C	Cavitation < Back	Next> Cancel) Help

Después Next nuevamente.

Wizard - Wall Conditions			? ×
	Parameter Default wall thermal condition	Value Adiabatic wall	
Star Philade	Roughness	0 micrometer	
ţ			
		Depe	ndency (
	< Back Next >	Cancel	Help

Y para terminar, dar clic en Finish.

Ahora se ha generado el volumen de control.

Como paso siguiente, configurar las condiciones a la entrada y a la salida. Para ello, en **Boundary Conditions**, hacer clic derecho y seleccionar **Insert Boundary Condition**; por lo que aparecerá un nuevo panel.

🍳 🗐 🖹 🔶 🧕	X	🍳 🛱 🛱 🌒	٢
😰 Projects		📴 Boundary Condition	?
🗄 🗝 Predeterminado	🛳 Z	V X	
	-		
Simulaión 1		Selection	~ ^
		▼ ↓ Global Coordinate System	
Simulaión 1		Reference axis: X	~
input Data	•	Тура	
Computational Domain			
Fluid Subdomains			
Boundary Conditions		Inlet Mass Flow	
	undary Condition	Inlet Velocity	
🗄 🖽 Mesh		Outlet Mass Flow Outlet Volume Flow	
🛄 Global Mesh		Outlet Velocity	
🗄 🖫 🦉 Results (Not loaded)		L	_

Lo primero será definir una velocidad de entrada, en la cara delantera, con clic secundario se selecciona la opción **Seleccionar otra**.

Usar la cara interna.

Ir a Type y seleccionar Inlet Velocity, para luego en Flow Parameters introducir el valor de 3 m/s.

🍳 🗉 🕅 🗘 🔶 🧕	
🗃 Boundary Condition 🛛 🕐	
✓ ×	
Cara<1>@E1_S5_AVA_P2-1	x Z
Inlet Mass Flow Inlet Velocity Outlet Mass Flow Outlet Volume Flow Outlet Volume Flow Outlet Velocity	
Flow Parameters	Inlet Velocity 3 mm/s

Finalmente, activar la casilla **Fully developed flow** y, una vez definido todo, **aceptar.**

🍳 🖹 🖹 🔶 🧕	🍳 🗐 🖗 🔶 🚳
🖬 Boundary Condition 🛛 🕐	📴 Boundary Condition 🛛 🕐
✓ ×	×
Cara<1>@E1_S5_AVA_P2-1	Cara<1>@E1_S5_AVA_P2-1
🚑 Face Coordinate System	🗸 Face Coordinate System
Reference axis: X V	Reference axis: X V
Туре	Туре ^
	🖹 🚱 🚥
Inlet Mass Flow Inlet Volume Flow	Inlet Mass Flow
Inlet Velocity Outlet Mass Flow	Inlet Velocity
Outlet Volume Flow	Outlet Mass Flow Outlet Volume Flow
Outlet Velocity	Outlet Velocity
Flow Parameters	Flow Parameters
V 3 mm/s 🛉 🎜	V 3 mm/s 🛉 🎜
Fully developed flow	Fully developed flow

Por lo que se cargará.

Lo siguiente es configurar la salida; para esto, repetir los pasos anteriores, por lo que se debe empezar dando clic secundario y seleccionar **Insert Boundary Condition**.

Luego, seleccionar **Pressure Openings** en **Type** e ir a la cara posterior, clic derecho y escoger **Seleccionar otra**.

Selection	Selección de cuadro Selección de lazo Borrar selecciones Seleccionar otra Aceptar Componente Ocultar Fijar Insert Boundary Condition + Insert Fan Insert Surface Goals	
-----------	--	--

Por lo que se deberá dar clic en la cara interna que se muestra.

Y una vez definido todo, dar **aceptar.**

Por lo que se cargará.

El siguiente paso será definir los objetivos **goals** del estudio. Para ello, en la barra de estado del modelo ir a **Goals**, dar clic secundario y seleccionar la opción **Insert Surface Goals**.

Al desplegarse el cuadro de selección, tildar la opción flujo volumétrico

Volume Flow Rate.

