elhacker.INFO Downloads
Copyright issues contact webmaster@elhacker.info
Name Size
Parent Directory -
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4 244M
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4 214M
11. Visualising Correlations with a Heatmap.mp4 169M
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4 153M
27. Making Predictions (Part 1) MSE & R-Squared.mp4 153M
23. Model Simplification & Baysian Information Criterion.mp4 150M
22. Understanding VIF & Testing for Multicollinearity.mp4 144M
7. Working with Index Data, Pandas Series, and Dummy Variables.mp4 141M
4. Clean and Explore the Data (Part 2) Find Missing Values.mp4 135M
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4 134M
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4 131M
12. Techniques to Style Scatter Plots.mp4 129M
20. Improving the Model by Transforming the Data.mp4 127M
25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4 124M
10. Calculating Correlations and the Problem posed by Multicollinearity.mp4 111M
3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4 87M
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4 85M
21. How to Interpret Coefficients using p-Values and Statistical Significance.mp4 65M
5. Visualising Data (Part 1) Historams, Distributions & Outliers.mp4 65M
16. How to Shuffle and Split Training & Testing Data.mp4 64M
24. How to Analyse and Plot Regression Residuals.mp4 64M
8. Understanding Descriptive Statistics the Mean vs the Median.mp4 62M
6. Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4 57M
2. Gathering the Boston House Price Data.mp4 56M
17. Running a Multivariable Regression.mp4 56M
15. Understanding Multivariable Regression.mp4 49M
1. Defining the Problem.mp4 40M
9. Introduction to Correlation Understanding Strength & Direction.mp4 33M
18. How to Calculate the Model Fit with R-Squared.mp4 32M
19. Introduction to Model Evaluation.mp4 16M
33.1 04 Multivariable Regression.ipynb.zip 3.5M
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.srt 29K
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.srt 28K
22. Understanding VIF & Testing for Multicollinearity.srt 26K
11. Visualising Correlations with a Heatmap.srt 24K
27. Making Predictions (Part 1) MSE & R-Squared.srt 24K
23. Model Simplification & Baysian Information Criterion.srt 23K
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.srt 23K
20. Improving the Model by Transforming the Data.srt 22K
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).srt 21K
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.srt 21K
7. Working with Index Data, Pandas Series, and Dummy Variables.srt 21K
12. Techniques to Style Scatter Plots.srt 21K
4. Clean and Explore the Data (Part 2) Find Missing Values.srt 19K
25. Residual Analysis (Part 1) Predicted vs Actual Values.srt 18K
10. Calculating Correlations and the Problem posed by Multicollinearity.srt 18K
3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.srt 16K
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.srt 15K
24. How to Analyse and Plot Regression Residuals.srt 15K
5. Visualising Data (Part 1) Historams, Distributions & Outliers.srt 14K
8. Understanding Descriptive Statistics the Mean vs the Median.srt 12K
16. How to Shuffle and Split Training & Testing Data.srt 12K
21. How to Interpret Coefficients using p-Values and Statistical Significance.srt 11K
17. Running a Multivariable Regression.srt 9.8K
6. Visualising Data (Part 2) Seaborn and Probability Density Functions.srt 9.0K
2. Gathering the Boston House Price Data.srt 8.7K
9. Introduction to Correlation Understanding Strength & Direction.srt 8.4K
15. Understanding Multivariable Regression.srt 7.5K
1. Defining the Problem.srt 6.5K
18. How to Calculate the Model Fit with R-Squared.srt 4.4K
19. Introduction to Model Evaluation.srt 3.8K
33.3 boston_valuation.py 3.1K
33.2 04 Valuation Tool.ipynb.zip 2.9K
34. Any Feedback on this Section.html 512
13. A Note for the Next Lesson.html 476
33. Download the Complete Notebook Here.html 242
31. Python Conditional Statement Coding Exercise.html 156
1.1 Course Resources.html 122