
Shells

The shell sits between you and the kernel, acting as a command interpreter. It reads your terminal input

and translates the commands into actions taken by the system. The shell is analogous to command in

DOS. When you log into the system you are given a default shell. When the shell starts up it reads its

startup files and may set environment variables, command search paths, and command aliases, and

executes any commands specified in these files.

The original shell was the Bourne shell, sh. Every Linux platform will either have the Bourne shell, or a

Bourne compatible shell available. It has very good features for controlling input and output, but is not

well suited for the interactive user. To meet the latter need the C shell, csh, was written and is now found

on most, but not all, Linux systems. It uses C type syntax, the language Unix is written in, but has a more

awkward input/output implementation. It has job control, so that you can reattach a job running in the

background to the foreground. It also provides a history feature which allows you to modify and repeat

previously executed commands.

The default prompt for the Bourne shell is $ (or #, for the root user). The default prompt for C shell is %.

Numerous other shells are available from the network. Almost all of them are based on either sh or csh

with extensions to provide job control to sh, allow in-line editing of commands, page through previously

executed commands, provide command name completion and custom prompt, etc. Some of the more

well known of these may be on your favorite Linux system: the Korn shell, ksh, by David Korn and the

Bourne Again Shell, bash, from the Free Software Foundations GNU project, both based on sh, the T-C

shell, tcsh, and the extended C shell, cshe, both based on csh. Below we will describe some of the features

of sh and csh so that you can get started.

Built-in Commands

The shells have a number of built-in, or native commands. These commands are executed directly in the

shell and don’t have to call another program to be run. These built-in commands are different for the

different shells.

sh

For the Bourne shell some of the more commonly used built-in commands are:

 : null command

 . source (read and execute) commands from a file

 case case conditional loop

 cd change the working directory (default is $HOME)

 echo write a string to standard output

 eval evaluate the given arguments and feed the result back to the shell

 exec execute the given command, replacing the current shell

 exit exit the current shell

 export share the specified environment variable with subsequent shells

 for for conditional loop

 if if conditional loop

 pwd print the current working directory

 read read a line of input from stdin

 set set variables for the shell

 test evaluate an expression as true or false

 trap trap for a typed signal and execute commands

 umask set a default file permission mask for new files

 unset unset shell variables

 wait wait for a specified process to terminate

 while while conditional loop

csh

For the C shell the more commonly used built-in functions are:

 alias assign a name to a function

 bg put a job into the background

 cd change the current working directory

 echo write a string to stdout

 eval evaluate the given arguments and feed the result back to the shell

 exec execute the given command, replacing the current shell

 exit exit the current shell

 fg bring a job to the foreground

 foreach for conditional loop

 glob do filename expansion on the list, but no "\" escapes are honored

 history print the command history of the shell

 if if conditional loop

 jobs list or control active jobs

 kill kill the specified process

 limit set limits on system resources

 logout terminate the login shell

 nice command lower the scheduling priority of the process, command

 nohup command do not terminate command when the shell exits

 set set a shell variable

 setenv set an environment variable for this and subsequent shells

 stop stop the specified background job

 umask set a default file permission mask for new files

 unalias remove the specified alias name

 unset unset shell variables

 while while conditional loop

Environment Variables

Environmental variables are used to provide information to the programs you use. You can have both

global environment and local shell variables. Global environment variables are set by your login

shell and new programs and shells inherit the environment of their parent shell. Local shell variables

are used only by that shell and are not passed on to other processes. A child process cannot pass a

variable back to its parent process.

The current environment variables are displayed with the "env" or "printenv" commands. Some

common ones are:

• DISPLAY The graphical display to use, e.g. nyssa:0.0

• EDITOR The path to your default editor, e.g. /usr/bin/vi

• GROUP Your login group, e.g. staff

• HOME Path to your home directory, e.g. /home/frank

• HOST The hostname of your system, e.g. nyssa

• IFS Internal field separators, usually any white space (defaults to tab, space

 and <newline>)

• LOGNAME The name you login with, e.g. frank

• PATH Paths to be searched for commands, e.g. /usr/bin:/usr/ucb:/usr/local/bin

• PS1 The primary prompt string, Bourne shell only (defaults to $)

• PS2 The secondary prompt string, Bourne shell only (defaults to >)

• SHELL The login shell you’re using, e.g. /usr/bin/csh

• TERM Your terminal type, e.g. xterm

• USER Your username, e.g. frank

Many environment variables will be set automatically when you login. You can modify them or define

others with entries in your startup files or at any time within the shell. Some variables you might want

to change are PATH and DISPLAY. The PATH variable specifies the directories to be automatically

searched for the command you specify. Examples of this are in the shell startup scripts below.

You set a global environment variable with a command similar to the following for the C shell:

 % setenv NAME value

and for Bourne shell:

 $ NAME=value; export NAME

You can list your global environmental variables with the env or printenv commands. You unset them

with the unsetenv (C shell) or unset (Bourne shell) commands.

To set a local shell variable use the set command with the syntax below for C shell. Without options

set displays all the local variables.

 % set name=value

For the Bourne shell set the variable with the syntax:

 $ name=value

The current value of the variable is accessed via the "$name", or "${name}", notation