🍳 🗐 🕅		
🂐 Surface Goals	?	
V X		
· ^		
Selection	^ ^	
	_	
	_	•
Parameter Min A\ Ma> Bu Us	^	
Town and two (Eluid)		
Mean Padiant Tempera		
Mass Flow Bate		
Volume Flow Rate		
CAD Area		
Area (Fluid) Volume	Flow Rat	e 🛌 🖞 🚅
Velocity		
Velocity (X)		
Velocity (Y)		
	×	

Después, en la cara posterior, seleccionar la cara interna con la opción de clic secundario; seleccionar otra para definir la referencia del flujo.

1	🕅 Surface Goals	?)			 	
(×						
į	Selection	^	^	-			
	Cara<1>@E1_S5_AVA_P3-1						
į	Parameters	^					
	Parameter Mir Ai Max Bu Us Static Pressure Image:	^		Ý	Ć		
ł	Area (Fluid)			x. 1	7		

Y una vez definido todo, dar **aceptar.**

Lo siguiente será definir el área de salida de la misma manera que en el paso anterior, seleccionar la opción **Insert surface goals** y clic en **CAD Area**.

🌂 Surface Goals	?	
✓ ×		
Selection	^ ^	
Cara<1>@E1_S5_AVA_P3-1		
0		
Parameters	^	
Parameter Min Ai Mai Bu Us 🔺	-	
Static Pressure		
Total Pressure		
Dynamic Pressure		
Temperature (Fluid)		
Mean Radiant Tempera 📙 📙 🔛 🗹		
Operative Temperature 🗌 🗌 🗌 🗹		
Draught Rate		
Density (Fluid)		
Mass Flow Rate		
Volume Flow Rate		
CAD Area		$\chi \longrightarrow$
Area (Fluid)		<u>x_ Ŷ_7</u>

Lo siguiente será insertar una ecuación.

A lo que aparecerá un nuevo panel en la parte inferior.

E K) Equati	ion Goal 1				No unit	
Expression							
ase spe	cify an exp	ression. T	To add area	a or vol	ume plea	ase create	an appropriate goal.
7	8	9	+	(sin	exp	π
4	5	6	-)	COS	In	g
1	2	3	×	^	tan	lg	R
0	E		1	1	abs		σ

Escribir Velocidad de Salida como el título de la ecuación.

× 🖬 🛛	n 🔽	elocidad de S	Salida		No unit			
Expression	Expression							
Please spe	ecity an	expression	n. To add area d	or volume ple	ease create	an appropriate go		
7	8	9	+	(sin	exp	π		
4	5	6	-) cos	In	g		
1	2	3	×	^ tan	lg	В		
0	E		1	√ abs		σ		
🗹 Use f	or conve	rgence cont	rol					

Y en el campo **Expression** se debe seleccionar **{SG volume flow rate 1} / {SG CAD area 1}** que está en los **goals** como fórmula para el cálculo de la velocidad de salida.

	Goals Goals SG Volume Flow Rate 1 SG CAD Area 1 Mesh Global Mesh Results (Not loaded)							Ľ.	7	×	↓ ↓
× 🖻	Velocidad de Salida Volume flow rate										
Expre: {SG Vo	Expression {SG Volume Flow Rate 1}/{SG CAD Area 1}										
	7	8	9		+	(sin	exp		π	
	1	5	6		-)	COS	In		g	
		2	3		×	^	tan	lg		R	
)	Е			/	\checkmark	abs			σ	
	Use for convergence control										
SOLIDV	Modelo Vistas 3D Estudio de movimiento 1 Equation Goal SOLIDWORKS Premium 2017 x64 Edition										

Acto seguido, correr el análisis, por lo tanto, dar clic en Run.

S SOLID	WORKS	🕒 - 🗁 - 🔚 - 🚔 - 🏹 - 💽 - 🕄	E 🔅 -
🥎 Wizard	₿ 🚮	🖬 🔳 🖳 🙀 💞	🕸 🏒
🕒 New	General	Simulati 📽 Run Load/Unload 💾	Flow Simulation Results Features
🗎 Clone Project	t 🔞	🕅 🗸 🖬 🔽 🖬	r 💿 🕌
Ensamblaje Di	seño Croquis	Calcular Compleme Run	LIDWORKS MBD Flow
	0	Run the active project	
🍳 🗉 🛛	Ê 🕂 🍕		
😥 Projects			;

Y nuevamente a **Run** en la ventana que aparezca.

