elhacker.INFO Downloads
Copyright issues contact webmaster@elhacker.info
   
 Name                                                                                   Last modified      Size  
 Parent Directory                                                                                            -   
 32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4   2024-07-11 10:21  244M  
 14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4          2024-07-11 10:20  214M  
 11. Visualising Correlations with a Heatmap.mp4                                        2024-07-11 10:20  169M  
 26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4         2024-07-11 10:20  153M  
 27. Making Predictions (Part 1) MSE & R-Squared.mp4                                    2024-07-11 10:20  153M  
 23. Model Simplification & Baysian Information Criterion.mp4                           2024-07-11 10:20  150M  
 22. Understanding VIF & Testing for Multicollinearity.mp4                              2024-07-11 10:20  144M  
 7. Working with Index Data, Pandas Series, and Dummy Variables.mp4                     2024-07-11 10:21  141M  
 4. Clean and Explore the Data (Part 2) Find Missing Values.mp4                         2024-07-11 10:21  135M  
 30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4            2024-07-11 10:21  134M  
 29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4    2024-07-11 10:20  131M  
 12. Techniques to Style Scatter Plots.mp4                                              2024-07-11 10:20  129M  
 20. Improving the Model by Transforming the Data.mp4                                   2024-07-11 10:20  127M  
 25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4                          2024-07-11 10:20  124M  
 10. Calculating Correlations and the Problem posed by Multicollinearity.mp4            2024-07-11 10:20  111M  
 3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4        2024-07-11 10:20   87M  
 28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4 2024-07-11 10:20   85M  
 21. How to Interpret Coefficients using p-Values and Statistical Significance.mp4      2024-07-11 10:20   65M  
 5. Visualising Data (Part 1) Historams, Distributions & Outliers.mp4                   2024-07-11 10:21   65M  
 16. How to Shuffle and Split Training & Testing Data.mp4                               2024-07-11 10:20   64M  
 24. How to Analyse and Plot Regression Residuals.mp4                                   2024-07-11 10:20   64M  
 8. Understanding Descriptive Statistics the Mean vs the Median.mp4                     2024-07-11 10:21   62M  
 6. Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4             2024-07-11 10:21   57M  
 2. Gathering the Boston House Price Data.mp4                                           2024-07-11 10:20   56M  
 17. Running a Multivariable Regression.mp4                                             2024-07-11 10:20   56M  
 15. Understanding Multivariable Regression.mp4                                         2024-07-11 10:20   49M  
 1. Defining the Problem.mp4                                                            2024-07-11 10:20   40M  
 9. Introduction to Correlation Understanding Strength & Direction.mp4                  2024-07-11 10:21   33M  
 18. How to Calculate the Model Fit with R-Squared.mp4                                  2024-07-11 10:20   32M  
 19. Introduction to Model Evaluation.mp4                                               2024-07-11 10:20   16M  
 33.1 04 Multivariable Regression.ipynb.zip                                             2024-07-11 10:21  3.5M  
 14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.srt          2024-07-11 10:20   29K  
 32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.srt   2024-07-11 10:21   28K  
 22. Understanding VIF & Testing for Multicollinearity.srt                              2024-07-11 10:20   26K  
 11. Visualising Correlations with a Heatmap.srt                                        2024-07-11 10:20   24K  
 27. Making Predictions (Part 1) MSE & R-Squared.srt                                    2024-07-11 10:20   24K  
 23. Model Simplification & Baysian Information Criterion.srt                           2024-07-11 10:20   23K  
 26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.srt         2024-07-11 10:20   23K  
 20. Improving the Model by Transforming the Data.srt                                   2024-07-11 10:20   22K  
 30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).srt            2024-07-11 10:21   21K  
 29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.srt    2024-07-11 10:20   21K  
 7. Working with Index Data, Pandas Series, and Dummy Variables.srt                     2024-07-11 10:21   21K  
 12. Techniques to Style Scatter Plots.srt                                              2024-07-11 10:20   21K  
 4. Clean and Explore the Data (Part 2) Find Missing Values.srt                         2024-07-11 10:21   19K  
 25. Residual Analysis (Part 1) Predicted vs Actual Values.srt                          2024-07-11 10:20   18K  
 10. Calculating Correlations and the Problem posed by Multicollinearity.srt            2024-07-11 10:20   18K  
 3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.srt        2024-07-11 10:20   16K  
 28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.srt 2024-07-11 10:20   15K  
 24. How to Analyse and Plot Regression Residuals.srt                                   2024-07-11 10:20   15K  
 5. Visualising Data (Part 1) Historams, Distributions & Outliers.srt                   2024-07-11 10:21   14K  
 8. Understanding Descriptive Statistics the Mean vs the Median.srt                     2024-07-11 10:21   12K  
 16. How to Shuffle and Split Training & Testing Data.srt                               2024-07-11 10:20   12K  
 21. How to Interpret Coefficients using p-Values and Statistical Significance.srt      2024-07-11 10:20   11K  
 17. Running a Multivariable Regression.srt                                             2024-07-11 10:20  9.8K  
 6. Visualising Data (Part 2) Seaborn and Probability Density Functions.srt             2024-07-11 10:21  9.0K  
 2. Gathering the Boston House Price Data.srt                                           2024-07-11 10:20  8.7K  
 9. Introduction to Correlation Understanding Strength & Direction.srt                  2024-07-11 10:21  8.4K  
 15. Understanding Multivariable Regression.srt                                         2024-07-11 10:20  7.5K  
 1. Defining the Problem.srt                                                            2024-07-11 10:20  6.5K  
 18. How to Calculate the Model Fit with R-Squared.srt                                  2024-07-11 10:20  4.4K  
 19. Introduction to Model Evaluation.srt                                               2024-07-11 10:20  3.8K  
 33.3 boston_valuation.py                                                               2024-07-11 10:21  3.1K  
 33.2 04 Valuation Tool.ipynb.zip                                                       2024-07-11 10:21  2.9K  
 34. Any Feedback on this Section.html                                                  2024-07-11 10:21  512   
 13. A Note for the Next Lesson.html                                                    2024-07-11 10:20  476   
 33. Download the Complete Notebook Here.html                                           2024-07-11 10:21  242   
 31. Python Conditional Statement Coding Exercise.html                                  2024-07-11 10:21  156   
 1.1 Course Resources.html                                                              2024-07-11 10:20  122