Service and OS Discovery

@mmar

CONCEPT

Service Discovery

- Identify Open Ports
- Identify Services Running on the ports

OS Discovery

 Identify running OS on target system

Service Discovery

Nmap is the go to tool for identifying open ports and services running on these ports

```
>nmap -sS -sV 192.168.18.1/24
```

```
sS - TCP Stealth scan
```

sV - Version Enumeration

```
-(kali⊕kali)-[~]
sudo nmap -sS -sV 192.168.18.110
Starting Nmap 7.93 ( https://nmap.org ) at 2023-06-10 08:11 EDT
Nmap scan report for 192.168.18.110
Host is up (0.0022s latency).
Not shown: 977 closed tcp ports (reset)
        STATE SERVICE
PORT
                        VERSION
21/tcp
        open ftp vsftpd 2.3.4
        open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)
22/tcp
23/tcp
                        Linux telnetd
        open telnet
```

Hping

Hping is another very useful tool to identify ports and services

```
hping3 -S 192.168.18.110 -p 80 -c 5
```

S - TCP Stealth scan

P 80 - Scan for port 80

```
(kali@kali)-[~]
$ sudo hping3 -S 192.168.18.110 -p 80 -c 5
HPING 192.168.18.110 (eth0 192.168.18.110): S set, 40 headers + 0 data bytes
len=46 ip=192.168.18.110 ttl=64 DF id=0 sport=80 flags=SA seq=0 win=5840 rtt=7.2 ms
len=46 ip=192.168.18.110 ttl=64 DF id=0 sport=80 flags=SA seq=1 win=5840 rtt=3.4 ms
len=46 ip=192.168.18.110 ttl=64 DF id=0 sport=80 flags=SA seq=2 win=5840 rtt=5.1 ms
len=46 ip=192.168.18.110 ttl=64 DF id=0 sport=80 flags=SA seq=3 win=5840 rtt=8.0 ms
len=46 ip=192.168.18.110 ttl=64 DF id=0 sport=80 flags=SA seq=4 win=5840 rtt=3.4 ms
```

OS Discovery

OS discovery with nmap is very simple. Use the following command to determine the target system

```
>nmap -sS -O 192.168.18.1
```

```
MAC Address: 00:0C:29:71:62:0D (VMware)
Device type: general purpose
Running: Linux 2.6.X
OS CPE: cpe:/o:linux:linux_kernel:2.6
OS details: Linux 2.6.9 - 2.6.33
Network Distance: 1 hop
```

Nmap also has an inbuilt script to identify the OS but it needs smb service running on the system

sudo nmap --script smb-os-discovery.nse 192.168.18.110

```
Host script results:
| smb-os-discovery:
| OS: Unix (Samba 3.0.20-Debian)
| Computer name: metasploitable
| NetBIOS computer name:
| Domain name: localdomain
| FQDN: metasploitable.localdomain
|_ System time: 2023-06 10 T08:23:15-04:00
```

Manual Banner Grabbing

Parameters such as TTL and TCP window size in the IP header of the first packet in a TCP session plays an important role in identifying the OS running on the target machine. The TTL field determines the maximum time a packet can remain in a network, and the TCP window size determines the length of the packet reported. These values differ for different OSes: you can refer to the following table to learn the TTL values and TCP window size associated with various OSes.

Operating System	Time To Live	TCP Window Size
Linux	64	5840
FreeBSD	64	65535
OpenBSD	255	16384
Windows	128	65,535 bytes to 1 Gigabyte
Cisco Routers	255	4128
Solaris	255	8760
AIX	255	16384

Manual Banner Grabbing

So, just ping your target and infer the OS from the response received

>ping 192.168.18.110

Comprehensive Scan

We can use the following one-liner on most of the targets to gather a lot of useful information like OS detection, version detection, script scanning, and traceroute

>sudo nmap -sS -p 445 -A 192.168.18.1

```
_____(kali⊗ kali)-[~]
$ sudo nmap -sS -p 445 -A 192.168.18.110
Starting Nmap 7.93 ( https://nmap.org ) at 2023-06-10 08:40 EDT
```

THANKS