Run	? ×
Startup Mesh Solve New calculation Continue calculation	Run Close Help
CPU and memory usage Run at: This computer ✓ Use [use all] ✓ CPU(s)	
Results processing after finishing the calculation Image: Second seco	

Una vez finalizado el análisis se visualizan los resultados.

ile Calculation View Insert	Window Help				
i Info		Log			
Parameter	Value ^	Event	Iteration	Time	
Status	Solver is finished.	Mesh generation started		00:22:54, Oct 14	
Total cells	2,255	Mesh generation normally finish		00:22:56 , Oct 14	
Fluid cells	2,255	Preparing data for calculation		00:22:57, Oct 14	
Fluid cells contacting solids	1,436	Calculation started	0	00:22:57, Oct 14	
Iterations	52	Calculation has converged since	51 51 52	00:23:06, Oct 14	
Last iteration finished	00:23:06	Goals are converged			
CPU time per last iteration	00:00:00	Calculation finished		00:23:07, Oct 14	
Travels	1.3				
Iterations per 1 travel	41				
C	0.0.0	_			
Warning	Comment				
No warnings					
		- hans to first decad	la su a		
eady	Contract Contract Contract	biver is finished.	Iterat	ions : 52	
1 II					
Parameter	Value Solver is finished		ń		
Fluid cells	810				

En la barra de estado expandir la opción **Results**, ubicar la opción **Goal Plots**, hacer clic secundario y luego **Insert**. En la nueva barra emergente seleccionar **All** (todas las opciones).

Ir a Goal Plot 1, clic derecho y seleccionar Show.

SolidWorks muestra los resultados del cálculo de velocidad de salida; para cerrarlo, dar clic derecho nuevamente y seleccionar **hide**.

Para mostrar las trayectorias del flujo, en la barra de estado ubicar Flow Trajectories, con clic secundario seleccionar Insert y aparecerá un nuevo panel con una serie de opciones.

Goals	~	 Flow Trajectories X 	0
······À SG Volume Flow Rate 1 ······À SG CAD Area 1 ······À Velocidad de Salida		Message Results are currently not loaded.	^ ^
🚊 🏥 Mesh		Starting Points	^
Results (Not loaded)		6	
Cut Plots			
Surface Plots		•	
Isosurfaces		2 0	▲ ▼
Flow Trajectories		5 mm	* *
Point Parameters	1	Appearance	^
Surface Parameters	1	~, <u>x</u>	
Volume Parameters		💸 Pipes	~
		🕨 1 mm	•
🚊 📲 🙀 Goal Plots		Pressure	~ 🛃
🔜 🌺 Goal Plot 1		_ &> [n	
Panart .		Modelo Vistas 3D	Estudio de mo

Seguidamente, desplegar en **Appearance** y seleccionar **Velocity**, para luego en **Starting point** colocar el valor de **45**.

Flow Trajectories	(?	Flow Trajectories	?
✓ ×		✓ ×	
Message	^ ^	Message	^ ^
Results are currently not loaded.		Results are currently not loaded.	
Starting Points	^	Starting Points	~
₩ • 💦 × _{Yz}		** _#	
Fixed Color Density (Fluid)			
Pressure		•	
Emperature (Fluid)		4 5	▲ ▼
Velocity (X)		5 mm	Å
Velocity (7)			
Appe: Mach Number	~	Appearance	~
Velocity RRF (X)		23 Q2	
Velocity RRF (Y)			
Verocity KKF (2)	~	😹 Pipes	~
Relative Pressure		• 1 mm	•
Add Parameter			-
Pressure	~ 🕅	Velocity	~ 🛃
_ <i>œ</i> ⊿	· ·		

Finalmente, seleccionar la cara interna y, con todo definido, dar **aceptar**.

Y así se mostrarán las líneas de flujo.

Para animarlas, ubicar en la barra de estado **Flow Trajectories**, hacer clic secundario y seleccionar **Play**.

